
Generating a ROS/JAUS Bridge for an
Autonomous Ground Vehicle

Patrick Morley
The University of Akron

pjm39@zips.uakron.edu

Alex Warren
University of Arizona

amwarren@email.arizona.edu

Ethan Rabb
Washington University in St.

Louis
ethanrabb@gmail.com

Sean Whitsitt
University of Arizona

whitsitt@email.arizona.edu

Matt Bunting
University of Arizona

mosfet@email.arizona.edu

Jonathan Sprinkle
University of Arizona

sprinkle@ece.arizona.edu

ABSTRACT
Robotic systems have benefitted from standardized middleware that
can componentize the development of new capabilities for a robot.
The popularity of these robotic middleware systems has resulted
in sizable libraries of components that are now available to roboti-
cists. However, many robotic systems (such as autonomous vehi-
cles) must adhere to externally defined standards that do not contain
a large repository of components. Due to the real-time and safety
concerns that accompany the domain of unmanned systems, it is
not trivial to interface these middleware systems. However, previ-
ous attempts to do so have succeeded at the cost of ad hoc design
and implementation. This paper describes a domain-specific ap-
proach to the synthesis of a bridge between the popular Robotic
Operating System (ROS) and the Joint Architecture for Unmanned
Systems (JAUS). The domain-specific nature of the approach per-
mits the bridge to be limited in scope by the application’s specific
messages (and their attribute mappings between JAUS/ROS), re-
sulting in smaller code size and overhead than would be incurred
by a generic solution. Our approach is validated by tests performed
on an unmanned vehicle with and without the JAUS/ROS bridge.

1. INTRODUCTION
Robotics, specifically robotic ground vehicles, are a rapidly grow-
ing field of interest in both academia and industry today. These
systems tend to be developed with component based architectures
that work through a message passing paradigm.

The pervasive nature of TCP/IP networks has permitted roboticists
to depend on traditional ethernet packets for message passing. By
far the most popular robotic platform is ROS (Robot Operating Sys-
tem) [5] , but there are several other significant architectures in use,
such as the Joint Architecture for Unmanned Systems (JAUS) [7].
JAUS in particular deserves attention, since it is a standard devel-
oped for autonomous systems in the defense industry.

As in most engineering solutions, the requirements of the project in
question frequently dictate the platforms in use. JAUS compliance
is more typical in the defense industry in the United States, while
ROS is often preferred by the open source community. Given its
open source software development and contribution model, ROS
has a large library of components available to run many different
sensors and simulations off the shelf, without requiring the devel-
oper to spend valuable time designing low level drivers or physics
environments.

Most robotic middleware is not expressly designed to be able to

communicate with other middleware, and ROS and JAUS are no
exceptions. While communication is possible, the development of
a generic driver or adapter that will automatically connect JAUS to
ROS by rewriting sent messages is not feasible for several reasons:
(i) message types can be defined by the user, and must therefore
be matched to the other domain (ii) components on either side of
the bridge may need to send heartbeat and other messages at a cer-
tain rate, in order to avoid timeout failures of the components; and
(iii) to produce a generic component that is capable of handling the
combinatorial explosion of these possibilities would be unwieldy
to maintain, and would consume a significant amount of system
resources at compile time and runtime.

1.1 Contribution
This paper approaches the problem of developing such a bridge
through application-specific configuration: namely, using domain-
specific concepts, we define a method to synthesize the ROS/JAUS
bridge for the message types that are defined for a specific appli-
cation. Our approach is to integrate the existing message types in
both ROS and JAUS, and define their attribute mappings in order
to solve issue (i) above; the generated code then takes care of the
necessary boilerplate requirements of item (ii); because the mes-
sages are limited to those required by a specific application, the
complexity risks of (iii) are mitigated.

To validate our approach, we consider hardware-in-the-loop ver-
ification of a sufficiently bi-similar execution of the JAUS-only,
and ROS/JAUS implementations of two controllers running con-
currently. We show that these two simulations are similar enough
to warrant the replacement of JAUS components with ROS nodes
for time critical operations.

