Systematic Evaluation of Three Data Marshalling
Approaches for Distributed Software Systems

Hugo Andrade  Federico Giaimo

Christian Berger  Ivica Crnkovic

Chalmers | University of Gothenburg, Sweden

{sica, giaimo, crnkovic}@chalmers.se, christian.berger@gu.se

Abstract

Cyber-physical systems like robots and self-driving vehicles
comprise complex software systems. Their software is typ-
ically realized as distributed agents that are responsible for
dedicated tasks like sensor data handling, sensor data fusion,
or action planning. The modular design allows a flexible de-
ployment as well as algorithm encapsulation to exchange
software modules where needed. Such distributed software
exchanges data using a data marshalling layer to serialize and
deserialize data structures between a sending and receiving
entity. In this article, we are systematically evaluating Google
Protobuf, LCM, and our self-adaptive delta marshalling ap-
proach by using a generic description language, of which
instances can be composed at runtime. Our results show that
Google Protobuf performs well for small messages composed
mainly by integral field types; the self-adaptive data mar-
shalling approach is efficient if four or more fields of type
double are present, and LCM outperforms both when a mix
of many integral and double fields is used.

Categories and Subject Descriptors D.2.12 [Software En-
gineering]: Interoperability—Data mapping; E.4 [Coding
and Information Theory]: Data compaction and compression;
1.2.9 [Robotics]: Autonomous vehicles, Sensors

General Terms distributed software systems, data mar-
shalling, self-adaptive data marshalling

Keywords distributed software systems, data marshalling,
self-adaptive data marshalling

1. Introduction

Distributed software systems are powering complex cyber-
physical systems like self-driving vehicles [3]. Also in the
area of Internet-of-the-Things (IoT), where remote entities
collecting data are connecting back to a cloud based data
processing infrastructure, a distributed software system is
present. Realizing such a distributed software allows system
designers to flexibly deploy software components or to ex-
change the behavior of one component while preserving its
public interfaces. This flexibility is achieved by standardiz-
ing the data modeling and exchange among them. Popular

examples therefor are Google’s Protobuf [1] or Lightweight
Communication and Marshalling (LCM) [6] that is also being
used in experimental vehicles.

1.1 Problem Domain & Motivation

Both aforementioned approaches offer a message modeling
language and code generation engine with bindings to dif-
ferent languages. Thereby, a distributed software system can
even be realized on different platforms using different lan-
guages. However, once a message’s design is specified during
development time, it cannot be modified during runtime any-
more. In our previous study Giaimo et al. [S] on the example
of a cyber-physical system, we showed that the data that is ex-
changed in practice allows for saving bandwidth consumption
as the difference between two consecutively sent messages is
typically small in such application contexts. Thus, this delta
can be encoded more effectively resulting in a faster data
exchange as fewer bytes needed to be sent.

1.2 Research Goal & Research Questions

The goal for this work is to systematically evaluate the perfor-
mance of the three different data marshalling approaches:
Google Protobuf, LCM, and our self-adaptive data mar-
shalling approach. The following questions were of particular
interest:

RQ-1: How can different data marshalling approaches be
systematically evaluated?

RQ-2: What is the performance of the respective data mar-
shalling under various, application-independent condi-
tions?

1.3 Contributions of the Article

We present a generic message description language (DSL)
that serves as a super-set to common language features of
Google Protobuf and LCM. This DSL is used to systemat-
ically create different message structures at runtime by our
C++ middleware OpenDaVINCIl, where the native imple-
mentation of the respective data marshalling approaches was
evaluated.

Uhttp://opendavinci.cse.chalmers.se



1.4 Structure of the Article

The rest of the article is structured as follows: In Sec. 2, we
are outlining related work. In Sec. 3, the design of the DSL
as well as implementation details are presented, followed by
the evaluation in Sec. 4. The article concludes in Sec. 5.

2. Related Work

Huang et al. present in their work [6] Lightweight Commu-
nication and Marshalling, which is a spin-off of their 2007
DARPA Urban Challenge competition vehicle. They describe
the language features alongside with a performance compar-
ison towards the Robot Operating System (ROS) [7]. LCM
encodes a message starting with a 4 bytes magic number
that also encodes the version of the protocol. Next, a 4 byte
sequence number is part of a message header to describe
fragmented messages. The third field in the header is a null-
terminated string describing the channel number under which
a message is transmitted. The last field of the header is an 8
byte hash value, which is iteratively computed for all <field
name, field type> tuples constituting a message. This hash
value allows the validation at receiver side whether the dese-
rialization could successfully read back all data as the fields
of a message are not separated by delimiters or identifiers.

