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Abstract  

The development of domain-specific modelling languages 
(DSMLs) is not a trivial task. During recent years, a new approach 
has arisen which enables users to sketch example models that are 
used as basis for deriving an appropriate DSML. Until now, this 
bottom-up approach is merely applied to graphical DSMLs. How-
ever, the field of textual DSMLs is also very large and we believe 
that it can benefit from the bottom-up method as well. To really 
support users during this method it is necessary to equip them with 
an intuitively utilizable tool. In case of textual DSMLs, this needs 
to be an editor that allows for entering free text. Hence, in this paper 
we present the requirements for such an editor and how a basic so-
lution may look like. Finally, we state some further challenges that 
need to be solved to achieve full support for developing textual 
DSMLs the bottom-up way. 

Categories and Subject Descriptors  D.2.1 [Software Engineer-

ing]: Requirements/Specifications – Elicitation methods (rapid 
prototyping), Languages, Methodologies, Tools. 

General Terms  Design, Languages. 

Keywords  Domain-Specific Modelling Language, Domain-Spe-
cific Language, Bottom-Up Modelling, Demonstration-Based Ap-
proach, Textual Modelling 

1. Introduction 

Designing a domain-specific modelling language (DSML) is a 
complex and hence time-consuming task [5]. Following the wide-
spread top-down method, the DSML needs to be defined first be-
fore it can be used to create models in the domain of interest. A user 
cannot simply describe the reality in form of models because (s)he 
needs a language for it. Thereby, one has to abstract the language 
from instances gathered, e.g., from an interview with a domain spe-
cialist. That is one reason why modelling tools are seldom used in 
early phases of software development and why the creation of a 
DSML is not trivial. 

 For graphical DSMLs, some solutions to this problem have re-
cently been presented [4, 6, 17]. They allow for sketching diagrams 

in the manner of prominent drawing tools like Microsoft Visio, Mi-
crosoft PowerPoint or Dia. Based on the shapes used within the di-
agram, their visual properties and their relationships to each other, 
a DSML is derived which can be used for creating further models. 
Owing to this approach, less experienced language designers are 
supported in developing a DSML while having their well-known 
drawing tool behaviour. Thereby, the user shows the system how 
her/his DSML is structured instead of specifying it by means of an 
abstract formalism (e.g., meta modelling). This course of action is 
often called “bottom-up (meta) modelling” [16, 17] or “demonstra-
tion-based approach” [3].  The first term implies a separation from 
conventional top-down meta modelling so we will refer to this one. 

Beyond graphical DSMLs, there is the huge field of textual 
DSMLs. Many frameworks and systems exist for creating and us-
ing textual DSMLs (e.g. Xtext, MPS, EMFText, Spoofax). Accord-
ing to their editing paradigm, these frameworks can be subdivided 
into two categories, namely free text editors and projectional edi-
tors. 

The most widespread ones are free text editors. In a first step, 
they enable users to input arbitrary character sequences. After-
wards, these sequences are validated concerning syntactical cor-
rectness using a lexer and a parser which both base upon a formal 
grammar [1]. On the other hand, there are so-called projectional 
editors like Jetbrain’s Meta Programming System (MPS) and the 
Intentional Domain Workbench. User interactions with the editor 
are directly performed on the underlying abstract syntax tree (AST) 
instead of manipulating character strings [7]. Of course, the user is 
always faced with a visual representation (instance of a concrete 
syntax) which is one projection of the AST and not the tree itself. 

However, none of the textual DSML frameworks supports an 
approach comparable to bottom-up modelling. All of them require 
a definition of the used DSML before a model can be created. Fo-
cusing this challenge, we present an approach on how an appropri-
ate tool may support users in building a textual DSML the bottom-
up way. With it, we aim to support users that may not be experts in 
defining languages but are used to structured languages like pro-
gramming languages. 

2. Example 

In the following, we present an example which points out the core 
features a text editor for bottom-up modelling should support. Fig-
ure 1 shows an instance of a simplified and slightly adapted variant 
of Fowler’s state machine DSML [8]. Analogous to the lexical 
analysis in the field of compiler construction, we break the text into 
tokens to identify their basic meanings in form of their types. The 
different types of tokens are highlighted with different colours (ex-
cept delimiters). 