2. BACKGROUND
The work described in this paper requires domain-specific model-
ing approaches to map attributes of data passed between programs.
In order to understand the complexities that are inherent in this ap-
proach when the programs are used to control an autonomous ve-
hicle, we provide some background material.

2.1 Component based systems
The complexity involved in autonomous vehicles projects makes
them ideal implementation platforms for component-based systems.
These projects require the integration of software that can man-
age sensing, control of vehicle actuation, and logging information
for safety and debugging purposes. Component-based designs per-



mit a functional decomposition of the tasks involved into atomic
processes allowing them to communicate via message passing, ab-
stracting even whether a set of tasks are operating on the same ma-
chine or across a network.

ROS (Robot Operating System) [5] is a widely used open-source
architecture in robotics, capable of interaction with a significant
number of available sensors, simulators, and programs. The avail-
ability of a large selection of previously-developed code makes it
ideal for code reuse in larger research projects allowing research
scientists and engineers to concentrate more on the research aspects
of the project rather than reimplementing trivial software packages
and programs. As an open-source technology, users are free to
modify the message types and their attribute specifications, as well
as add as many more message types as they like.

JAUS relies on message passing for its inter-component commu-
nication, though its design is more of a top-down approach. As a
standard, it provides relatively few message types, which have a
fixed number of attributes. Users are free to add additional mes-
sages, though clearly without coordination between other devel-
opers, these additional messages may not be understood by other
systems if they are received.

While ROS and JAUS are both component based systems with
(generally) a one to one correspondence between concepts, they
do not use the same terminology. For the purposes of brevity and
clarity in this paper, the terms used herein will be described and
linked between the two standards in this subsection. These terms
can be used interchangeably, and this paper will attempt to use the
correct terminology in the differing contexts. The base level task
or component in a ROS system is called a “node” while in JAUS
it is called a “component” In order to pass data between compo-
nents in the system ROS uses the term “topic” while JAUS uses the
term “message”. In ROS, “nodes” must “publish” data in order for
other “nodes” to access or “subscribe” to that data. In JAUS, “com-
ponents” can send single “messages” or they can initiate a “service
connection” where one node sends “messages” at a determinate fre-
quency to the requesting “component”.

2.2 Related Work
Some implementations of ROS to JAUS have already been com-
pleted. For instance, the Army Research Laboratory (ARL) devel-
oped a ROS to JAUS bridge [6]. However unlike the implementa-
tion described in this paper, the bridge developed by the ARL does
not use code generation to build customized ROS to JAUS bridges.
Instead it relies on human developers to adapt existing code to suit
their own needs. Also, a team from Case Western Reserve Univer-
sity (CWRU) at the 2010 Intelligent Ground Vehicle Competition
(IGVC) used both ROS and JAUS components in their vehicle’s
software [8]. However, much like the ARL project, the CWRU
team did not implement a code generator to build their interface
between the two standards.

There are many other robotic middleware systems available, and
the approach we describe in this paper can be extended to include
them as necessary. However it is important to note that the work
discussed in this paper is not simply an extension of bridges for
software oriented architectures [4], or traditional middleware [3].
This is because, as a robotics platform, the timing requirements for
many components are tight. Components are frequently defined
to “time out” if they do not receive active communication from
their providers, in order to degrade to a safe mode. These kinds of

Figure 1: The CAT Vehicle

domain-specific requirements mean that a new approach must be
taken in our code generators, to mitigate these issues.

2.3 JausML
The work described in this paper on generating ROS to JAUS bridges
is meant to be integrated into JausML [9, 12]. This modeling lan-
guage is currently capable of generating everything necessary to
build a JAUS system, but does not include anything for generat-
ing ROS artifacts from the models. The ROS to JAUS bridge code
generator will open the doorway to including those components in
future work of JausML.

JausML is built using the skeleton design method (an extension of
the more common template design method) [11]. Building the code
generator for the ROS to JAUS bridges to be compatible with the
skeleton design method will make integrating the final results with
JausML a trivial matter.

