

On the Way of Bottom-Up Designing Textual Domain-Specific
Modelling Languages

Bastian Roth, Matthias Jahn, Stefan Jablonski

University of Bayreuth
Bayreuth, Germany

{bastian.roth, matthias.jahn, stefan.jablonski} @ uni-bayreuth.de

Abstract

The development of domain-specific modelling languages
(DSMLs) is not a trivial task. During recent years, a new approach
has arisen which enables users to sketch example models that are
used as basis for deriving an appropriate DSML. Until now, this
bottom-up approach is merely applied to graphical DSMLs. How-
ever, the field of textual DSMLs is also very large and we believe
that it can benefit from the bottom-up method as well. To really
support users during this method it is necessary to equip them with
an intuitively utilizable tool. In case of textual DSMLs, this needs
to be an editor that allows for entering free text. Hence, in this paper
we present the requirements for such an editor and how a basic so-
lution may look like. Finally, we state some further challenges that
need to be solved to achieve full support for developing textual
DSMLs the bottom-up way.

Categories and Subject Descriptors D.2.1 [Software Engineer-

ing]: Requirements/Specifications – Elicitation methods (rapid
prototyping), Languages, Methodologies, Tools.

General Terms Design, Languages.

Keywords Domain-Specific Modelling Language, Domain-Spe-
cific Language, Bottom-Up Modelling, Demonstration-Based Ap-
proach, Textual Modelling

1. Introduction

Designing a domain-specific modelling language (DSML) is a
complex and hence time-consuming task [5]. Following the wide-
spread top-down method, the DSML needs to be defined first be-
fore it can be used to create models in the domain of interest. A user
cannot simply describe the reality in form of models because (s)he
needs a language for it. Thereby, one has to abstract the language
from instances gathered, e.g., from an interview with a domain spe-
cialist. That is one reason why modelling tools are seldom used in
early phases of software development and why the creation of a
DSML is not trivial.

 For graphical DSMLs, some solutions to this problem have re-
cently been presented [4, 6, 17]. They allow for sketching diagrams

in the manner of prominent drawing tools like Microsoft Visio, Mi-
crosoft PowerPoint or Dia. Based on the shapes used within the di-
agram, their visual properties and their relationships to each other,
a DSML is derived which can be used for creating further models.
Owing to this approach, less experienced language designers are
supported in developing a DSML while having their well-known
drawing tool behaviour. Thereby, the user shows the system how
her/his DSML is structured instead of specifying it by means of an
abstract formalism (e.g., meta modelling). This course of action is
often called “bottom-up (meta) modelling” [16, 17] or “demonstra-
tion-based approach” [3]. The first term implies a separation from
conventional top-down meta modelling so we will refer to this one.

Beyond graphical DSMLs, there is the huge field of textual
DSMLs. Many frameworks and systems exist for creating and us-
ing textual DSMLs (e.g. Xtext, MPS, EMFText, Spoofax). Accord-
ing to their editing paradigm, these frameworks can be subdivided
into two categories, namely free text editors and projectional edi-
tors.

The most widespread ones are free text editors. In a first step,
they enable users to input arbitrary character sequences. After-
wards, these sequences are validated concerning syntactical cor-
rectness using a lexer and a parser which both base upon a formal
grammar [1]. On the other hand, there are so-called projectional
editors like Jetbrain’s Meta Programming System (MPS) and the
Intentional Domain Workbench. User interactions with the editor
are directly performed on the underlying abstract syntax tree (AST)
instead of manipulating character strings [7]. Of course, the user is
always faced with a visual representation (instance of a concrete
syntax) which is one projection of the AST and not the tree itself.

However, none of the textual DSML frameworks supports an
approach comparable to bottom-up modelling. All of them require
a definition of the used DSML before a model can be created. Fo-
cusing this challenge, we present an approach on how an appropri-
ate tool may support users in building a textual DSML the bottom-
up way. With it, we aim to support users that may not be experts in
defining languages but are used to structured languages like pro-
gramming languages.