In an ideal world, one simply enters this text and the editor rec-
ognizes the tokens and their respective types as well as the intended 
hierarchical structure. To do this, we first extract four different to-
ken types which are only complete regarding this example but not 
in general: 

 the blue keywords events and state, 

 the black identifiers for naming a specific construct (here the 
events START, WORK, and STOP and the states Idle and Ac-
tive), 

 the violet references (for referring to events and states via their 
particular name) and finally 

 the delimiters (namely , and =>) 

After the recognition of tokens, the structure between them has 
to be extracted since it acts as basis for the later induced abstract 
syntax. At first place, we would expect a comma-separated list of 
events which is indicated by the keyword events. Afterwards, the 
states are defined whereas each state is declared by typing a line 
wrap followed by the keyword state. Each state contains an arbi-
trary number of transitions that are represented by the indented 
lines below every state declaration. A transition is composed by a 
reference to an event and a reference to a target state. 

Simply because of her/his experiences in formatting source code 
according to the code’s meaning, most software developers under-
stand this structure without deeper explanations. Unfortunately, a 
computer does not have such experiences and consequently, it can-
not identify this structure out of the box. To support the bottom up 
modelling approach, this structure and the different token types 
need to be recognized automatically as far as possible. Tokens are 
the elementary parts of a language and the structure describes how 
they are combined. Hence, identifying this structure is an essential 
precondition for the later derivation of the abstract syntax. 

Figure 4 shows a suggestion how the example model’s hierar-
chical structure may look like. Thereby, we distinguish between 
two types of containers. Statements (marked by a dashed border) 
are intended to represent domain elements like events, states and 
transitions. They consist of arbitrary tokens and any number of 

blocks. Blocks (surrounded by a solid border) are intended to con-
stitute containers for statements. Their pendant on domain side are 
containers within domain elements that contain other domain ele-
ments. 

3. Requirements 

During our research, we identified three requirements a textual ed-
itor should meet for supporting the bottom-up approach. They are 
formulated in a quite abstract manner because, at this place, we do 
not want to anticipate how the solution looks like. 

First of all, the user experience of such an editor should feel like 
entering free text (R1). In more detail, it means that a user should 
not be hampered in her/his workflow when textually sketching a 
model. Otherwise, the simplicity benefit of the bottom-up model-
ling approach will be lowered and thus, the top-down procedure 
might be preferred.  

Besides, developers are accustomed to the code editing support 
of modern IDEs. Especially features like syntax highlighting and 
content assist are popular and expected by the users. Therefore, 
these features should be provided as early as possible in the process 
of sketching textual models (R2). For this task, grammar inference 
[13] is not sufficient because appropriate tool support (primarily 
syntax highlighting and content assist) can only be supplied after a 
grammar was induced [14]. 

In order to not hamper the user’s workflow (see R1), the extrac-
tion of tokens and structure mentioned in section 2 should be per-
formed in an automatic way. In some cases, however, the user 
needs to directly influence the identification process (R3). The 
main reason would be that (s)he is not content with the produced 
result and thus, (s)he wants to manipulate it accordingly. 

4. Solution approach 

Owing to the different input method when modelling textually, 
tools need to support the user in a different way in comparison to 
the demonstration of graphical DSMLs. When working with dia-
grams, the primary interactions are mouse gestures that create, 
move, resize and connect shapes. Working with text, however, 
means occurring key events which are applied to the text at the cur-
sor’s current position. Usually, the character associated with the 
pressed key is inserted at this place. This is also true for projectional 
editors but they only allow for entering text at specific places within 
the document. Elsewhere inputted characters are simply ignored by 
the editor. Because of a better user experience, the input behaviour 
of projectional editors corresponds more and more to the one of free 
text editors [15]. 

Consequently, tools supporting textual bottom-up modelling 
should be able to accept key strokes as input. During input, the 
characters are directly analyzed and tokens as well as their particu-
lar types are identified. For texts written in a formal language, it is 
common practice to represent them as a tree structure. In available 
DSMLs and also general purpose programming languages, this tree 
structure primarily is an AST [1, 8]. However, when writing free 
textual models the abstract syntax is not yet defined. At this point, 
only the concrete syntax is given in form of tokens. Hence, we 
adopt the general idea and build up a so called concrete syntax tree 
(CST) out of these tokens. Beyond the identification of tokens, this 
is also performed automatically (as far as possible) while the user 
inputs text. 