2.4 The CAT Vehicle Platform
The testing platform for this project is a modified Ford Hybrid Es-
cape named the Cognitive and Autonomous Testing Vehicle (CAT
Vehicle, see Fig. 1). The vehicle utilizes JAUS as the standard inter-
face for receiving state data from the vehicle, and sending controller
inputs to the vehicle. All communication with the computers that
manage the low level actuation and control of the vehicle requires
the use of JAUS.

Switching from JAUS to ROS would be disadvantageous since it
would require a redesign of the vehicle’s low level controls. In
addition, switching operating systems is not a viable solution for
systems that require JAUS compliance. Instead, the joint approach
we describe could be used in order to allow the vehicle to oper-
ate with open source ROS component packages, but still maintain
JAUS message passing capabilities.

Currently, the CAT Vehicle is simulated within a JAUS compo-
nent with simple bicycle vehicle dynamics [1]. For most test cases
where it is not necessary to move the vehicle over long distances
these dynamics approach a reasonable approximation of the actual
behavior of the vehicle. However, in order to maintain a high de-
gree of accuracy another approach is necessary. For this reason, the
Gazebo simulator in ROS is desirable since it offers an open envi-
ronment in which to design an accurate model of the CAT Vehicle
and additional parameters to specify the conditions under which the
vehicle is driving (e.g. friction between the tires and the road or the



JAUS Component Bridge ROS Node

JAUS Message

operation ()

translate ()
Publish

operation ()

initialization ()

Subscribe

Figure 2: A single message can be sent from a JAUS component to
a ROS component even though ROS has to subscribe to the content
of the message beforehand.

grade of the road). Additionally, the Gazebo simulator developed
for the CAT Vehicle uses a generic algorithm to adapt its parame-
ters to the given scenario so that it performs more accurately than
other simulators.

3. METHODS
Without an explicit knowledge of the messages that are passed be-
tween ROS and JAUS nodes, a bridge would need to dynamically
determine how to translate the messages. Generic methods used
to perform translations during runtime can be slow and have high
overhead which is potentially dangerous in many real-time systems.
This motivates the domain-specific approach to defining the mes-
sages passed, and the style in which those messages are passed (i.e.,
one-time messages, or a service connection).

It is assumed that there exists a one to one correspondence between
ROS topics and JAUS messages. That is, if a ROS topic exists, then
there is one and only one JAUS message that exists and contains the
same data. This assumption is fairly trivial since both ROS topics
and JAUS messages are data structures.

For message passing, ROS operates entirely using service connec-
tions (i.e. it uses the publish/subscribe concept to send topics).
However, JAUS has the ability to send just a single message with-
out any of the hassle required in setting up a service connection.
This is advantageous in JAUS, but it creates a bit of an issue when
integrating JAUS with ROS. JAUS messages that are being dynam-
ically translated would not have a respective ROS service connec-
tion to receive the message. However, since the bridge can assume
that it knows everything about the messages that will be passing
through it, those service connections can be established beforehand
and used to pass along the single messages that JAUS can send.

Fig. 2 shows the sequence of events to set up these connections.
Upon initialization, the ROS node has to communicate with the
bridge to be able to receive the information that the JAUS compo-
nent will eventually send. This assumes that the bridge has already
stated to the ROS portion of the network that it is capable of pub-
lishing the message that it will receive from the JAUS component.

Fig. 3 shows the process that occurs when a ROS node needs to es-
tablish a service connection to a JAUS component. Fig. 3 assumes
that the JAUS component was initially set up to allow other com-

JAUS Component Bridge ROS Node

Establish

translate ()

JAUS Message

initialization ()

Subscribe

WriteSCs ()

process ()

Publish

Figure 3: Service connections can be established by establishing
them at the bridge and publishing from the bridge.

Bridge

JAUS Component ROS Node

ROS NodeJAUS Component

Figure 4: One bridge can service many components.

ponents to establish a service connection with it and that the bridge
has similarly already told the ROS portion of the system that it can
publish those messages.

Also, after establishing the service connection, the JAUS compo-
nent would continue to repeat the block that writes the service con-
nection messages. The reverse of this scenario is also possible in
a similar manner. A JAUS Component could establish a service
connection with the bridge which would then subscribe to content
that exists on a ROS node. Assuming of course, that the bridge has
already set itself up to establish service connections of those type
and that the ROS node is set up to publish that information.