2. Example

In the following, we present an example which points out the core
features a text editor for bottom-up modelling should support. Fig-
ure 1 shows an instance of a simplified and slightly adapted variant
of Fowler’s state machine DSML [8]. Analogous to the lexical
analysis in the field of compiler construction, we break the text into
tokens to identify their basic meanings in form of their types. The
different types of tokens are highlighted with different colours (ex-
cept delimiters).

In an ideal world, one simply enters this text and the editor rec-
ognizes the tokens and their respective types as well as the intended
hierarchical structure. To do this, we first extract four different to-
ken types which are only complete regarding this example but not
in general:

 the blue keywords events and state,

 the black identifiers for naming a specific construct (here the
events START, WORK, and STOP and the states Idle and Ac-
tive),

 the violet references (for referring to events and states via their
particular name) and finally

 the delimiters (namely , and =>)

After the recognition of tokens, the structure between them has
to be extracted since it acts as basis for the later induced abstract
syntax. At first place, we would expect a comma-separated list of
events which is indicated by the keyword events. Afterwards, the
states are defined whereas each state is declared by typing a line
wrap followed by the keyword state. Each state contains an arbi-
trary number of transitions that are represented by the indented
lines below every state declaration. A transition is composed by a
reference to an event and a reference to a target state.

Simply because of her/his experiences in formatting source code
according to the code’s meaning, most software developers under-
stand this structure without deeper explanations. Unfortunately, a
computer does not have such experiences and consequently, it can-
not identify this structure out of the box. To support the bottom up
modelling approach, this structure and the different token types
need to be recognized automatically as far as possible. Tokens are
the elementary parts of a language and the structure describes how
they are combined. Hence, identifying this structure is an essential
precondition for the later derivation of the abstract syntax.

Figure 4 shows a suggestion how the example model’s hierar-
chical structure may look like. Thereby, we distinguish between
two types of containers. Statements (marked by a dashed border)
are intended to represent domain elements like events, states and
transitions. They consist of arbitrary tokens and any number of

blocks. Blocks (surrounded by a solid border) are intended to con-
stitute containers for statements. Their pendant on domain side are
containers within domain elements that contain other domain ele-
ments.

3. Requirements

During our research, we identified three requirements a textual ed-
itor should meet for supporting the bottom-up approach. They are
formulated in a quite abstract manner because, at this place, we do
not want to anticipate how the solution looks like.

First of all, the user experience of such an editor should feel like
entering free text (R1). In more detail, it means that a user should
not be hampered in her/his workflow when textually sketching a
model. Otherwise, the simplicity benefit of the bottom-up model-
ling approach will be lowered and thus, the top-down procedure
might be preferred.

Besides, developers are accustomed to the code editing support
of modern IDEs. Especially features like syntax highlighting and
content assist are popular and expected by the users. Therefore,
these features should be provided as early as possible in the process
of sketching textual models (R2). For this task, grammar inference
[13] is not sufficient because appropriate tool support (primarily
syntax highlighting and content assist) can only be supplied after a
grammar was induced [14].

In order to not hamper the user’s workflow (see R1), the extrac-
tion of tokens and structure mentioned in section 2 should be per-
formed in an automatic way. In some cases, however, the user
needs to directly influence the identification process (R3). The
main reason would be that (s)he is not content with the produced
result and thus, (s)he wants to manipulate it accordingly.

4. Solution approach

Owing to the different input method when modelling textually,
tools need to support the user in a different way in comparison to
the demonstration of graphical DSMLs. When working with dia-
grams, the primary interactions are mouse gestures that create,
move, resize and connect shapes. Working with text, however,
means occurring key events which are applied to the text at the cur-
sor’s current position. Usually, the character associated with the
pressed key is inserted at this place. This is also true for projectional
editors but they only allow for entering text at specific places within
the document. Elsewhere inputted characters are simply ignored by
the editor. Because of a better user experience, the input behaviour
of projectional editors corresponds more and more to the one of free
text editors [15].