Motivated by requirement R3, we mainly adopt the projectional 
editing paradigm because then the entered text is directly available 
as a hierarchical structure. With it, the user can simply modify the 
tree’s structure and its content which directly affects the intended 
meaning. This is important for a later step where the abstract syntax 
is inferred [16]. 

Figure 1. Example model of a state machine (free text) 

Figure 2. Example model of a state machine (structured text) 



In the following, some prerequisites are described which need 
to be fulfilled. After that, we specify the building blocks of the CST 
and present a basic strategy for recognizing its overall structure. 

4.1 Prerequisites 

Textual bottom-up modelling requires a fundamental assumption 
on textual DSMLs. Otherwise, automatic recognition of particular 
structures within the entered character sequence is impossible. This 
assumption bases on the semantic of certain tokens for structuring 
text expected by users. Typical representatives for structure-bear-
ing tokens are punctuation symbols, combinations of such symbols 
and whitespaces. Further on, we call them delimiter tokens. With 
them, there are several syntactic patterns which recur in many for-
mal computer languages. For instance, elements are enumerated by 
means of commas or common elements are clasped using curly 
braces. In place of inserting curly braces for declaring blocks, syn-
tactic indentation is an increasingly used pattern due to its reduction 
of syntactic noise (namely the braces) [8]. In doing so, a new block 
is defined by a line break and one further indentation. Such patterns 
should be simultaneously applied to the current CST while the re-
spective tokens are identified. 

4.2 Building blocks of the CST 

As shown in the example and mentioned at the beginning of section 
4, the main structure can be described as a tree which predomi-
nantly consists of tokens and containers. The root Container is 
stated by a Document which always represents the entry point of a 
CST (Figure 3). Both, tokens and containers, have a common base 
class Cell that provides some basic functionality (e.g. the possibil-
ity to re-parent a cell). Except of the root one, each cell is part of a 
parent container. 

To determine a token’s type, instances of the class TokenType 
need to be assigned to the particular token. This task is performed 
automatically in the background during the type recognition pro-
cess (section 4.3). Since TokenType is abstract only sub classes 
can be used for instantiation. To provide a new token type develop-
ers need to implement such a sub class and register it at the docu-
ment’s TypeRegistry. Every type has to implement the  
conforms() method which states to a given text whether this text 
is valid or not. Currently, we distinguish the following types in 
form of separate sub classes (not shown in Figure 3). 

 Keyword: a reserved word which often has a typing or annotat-
ing purposes (e.g. see state and events in the state machine 
example). 

 Identifier: specifies a statement’s unique name. Hence, each 
statement should only consist of one identifier token at a max. 

 Reference: it refers to another statement via its name that was 
specified using an identifier. In contrast to tokens of other lan-
guages, identifiers and references already need to be distin-
guished within the CST to support bottom-up modelling. Oth-
erwise, the abstract syntax inference engine cannot differentiate 
between both, leading to unexpected results. 

 String, integer and float literal: indicate literal values, well-
known from other languages. 

 Comment: a not further considered note, but needed by users for 
documentation purposes. 

 Delimiter: typical representatives are whitespaces, commas, as-
signment operators like “=” and “:=”, comparison operators like 
“==” and “<”, arithmetic operators like “+” and “-“ etc.. Since 
delimiters often affect the CST’s structure and thus take a spe-
cial position, the particular sub class DelimiterType of To-
kenType is predefined for all delimiter types. Hence, delimiters 
can be further subdivided according to their impact on the tree 
structure. These subdivisions are listed in section 4.3 because 
they are part of the recognition strategy. 

Analogous to tokens, a container’s type is determined using sub 
classes of ContainerType. Every time a new token has been 
added to a container, the associated type is notified by invoking 
tokenAdded(). With it, the container type gets the opportunity to 
perform any further adaptions on the CST. By virtue of Friedman 
[9] and various programming language specifications [10, 12, 18], 
the following three container types should be distinguished. 