As an additional note: JAUS service connections operate at a given
frequency (declared during the initialization process). If messages
do not appear on the receiving end at that desired frequency, then
that service connection may become inactive, implicitly changing
the state of the component to a degraded mode. The ROS bridges
described herein make certain that service connections on the JAUS
side of the system stay active as long as the corresponding JAUS
components and ROS nodes are alive.

3.1 Modeling the Bridge
Using the modeling syntax from JausML, Fig. 4 shows a single
bridge servicing many different JAUS components and ROS nodes.
While a separate bridge could be generated and deployed for each



individual connection, it will likely prove more efficient to collect
the different types of connections that will need to be made into
one single bridge or possibly just a handful of bridges, depending
on the requirements of the system.

The code generator for building these bridges is capable of build-
ing bridges with multiple connections. It should be noted that the
bridge can manage multiple JAUS components subscribing to the
same ROS data and similarly multiple ROS nodes establishing the
same service connection. This cuts down on network traffic by pre-
venting the publishing node/component from having to send mul-
tiple messages to the bridge to serve the same data to multiple
nodes/components on the other side of the bridge.

3.2 Message transformation
In Fig. 5 an example mapping is given in the ros2jaus bridge model-
ing language. Although the language is not visual, the definition of
this textual script permits an intermediate format that can (in future
work) be automatically generated from a visual environment.

struct [
type name

]
array_type [s] name

MessageName {
JAUS jausname (

type membername
type secondmembername

)
ROS rosname (

type membername2
type secondmembername2

)
JAUS->ROS (

membername -> membername2
secondmembername -> secondmembername2

)
ROS->JAUS (

membername2 -> membername
secondmembername2 -> secondmembername

)
}

Figure 5: An example bridge mapping in the ros2jaus mapping
language.

The example shows how attribute types can be mapped to one an-
other. Not shown in this example is that attributes can be ignored
or mapped to a constant value if necessary. When invoked, the fre-
quency of the generated bridge component can be specified.

4. RESULTS
Prior to the development of the ROS to JAUS bridges a suite of
examples have been developed, which illustrate different control
aspects on the CAT Vehicle both in simulation and hardware-in-the-
loop. For this paper we chose an example where a dead reckoning
steering controller is used to follow a trajectory for a right-hand
turn, while maintaining a safe velocity for the given steering angle.
This prevents the vehicle from tilting to an unsafe angle (in the
extreme), but pragmatically preserves the comfort of the occupants,
as described in [10].

The vehicle has a control algorithm designed to follow a preplanned
trajectory with dead reckoning and another control algorithm to
limit the speed of the vehicle during a turn so that it remains safe
and does not flip over or slide (while driving on a flat, non-slippery
surface). The steering and velocity controllers were then used to
drive the vehicle along a right turn. Success in these results is indi-
cated by a path that appears to be a right turn and a ratio between
tire angle and velocity that does not exceed a predetermined value
by the velocity controller. All of the paths shown for the vehi-
cle were either recorded directly from the simulated vehicle’s state
or were recorded using a GPS/INS system mounted inside of the
physical vehicle.

Because the controller in use is utilizing dead reckoning (and not
global position information), variations are expected between the
two implementations. This is because the ROS2JAUS bridge will
only preserve real-time communication deadlines, and will not repli-
cate the real-time behavior. Thus, we consider the scenario has
validated our approach if the trajectory is sufficiently followed by
observation.

4.1 Only JAUS
The original control software for the CAT Vehicle has been thor-
oughly tested in the field and in simulation. The results of running
a right turn with this software in the vehicle can be seen in Fig. 6a.
Fig. 6b shows a plot of the velocity of the vehicle versus the tire an-
gle of the vehicle to show that the vehicle safely and quickly moves
through the turn.