Consequently, tools supporting textual bottom-up modelling
should be able to accept key strokes as input. During input, the
characters are directly analyzed and tokens as well as their particu-
lar types are identified. For texts written in a formal language, it is
common practice to represent them as a tree structure. In available
DSMLs and also general purpose programming languages, this tree
structure primarily is an AST [1, 8]. However, when writing free
textual models the abstract syntax is not yet defined. At this point,
only the concrete syntax is given in form of tokens. Hence, we
adopt the general idea and build up a so called concrete syntax tree
(CST) out of these tokens. Beyond the identification of tokens, this
is also performed automatically (as far as possible) while the user
inputs text.

Motivated by requirement R3, we mainly adopt the projectional
editing paradigm because then the entered text is directly available
as a hierarchical structure. With it, the user can simply modify the
tree’s structure and its content which directly affects the intended
meaning. This is important for a later step where the abstract syntax
is inferred [16].

Figure 1. Example model of a state machine (free text)

Figure 2. Example model of a state machine (structured text)

In the following, some prerequisites are described which need
to be fulfilled. After that, we specify the building blocks of the CST
and present a basic strategy for recognizing its overall structure.

4.1 Prerequisites

Textual bottom-up modelling requires a fundamental assumption
on textual DSMLs. Otherwise, automatic recognition of particular
structures within the entered character sequence is impossible. This
assumption bases on the semantic of certain tokens for structuring
text expected by users. Typical representatives for structure-bear-
ing tokens are punctuation symbols, combinations of such symbols
and whitespaces. Further on, we call them delimiter tokens. With
them, there are several syntactic patterns which recur in many for-
mal computer languages. For instance, elements are enumerated by
means of commas or common elements are clasped using curly
braces. In place of inserting curly braces for declaring blocks, syn-
tactic indentation is an increasingly used pattern due to its reduction
of syntactic noise (namely the braces) [8]. In doing so, a new block
is defined by a line break and one further indentation. Such patterns
should be simultaneously applied to the current CST while the re-
spective tokens are identified.

4.2 Building blocks of the CST

As shown in the example and mentioned at the beginning of section
4, the main structure can be described as a tree which predomi-
nantly consists of tokens and containers. The root Container is
stated by a Document which always represents the entry point of a
CST (Figure 3). Both, tokens and containers, have a common base
class Cell that provides some basic functionality (e.g. the possibil-
ity to re-parent a cell). Except of the root one, each cell is part of a
parent container.

To determine a token’s type, instances of the class TokenType
need to be assigned to the particular token. This task is performed
automatically in the background during the type recognition pro-
cess (section 4.3). Since TokenType is abstract only sub classes
can be used for instantiation. To provide a new token type develop-
ers need to implement such a sub class and register it at the docu-
ment’s TypeRegistry. Every type has to implement the
conforms() method which states to a given text whether this text
is valid or not. Currently, we distinguish the following types in
form of separate sub classes (not shown in Figure 3).

 Keyword: a reserved word which often has a typing or annotat-
ing purposes (e.g. see state and events in the state machine
example).

 Identifier: specifies a statement’s unique name. Hence, each
statement should only consist of one identifier token at a max.

 Reference: it refers to another statement via its name that was
specified using an identifier. In contrast to tokens of other lan-
guages, identifiers and references already need to be distin-
guished within the CST to support bottom-up modelling. Oth-
erwise, the abstract syntax inference engine cannot differentiate
between both, leading to unexpected results.

 String, integer and float literal: indicate literal values, well-
known from other languages.

 Comment: a not further considered note, but needed by users for
documentation purposes.

 Delimiter: typical representatives are whitespaces, commas, as-
signment operators like “=” and “:=”, comparison operators like
“==” and “<”, arithmetic operators like “+” and “-“ etc.. Since
delimiters often affect the CST’s structure and thus take a spe-
cial position, the particular sub class DelimiterType of To-
kenType is predefined for all delimiter types. Hence, delimiters
can be further subdivided according to their impact on the tree
structure. These subdivisions are listed in section 4.3 because
they are part of the recognition strategy.

Analogous to tokens, a container’s type is determined using sub
classes of ContainerType. Every time a new token has been
added to a container, the associated type is notified by invoking
tokenAdded(). With it, the container type gets the opportunity to
perform any further adaptions on the CST. By virtue of Friedman
[9] and various programming language specifications [10, 12, 18],
the following three container types should be distinguished.