 Statement: only may contain tokens, blocks and an expression 
because it is intended to represent a domain model element. 

 Block: merely consist of statements. It is always part of a state-
ment and hence, constitutes a container for sub-elements of the 
wrapping statement’s domain element. In Figure 2, for instance, 
the statement representing the Active state includes a block 
which contains two other statements. These ones are intended 
to represent transitions within the domain. 

 Expression: some kind of calculation rules, i.e. rather similar to 
statements. Hence, an expression may be composed of tokens. 
In addition, it may also contain further expressions which would 
break with the semantic of a statement because they are not self-
containable. Consequently, it is reasonable to treat expressions 
as a further container type. 

Both, token and container types have a common base class 
CellType and are managed by a TypeRegistry. With this base 
class, each type is able to define custom shortcuts for specific op-
erations on the CST (e.g. constituting a token’s type or creating a 
block). This feature addresses requirement R3. Moreover, the ab-
stract classes TokenType, DelimiterType and ContainerType 
(highlighted grey) are intended for subclassing to extend the CST’s 
meta model about additional cell types. 

4.3 Recognition strategy 

As mentioned earlier, the recognition of tokens, their types and the 
hierarchical structure of the text is directly performed after the user 
has pressed a key. Accordingly, the user can simply input text as 
how (s)he would do with free text editors. By this means, require-
ment R1 is fulfilled. 

Before extracting any structural information, the tokens need to 
be identified. In order to detect a token’s type, regular expressions 
can be applied to the entered text (within an implemented  
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Figure 3. Meta model for concrete syntax tree 



conforms() method). This is sufficient for string, integer and float 
literals. Unfortunately, distinguishing between the token types 
identifier, reference and keyword is not as easy since they are valid 
in accordance to the same regular expression. Thus, user interaction 
is required to determine the token type in those ambiguous cases. It 
can be provided via shortcuts defined within an overridden  
defineShortcuts() method. According to the particular types, 
each token can be highlighted which solves one part of requirement 
R2. The content assist part can be addressed by providing code 
completion for reference tokens. Permitted values are, for instance, 
identifiers declared within the text entered so far. 

The structure and hence the containers with their respective 
types are automatically created when delimiters are recognized. 
Delimiters can be categorized according to their impact on the 
CST’s structure. 

 Token separator: it is the default category of each delimiter 
which is not classified any further. Entering such a separator 
will simply lead to a new token within the current statement. 
(typical representative: space character) 

 Statement separator: such delimiters separate sequenced state-
ments from each other. We assume that different representa-
tives of this category have a different meaning (similar to the 
assumption stated in section 4.1). Consequently, the behaviour 
when entering such a separator depends on the previous separa-
tor used in the current block. If there is a separator and it is equal 
to the one entered then a new statement is added to the block. 
Otherwise a new block is inserted into the current statement. 
For instance, imagine a block with three statements that are sep-
arated by means of a comma. Then if a line break is added to 
the last statement, this statement is extended by a block at this 
place. In case one wants to separate child statements with the 
same delimiter as used for the parent statements (e.g., it happens 
in the example in Figure 2 for separating states and their con-
tained transitions) those delimiters need to be distinguished in a 
different way (e.g., by simultaneously pressing a modifier key 
like Ctrl or Alt while entering the separator). Owing to this fea-
ture, requirement R3 is covered. Typical representatives are 
commas, semicolons and line breaks. 

 Opening brace: when entering an opening brace, a new block is 
inserted in every case. Beyond that, the corresponding closing 
brace is added automatically as well which is a familiar feature 
of modern IDEs and thus addresses requirement R2. In Figure 

4, there are four examples for opening braces, but the second 
round one is empty and hence no container is visualized. Typi-
cal representatives are “(“, “[“ and “{“. 

 Operator: entering an operator leads to a new expression that is 
added to the current statement or an already existing expression. 
Currently, we only support binary operators and so infix expres-
sions and also do not consider the different priorities of various 
operators. How an exemplary complex expression structure 
may look like can be seen in the return statement of Figure 4. 
Typical representatives are “.”, “+”, “-“, “*” and “/”. 

The recognition of where the current token ends and a new to-
ken starts is performed comparably to the lexical analysis of com-
pilers [1]. By doing this, the end of a token is encountered if the 
previous complying regular expression is not valid any more. 