Schwitzer and Popa [9] present an implementation of
Google Protobuf [1] for resource constrained devices. Their
C-based implementation of a self-contained serialization
approach enables the use of the protocol in the domain of
Internet-of-the-Things (IoT). The fundamental idea behind
Protobuf is to encode integral data types not on their type
as defined during design time but on their concrete value at
runtime; thus, even fields with an uint32_t field that would
consume 4 bytes, could only occupy 1 byte if the value of that
field is smaller than 128. This approach is called variable-
length quantity (VLQ).

The general structure of a Protobuf message can start with
a magic number followed by the length of the message; both
attributes are encoded as VLQ. Next, the fields are encoded
as tuples in sequence as they are specified. First, the field
identifier in combination with the field’s data type, which
is consuming 3 bits, is stored in the first byte; the key/type
combination is encoded using VLQ as well. Next, the value
is written to the byte sequence. For any integral type, VLQ is
used. Floating point types are encoded either as 4-byte floats
or 8-byte double fields. Strings or raw byte fields are encoded
including their respective data length.

For processes running on the same computation node,
low-level inter-process communication (IPC) as defined in
POSIX like message queues or shared memory can be used.
As these means would allow a higher performance between
communicating processes, truly distributed software entities
running on different nodes would not be supported. Thus,
IPC is not considered in this study.

message automotive. VehicleData [id =
double heading;
double absoluteTraveledPath;
double relativeTraveledPath;
double speed;
double temp;

391 {

}

message automotive. VehicleControl
double speed;
double acceleration;
double steeringWheelAngle;
bool brakeLights;
bool flashingLightsLeft;
bool flashingLightsRight;

[id = 41] {

Figure 1. Example of a message description file from Open-
DaVINCIL

3. Generic Message Description and
Self-Adaptive Marshalling

Our framework OpenDaVINCI is used on different cyber-
physical experimentation platforms such as scaled self-
driving vehicles [2] and for distributed simulations [4]. It
allows the realization of distributed software systems by
providing different communication patterns like publish/sub-
scribe or centralized hub-based communication, as well as
centralized scheduling for algorithms running on distributed
nodes.

Messages to be exchanged among the interacting software
agents can be modeled at design time by a data description
language specified with Eclipse Xtext. An accompanying
code generator to our C++ environment was realized with
Xtend. The data description language exhibits the following
language features:

e Scalar types like uint8, float, double;

e Definition of initialization values;

e Nested types;

e Enumeration types and constants;

e Lists, fixed size arrays, and maps;

e Specialization via message inheritance.

An example of a design time artifact is depicted in Fig. 1.
The language itself has similarities with Google Protobuf and
LCM but also provides further concepts, like inheritance to
describe relations of an application domain.

At design time, concrete message classes are derived from
the given specification file providing methods to access the
data fields and to serialize and deserialize the message. In
addition, every class also implements the interface Visitable
allowing a Visitor to query the data fields of a message
without knowing the concrete type of given object at runtime.

The concept of visiting any message in an abstract way
was also used to realize a generic message representation by
transforming a given data structure into a list representation of
its attributes. In this case, an attribute comprises an identifier,




its type, and the current value. This generic representation of
any message while preserving its properties like nested types
allows the definition of model transformations at runtime by
defining appropriate visitors.

This concept was used twofold: Firstly, it was used to re-
alize the actual mapping of a given data structure from the
OpenDaVINCI environment to Google Protobuf and LCM,
respectively. Therefore, the visitor for the target language was
instantiated at runtime to visit a data structure to serialize the
containing data into the corresponding byte representation.
For this purpose, Google Protobuf as well as LCM were na-
tively implemented in OpenDaVINCI allowing a transparent
data exchange between the three environments.

Furthermore, the generic visitor approach also allows the
realization of an adaptive data serialization approach. As we
have pointed out in [5], the differences between two consec-
utively sent messages in cyber-physical systems, which are
interacting with their environment based on data perceived
by sensors, is rather small. Moreover, sensors for control
tasks are typically sampled with higher frequencies result-
ing in only small delta increments between two consecutive
sampling time points.

The aforementioned domain properties can be used to
exchange data more effectively between interacting software
agents. Therefore, the difference between the current message
to be sent and its preceding message is calculated and only
its difference values are communicated to avoid consuming
bandwidth for redundant information that can be safely
reconstructed at receiver side.

Fig. 2 depicts the delta-based deserialization process us-
ing the generic runtime message description: An application
realized with OpenDaVINCI receives a new message encap-
sulated in a Container. The container contains the actual
serialized message from the sender as payload, and meta-
information as time stamp when the container left the sender,
and time stamp when it arrived at the receiver. By using the
container identifier, the application starts to access the se-
rialized content in the container with the given type of the
expected message.