 Statement: only may contain tokens, blocks and an expression
because it is intended to represent a domain model element.

 Block: merely consist of statements. It is always part of a state-
ment and hence, constitutes a container for sub-elements of the
wrapping statement’s domain element. In Figure 2, for instance,
the statement representing the Active state includes a block
which contains two other statements. These ones are intended
to represent transitions within the domain.

 Expression: some kind of calculation rules, i.e. rather similar to
statements. Hence, an expression may be composed of tokens.
In addition, it may also contain further expressions which would
break with the semantic of a statement because they are not self-
containable. Consequently, it is reasonable to treat expressions
as a further container type.

Both, token and container types have a common base class
CellType and are managed by a TypeRegistry. With this base
class, each type is able to define custom shortcuts for specific op-
erations on the CST (e.g. constituting a token’s type or creating a
block). This feature addresses requirement R3. Moreover, the ab-
stract classes TokenType, DelimiterType and ContainerType
(highlighted grey) are intended for subclassing to extend the CST’s
meta model about additional cell types.

4.3 Recognition strategy

As mentioned earlier, the recognition of tokens, their types and the
hierarchical structure of the text is directly performed after the user
has pressed a key. Accordingly, the user can simply input text as
how (s)he would do with free text editors. By this means, require-
ment R1 is fulfilled.

Before extracting any structural information, the tokens need to
be identified. In order to detect a token’s type, regular expressions
can be applied to the entered text (within an implemented

+reparent(newParent : Container)

Cell

Container

-text : string

Token

+conforms(text : string) : boolean

TokenType

DelimiterType

+tokenAdded(token : Token)

ContainerType

-typeId : string

+defineShortcuts()

CellType

+register(type : CellType)

TypeRegistry

Document

type 1

root

0..11

1*

parent0..1

children*

type 1

1

Figure 3. Meta model for concrete syntax tree

conforms() method). This is sufficient for string, integer and float
literals. Unfortunately, distinguishing between the token types
identifier, reference and keyword is not as easy since they are valid
in accordance to the same regular expression. Thus, user interaction
is required to determine the token type in those ambiguous cases. It
can be provided via shortcuts defined within an overridden
defineShortcuts() method. According to the particular types,
each token can be highlighted which solves one part of requirement
R2. The content assist part can be addressed by providing code
completion for reference tokens. Permitted values are, for instance,
identifiers declared within the text entered so far.

The structure and hence the containers with their respective
types are automatically created when delimiters are recognized.
Delimiters can be categorized according to their impact on the
CST’s structure.

 Token separator: it is the default category of each delimiter
which is not classified any further. Entering such a separator
will simply lead to a new token within the current statement.
(typical representative: space character)

 Statement separator: such delimiters separate sequenced state-
ments from each other. We assume that different representa-
tives of this category have a different meaning (similar to the
assumption stated in section 4.1). Consequently, the behaviour
when entering such a separator depends on the previous separa-
tor used in the current block. If there is a separator and it is equal
to the one entered then a new statement is added to the block.
Otherwise a new block is inserted into the current statement.
For instance, imagine a block with three statements that are sep-
arated by means of a comma. Then if a line break is added to
the last statement, this statement is extended by a block at this
place. In case one wants to separate child statements with the
same delimiter as used for the parent statements (e.g., it happens
in the example in Figure 2 for separating states and their con-
tained transitions) those delimiters need to be distinguished in a
different way (e.g., by simultaneously pressing a modifier key
like Ctrl or Alt while entering the separator). Owing to this fea-
ture, requirement R3 is covered. Typical representatives are
commas, semicolons and line breaks.

 Opening brace: when entering an opening brace, a new block is
inserted in every case. Beyond that, the corresponding closing
brace is added automatically as well which is a familiar feature
of modern IDEs and thus addresses requirement R2. In Figure

4, there are four examples for opening braces, but the second
round one is empty and hence no container is visualized. Typi-
cal representatives are “(“, “[“ and “{“.