5. Proof of concept 

For evaluating the presented approach, we developed a prototypical 
editor using HTML5 technologies. The reason for choosing 
HTML5 is that modern browsers may enable users to modify a web 
page in the manner of WYSIWYG by setting an element’s con-
tenteditable attribute to true [11]. During the input, the under-
lying DOM is directly updated which we can interpret and utilize 
as CST. The implemented editor offers each feature described in 
section 4. For this reason, it addresses all requirements stated in 
section 3, especially supporting some user interventions to cover 
the third requirement in greater depth. 

One problem we have tackled during the development, is the 
implementation of proper syntax highlighting of keywords, identi-
fiers and references. Unfortunately, it cannot be done automatically 
and thus, the user has to indicate the type of such tokens using 
shortcuts (requirement R3). By default, each token is an identifier. 
However, one time a token is classified as a keyword this infor-
mation can be reused for each further extracted token. For instance, 
it is the case for the keyword state in Figure 2. Therein, the key-
word was defined manually for state Idle and automatically rec-
ognized for state Active. 

Again, requirement R3 is addressed by the user’s ability to se-
lect successive tokens and wrap them in a new container by means 
of a shortcut. The specific shortcut determines the type of the con-
tainer (predominantly block or statement). In addition, a container’s 
type can be changed afterwards if desired. 

Beyond the quite simple example presented in section 2, with 
the editor it is also possible to sketch sophisticated textual models. 
For that purpose, Figure 4 shows a class in a fictional object-ori-
ented programming language (similar to Java) created with the ed-
itor. The most noticeable parts compared to the above example are 
references to elements that are not declared within the same model, 
the usage of two different brace types and the presence of expres-
sions (marked by dotted orange borders). 

6. Conclusion and future challenges 

As mentioned above, our research is in an early state and thus, the 
presented approach raises no claims of being complete. However, 
it already shows a promising solution of how an editor for enabling 
textual bottom-up modelling may look like and function. We al-
ready gathered some successful validation results concerning the 
practicability by means of a prototypical implementation (section 
5). With it, we recreated several textual models by using the syntax 
of existing DSMLs (e.g., a state machine in Figure 2) and even gen-
eral purpose programming languages (e.g. a class described by a 
language similar to Java in Figure 4). 

There is still plenty of research to be done in the field of textual 
bottom-up (meta) modelling. While different people worked with 

Figure 4. Example of a sketched programming language snippet 
(similar but not identical to Java [10]) 



our editor, we found out that it would be expedient that the editor’s 
behaviour is highly customizable. The reason for that lies in the 
different habits and preferences of various users regarding the de-
sign of languages. For instance, a user would like to use colons for 
assignments, whereas another one wants to utilize them as division 
operators. One further issue which could be covered by means of 
configurability is the prioritisation of operators. Nevertheless, it 
still needs to be discovered how the structure has to be modified 
according to the particular operator’s priority. 

Another major task is exploring how the editor’s user experi-
ence can be further improved (requirement R2). That principally 
can be achieved by extending the content assist support, e.g., for 
recurring statements. In Figure 4, two fields are declared which are 
prefaced with the modifier private. So, if the user inputs a “p” in 
the third line the editor could provide the proposal “private” based 
on the information gained from the statement before. It might also 
be possible to provide content assist for the structure of whole state-
ments (in the form of templates). Instead of only inserting “pri-
vate”, a reference and an identifier placeholder can be additionally 
inserted. To support content assist for more than one type of state-
ment (e.g., in the given class beyond fields there are methods as 
well), those types have to be identified first. In the graphical bot-
tom-up domain the authors of [2] already proposed a solution to 
derive the syntactic building blocks of diagrams which could be 
evaluated and (if appropriate) adapted in respect of textual models. 

What we did not address until now is how an abstract syntax is 
derived from textual example models. According to the presented 
approach, however, the user needs to ensure that the CST is struc-
tured in a way that fits the semantic model in mind. In future re-
search, a mapping has to be determined that specifies the method 
of inferring an abstract syntax from a given set of CSTs. Among 
other things, it needs to be explored how meaningful names can be 
recognized for derived constructs of the abstract syntax. 
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