During the first communication cycle, a complete message
is exchanged between the sender and receiver and thus,
the contained data, in our case for instance a VehicleData
message, is deserialized. The content of that message is
stored to serve as basis in the case that the sender would
send a delta message only in the next communication cycle.
In that case, a DeltaDeserializerVisitor is instantiated to
read the difference information from the received container.
Next, the corresponding previous message is restored so
that DeltaReconstructor can calculate the new complete
VehicleData resulting from the differences applied to this
message’s predecessor.

The process described above is realized in the lower com-
munication layer of OpenDaVINCI to encapsulate it from
the user. Thus, the adaptive data marshalling is fully transpar-

message EvaluationMessage {

uintl6 uiAttl [default = 1234, id = 11];
uintl6 uiAtt2 [default = 1234, id = 12];
uintl6 uiAtt3 [default = 1234, id = 13];
uintl6 uiAttN [default = 1234, id = 10+N];
double dAttl [default = 1.2, id = 31];
double dAtt2 [default = 1.2, id = 32];
double dAtt3 [default = 1.2, id = 33];
double dAttN [default = 1.2, id = 30+N];

Figure 3. Structure of the evaluation message, which is
dynamically composed runtime.

ent to the user. Furthermore, this adaptation layer can also
apply different delta strategies by not only considering just
the previously received message as basis for reconstruction.
Here, further properties of the application domain could be
considered in the design of data reconstruction algorithms.

4. Evaluation

The evaluation of a given data marshalling approach typi-
cally depends on the intended application context. To cir-
cumvent this issue and properly evaluate the aforementioned
marshalling approaches, we have designed the data collection
step in a systematic way, as described in the remainder of this
section. Further, the experimentation procedure is intended
to be reproducible, i.e., the evaluation could be repeated with
both the same setting or with different parameters, so other
scenarios can also be considered in the future.

4.1 Experimentation Procedure

Instead of choosing a specific scenario in which the different
approaches are evaluated, we decided to use the generic
message description feature to dynamically create different
message types at runtime. Thereby, we could systematically
vary a message’s parameters influencing the performance of
the respective approaches.

Due to the nature of the exchanged messages, the integer
values had generally orders of magnitude of at most 103,
while the floating point values were usually in the 10°
magnitude and increasing or decreasing by the centesimal
digit. For these reasons, in the study we have selected the
following parameters:

e Varying the number of integral data fields (16 bit integer)
in a message from 0 to 10;

e Varying the number of double data fields in a message from
0to 10;

¢ Increasing the value for the integral data fields from an
order of magnitude from 10° to 103;
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Figure 2. Sequence chart of the visitor-based delta deserialization.

¢ Increasing the value for the double data fields from 1.2 to
1.3 using the steps 0 (no increment), 0.01, 0.02, 0.05, and
0.1.

The steps in the floating point numbers were defined based
on our domain experience focusing on high frequency data
exchange. In total, 100 different message attribute fields times
four different order of magnitudes for the integral types
times five different double differences, resulting in 2, 000
different message configurations, were evaluated with all
three data marshalling approaches. The overall structure of
the evaluation message generated at runtime is depicted in
Fig. 3.

4.2 Results

After systematically iterating all parameters using the generic

message representation, we obtained the following results.

The smallest message could be created with Google Protobuf
consuming 6 bytes only for just one integral data field with
values up to an order of magnitude of 102. The largest
message created with Protobuf occupied 139 bytes for 10
integral data fields for data up to an order of magnitude of
103 and 10 double fields.

The smallest message with LCM consumed 21 bytes for
1 integral data field up to an order of magnitude of 103; the
largest message with LCM covering 10 fields of both types
consumes 119 bytes and thus, approximately 15% less then
Protobuf. The reason therefor is that the internal structure of
Protobuf uses a key field while LCM simply writes the data
in sequence without further control data.

The smallest delta message with 22 bytes - and thus,
approximately 3.5 times larger than the smallest Protobuf
message - was obtained for a message carrying 1 integral
field only. The largest delta message with 156 bytes was
created for a message having all 10 integral data fields and
all 10 double data fields.

A chart depicting the increasing amount of bytes required
to store a message of the respective type is depicted in Fig. 4.
Defining a message with just 4 data fields of type double
results in a serialized message of the same length of 44 bytes
for Google Protobuf and the self-adaptive data marshalling.
Having already 2 additional data fields of an integral type
resulted in the self-adaptive approach to fall behind LCM and
Google Protobuf. And finally, having 7 fields of an integral
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Figure 4. Increasing amount of bytes to store a message
with 4 double data fields and and increasing amount of
integral data types: Google Protobuf and the self-adaptive
delta approach are identical with 44 bytes for just 4 double
fields. Having already 2 additional integral type fields, LCM
and Protobuf consume less than the delta approach, and with
7 integral data types, LCM outperforms all other approaches
due to its design.

type resulting in 65 bytes for LCM and 66 bytes for Protobuf
at an order of magnitude of 103.