 Operator: entering an operator leads to a new expression that is
added to the current statement or an already existing expression.
Currently, we only support binary operators and so infix expres-
sions and also do not consider the different priorities of various
operators. How an exemplary complex expression structure
may look like can be seen in the return statement of Figure 4.
Typical representatives are “.”, “+”, “-“, “*” and “/”.

The recognition of where the current token ends and a new to-
ken starts is performed comparably to the lexical analysis of com-
pilers [1]. By doing this, the end of a token is encountered if the
previous complying regular expression is not valid any more.

5. Proof of concept

For evaluating the presented approach, we developed a prototypical
editor using HTML5 technologies. The reason for choosing
HTML5 is that modern browsers may enable users to modify a web
page in the manner of WYSIWYG by setting an element’s con-
tenteditable attribute to true [11]. During the input, the under-
lying DOM is directly updated which we can interpret and utilize
as CST. The implemented editor offers each feature described in
section 4. For this reason, it addresses all requirements stated in
section 3, especially supporting some user interventions to cover
the third requirement in greater depth.

One problem we have tackled during the development, is the
implementation of proper syntax highlighting of keywords, identi-
fiers and references. Unfortunately, it cannot be done automatically
and thus, the user has to indicate the type of such tokens using
shortcuts (requirement R3). By default, each token is an identifier.
However, one time a token is classified as a keyword this infor-
mation can be reused for each further extracted token. For instance,
it is the case for the keyword state in Figure 2. Therein, the key-
word was defined manually for state Idle and automatically rec-
ognized for state Active.

Again, requirement R3 is addressed by the user’s ability to se-
lect successive tokens and wrap them in a new container by means
of a shortcut. The specific shortcut determines the type of the con-
tainer (predominantly block or statement). In addition, a container’s
type can be changed afterwards if desired.

Beyond the quite simple example presented in section 2, with
the editor it is also possible to sketch sophisticated textual models.
For that purpose, Figure 4 shows a class in a fictional object-ori-
ented programming language (similar to Java) created with the ed-
itor. The most noticeable parts compared to the above example are
references to elements that are not declared within the same model,
the usage of two different brace types and the presence of expres-
sions (marked by dotted orange borders).

6. Conclusion and future challenges

As mentioned above, our research is in an early state and thus, the
presented approach raises no claims of being complete. However,
it already shows a promising solution of how an editor for enabling
textual bottom-up modelling may look like and function. We al-
ready gathered some successful validation results concerning the
practicability by means of a prototypical implementation (section
5). With it, we recreated several textual models by using the syntax
of existing DSMLs (e.g., a state machine in Figure 2) and even gen-
eral purpose programming languages (e.g. a class described by a
language similar to Java in Figure 4).

There is still plenty of research to be done in the field of textual
bottom-up (meta) modelling. While different people worked with

Figure 4. Example of a sketched programming language snippet
(similar but not identical to Java [10])

our editor, we found out that it would be expedient that the editor’s
behaviour is highly customizable. The reason for that lies in the
different habits and preferences of various users regarding the de-
sign of languages. For instance, a user would like to use colons for
assignments, whereas another one wants to utilize them as division
operators. One further issue which could be covered by means of
configurability is the prioritisation of operators. Nevertheless, it
still needs to be discovered how the structure has to be modified
according to the particular operator’s priority.

Another major task is exploring how the editor’s user experi-
ence can be further improved (requirement R2). That principally
can be achieved by extending the content assist support, e.g., for
recurring statements. In Figure 4, two fields are declared which are
prefaced with the modifier private. So, if the user inputs a “p” in
the third line the editor could provide the proposal “private” based
on the information gained from the statement before. It might also
be possible to provide content assist for the structure of whole state-
ments (in the form of templates). Instead of only inserting “pri-
vate”, a reference and an identifier placeholder can be additionally
inserted. To support content assist for more than one type of state-
ment (e.g., in the given class beyond fields there are methods as
well), those types have to be identified first. In the graphical bot-
tom-up domain the authors of [2] already proposed a solution to
derive the syntactic building blocks of diagrams which could be
evaluated and (if appropriate) adapted in respect of textual models.

What we did not address until now is how an abstract syntax is
derived from textual example models. According to the presented
approach, however, the user needs to ensure that the CST is struc-
tured in a way that fits the semantic model in mind. In future re-
search, a mapping has to be determined that specifies the method
of inferring an abstract syntax from a given set of CSTs. Among
other things, it needs to be explored how meaningful names can be
recognized for derived constructs of the abstract syntax.

Acknowledgments

This research paper was authored in the context of the project
“Kompetenzzentrum für praktisches Prozess- und Qualitätsman-
agement” (KpPQ) funded by “Europäischer Fonds für regionale
Entwicklung” (EFRE). So, we thank this institution which has
kindly facilitated our work.

References

[1] Aho, A. V., Lam, M.S., Sethi, R. and Ullman, J.D. 2008. Compiler.
Pearson Studium.

[2] Anaby-Tavor, A., Amid, D., Fisher, A., Ossher, H., Bellamy, R.,
Callery, M., Desmond, M., Krasikov, S., Roth, T., Simmonds, I. and

de Vries, J. 2009. An algorithm for identifying the abstract syntax of
graph-based diagrams. IEEE Symposium on Visual Languages and
Human-Centric Computing (Corvallis, OR, Sep. 2009), 193–196.

[3] Cho, H. 2011. A demonstration-based approach for designing domain-
specific modeling languages. Proceedings of SPLASH 2011 (New
York, NY, 2011), 51–54.

[4] Cho, H. 2013. A Demonstration-Based Approach for Domain-Specific
Modeling Language Creation. University of Alabama.

[5] Clark, T., Sammut, P. and Willans, J. 2008. Applied metamodelling: a
foundation for language driven development. CETEVA. (2008).

[6] Desmond, M., Ossher, H., Simmonds, I., Amid, D., Anaby-Tavor, A.,
Callery, M. and Krasikov, S. 2010. Towards smart office tools.
SPLASH 2010 Workshop on Flexible Modeling Tools (Reno, Nevada,
2010).

[7] Dmitriev, S. 2004. Language oriented programming: The next
programming paradigm. JetBrains onBoard. (2004).

[8] Fowler, M. 2011. Domain-Specific Languages. Addison-Wesley.

[9] Friedman, D.P. and Wand, M. 2008. Essentials of Programming
Languages. MIT Press.

[10] Gosling, J., Joy, B., Steele, G. and Bracha, G. 2005. The Java
Language Specification. Addison-Wesley.

[11] HTML5 - Editing: 2013. http://www.w3.org/TR/2008/WD-html5-
20080610/editing.html. Accessed: 2013-08-09.

[12] Kernighan, B.W. and Ritchie, D.M. 1988. The C programming
Language. Prentice Hall.

[13] King-Sun, F. and Booth, T.L. 1986. Grammatical Inference:
Introduction and Survey - Part I. IEEE transactions on pattern
analysis and machine intelligence. 8, 3 (Mar. 1986), 343–359.

[14] Mernik, M., Hrncic, D., Bryant, B.R., Sprague, A.P., Gray, J., Liu, Q.
and Javed, F. 2009. Grammar inference algorithms and applications in
software engineering. Proceedings of the 9th International
Colloquium on Grammatical Inference (2009), 1–7.

[15] MPS public roadmap: 2013.
http://confluence.jetbrains.com/display/MPS/MPS+public+roadmap.
Accessed: 2013-08-08.

[16] Roth, B., Jahn, M. and Jablonski, S. 2013. A Method for Directly
Deriving a Concise Meta Model from Example Models. Proceedings
of PATTERNS 2013 (2013), 52–58.

[17] Sánchez-Cuadrado, J., Lara, J. De and Guerra, E. 2012. Bottom-Up
Meta-Modelling: An Interactive Approach. Proceedings of the 15th
International Conference on MODELS (2012), 3–19.

[18] The Python Language Reference: 2013.
http://docs.python.org/3/reference/index.html. Accessed: 2013-07-26.