Fig. 5 summarizes the result for all message configurations
where the integral data field can hold values up to an order
of magnitude of 103. The circles represent configurations
where Google Protobuf is the best choice in terms of the
shortest resulting serialization byte sequence; squares show
configurations, where LCM would trump over the other
approaches; and the stars show message configurations where
the self-adaptive data serialization would be the best choice.

4.3 Discussion

In order to obtain a systematic evaluation of the examined
marshalling approaches, auto-generated messages were used,
and they were populated with a varying number of integer and
floating point variables, containing values with fixed ranges
and increments. From the results of this evaluation, as shown
in the charts, it is apparent that in case of messages with only
integral types, Google Protobuf is the best choice; however,
the more data fields a message contains, the more compact
data format of LCM is paying off resulting in a growing
number of squares in Fig. 5. By design, the self-adaptive delta
approach is paying off for messages with a higher number
of non-integral data fields as its concept aims for reducing

Figure 5. Matrix of the performance evaluation of the differ-
ent approaches for a message with different configurations
for integral types up to an order of magnitude 10% and a
varying range for the double values from 0 to 0.1: On the
x-axis, the number of additional integral data fields in the
message is depicted and on the y-axis, the number of double
data fields in the message is shown. In cells with a circle,
Google Protobuf would result in the smallest byte sequence;
cells with a star show the message configurations where the
self-adaptive data marshalling approach would outperform
the other approaches, and cells with a square represent LCM
trumping the other data marshalling concepts.

the amount of data by assuming that the difference between
two consecutively sent messages with only a short time gap
in between is rather small.

Another observation from Fig. 5 is that once a specific
design decision is made regarding the use of a specific
serialization approach, the message design during system
development should obey the identified boundaries for data
fields to avoid unwanted side-effects at runtime affecting the
performance of the data marshalling.

4.4 Threats to validity

In this section, we discuss the validity of this study according
to four perspectives [8].

Considering construct validity, the design of the study by
using a generic message representation that can be systemati-
cally defined allows for a scenario-independent analysis of
the performance of the three approaches. Thus, no specific
application domain is favored during the experimentation
design.



Regarding internal validity, four different aspects influenc-
ing a serialized message’s length were identified and system-
atically varied. All identified factors directly contribute to the
message size; however, we did not study a random ordering
of the attribute fields.

Concerning external validity, the comparison of our self-
adaptive data marshalling approach with Google Protobuf
and LCM can be considered as relevant as both other ap-
proaches are widely used and have shown the applicability
in the domain of cyber-physical systems. Thus, the findings
presented in this study have an impact on the design of such
systems.

Regarding reliability, the range for the floats used in the
evaluation was inspired by applications in the self-driving
vehicles domain. As the goal for the delta approach was to
address high frequency data exchanges, the motivation for
the increment values was due to the small numeric difference
between values in consecutive packets.

5. Conclusion and Future Work

Distributed software systems with interacting agents base
on communication protocols to exchange information to act
properly or to synchronize tasks. At a system’s development
time, domain specific languages assist the developers to
quickly specify messages to be exchanged between the
interacting system entities. While such DSL facilitates faster
system development and modularization, our study shows that
the composition of a message at design time can negatively
influence the performance of a distributed software system.

One way to systematically evaluate different marshalling
approaches is to have the components of the distributed sys-
tem to automatically generate a number of messages that will
be exchanged using one of the marshalling techniques that are
analyzed. In this way, the total number of bytes exchanged in
the system will act as one of the main parameters to compare
the different marshalling approaches and their efficiency. The
messages were generated containing an incrementing number
of integer and floating point variables, and their values were
incremented by predefined steps.

We experimentally showed that Google Protobuf is well
suited for compact messages with few data fields focusing
primarily on integral types. LCM in contrast is paying off as
the number of message fields increases. Our self-adaptive
data marshalling approach, which is making use of the
practical fact that the difference between two consecutively
sent messages is rather small, is beneficial in the case of
messages that are heavy on non-integral data fields.

Future work would include extending the comparison to
more marshalling approaches in order to get an even broader
view of their performances and how these are affected by
the nature of the processed messages in terms of number
and type of contained variables. More efforts would also be
required to further improve the self-adaptive data marshalling
approach, especially for messages where the floating point

types are not the predominant ones, since the result of
the evaluation clearly shows the boundaries in which this
technique has to become more efficient. Studying the way
other approaches successfully process messages with integer
variables exchanging smaller amounts of bytes will prove
beneficial in this sense. Furthermore, alternative algorithms
to model the hysteresis of previously received messages
considering more messages than only the previously received
one need to be explored to maker better use of the delta
marshalling approach in different application contexts.
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