4.2 ROS Controlled CAT Vehicle
The second involves porting the control algorithms for the vehicle
to a ROS node. A bridge is then set up to allow for communication
between the physical vehicle and the ROS node running the control
algorithm. This software is then deployed to the physical CAT Ve-
hicle for operation. Fig. 6c shows the path taken by the vehicle as
recorded by the GPS/INS system while Fig. 6d shows the tire angle
versus velocity for the ROS driven vehicle.

In this test some accuracy issues can be seen as the GPS/INS sys-
tem locks onto the car. More noticeably from Fig. 6d, the ROS
driven vehicle is reacting more wildly to the turn than the JAUS
only vehicle (the reader will note from the figure that it still re-
mains within the safe operating region). This is likely due to the
additional delay caused by the bridge. It is likely that further im-
provements to the performance of the bridge would fix this issue.
However, the vehicle is still capable of safely following the given
trajectory. Also, it is possible that some of the issue may lay with
the ROS implementation of the control algorithms and not with the
bridge.

5. FUTURE WORK
As illustrated by the examples above, there are some improvements
that can be made in the performance of the generated JAUS to ROS
bridge. Most importantly for the discussion of this paper, the ex-
amples show that the bridge needs to be capable of quickly passing
messages along. The first step in this process will be determin-
ing how much of a bottleneck the bridge actually is for the hybrid
ROS/JAUS system. The second step will be to take the necessary
steps to cut down the latency between when a message is sent on
one side of the system and when it is received on the other. It is
likely that the issues seen in the results of these generated bridges
are due to performance issues with the ROS or JAUS code rather
than the interaction of the two.



−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

x (m)

y 
(m

)

(a)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

velocity (m/s)

tir
e 

an
gl

e 
(%

)

(b)

−2 0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

x (m)

y 
(m

)

(c)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

velocity (m/s)

tir
e 

an
gl

e 
(%

)

(d)

Figure 6: (a) The actual vehicle’s attempts at following the prescribed right turn path with JAUS only. (b) Velocity plotted against tire angle
for the JAUS only right turn. The solid line indicates the division between safe and unsafe maneuvers. (c) The physical vehicle’s attempts
at following the prescribed right turn path using the ROS2JAUS bridge. (d) Velocity plotted against tire angle for the ROS2JAUS right turn.
The solid line indicates the division between safe and unsafe maneuvers.



5.1 Integration in JausML
At this time we have tested a single bridge with multiple compo-
nents, but multiple bridges should also be feasible. In a visual mod-
eling environment the user will be able to determine how many
bridges the system should have and exactly what connections each
bridge should manage. Alternatively, this process will be managed
by a heuristic. The code generator described in this paper will be in-
tegrated into the JausML project in order to incorporate open source
ROS products in the CAT Vehicle. The integration process should
be fairly straightforward since both the bridge code generator and
JausML use the skeleton design method.

5.2 Integration with Simulators
Prior to integration with ROS, the CAT Vehicle has been simulated
in a limited JAUS simulator. With the existence of the ROS2JAUS
bridge, we can now utilize the ROS based simulator Gazebo [2]
to more accurately describe the movements of the physical vehicle
and its environment.

More work is needed to fully integrate the Gazebo simulator with
the CAT Vehicle project through the ROS to JAUS bridge, though
we have (outside the scope of this paper) demonstrated the proof of
concept of this interconnection. As of now, the limitations are the
real-time nature of the communication.

There are two possible routes that can be explored in fixing the is-
sues in communicating in real time with Gazebo. First, it should
be possible to limit the rate at which the JAUS components send
information to the simulator based on the ratio between real time
and simulation time. However, this step would require rebuilding
the logic behind the JAUS components and the rate at which they
process data and send new messages. Second, the Gazebo simu-
lator could be ported to more appropriate hardware or simplified
to improve performance. However, this second scenario takes the
performance of the simulator out of the developers’ hands which is
undesirable.

6. CONCLUSION
In this paper we demonstrated our ability to generate a bridge be-
tween two robotic middleware architectures. We showed how our
textual domain-specific modeling language can be used to map the
attributes of the messages passed by these two architectures. The
generated bridge maps only the required messages, as specified
in the domain-specific language, and therefore does not consume
excessive system resources at compile or runtime. We validated
our approach by porting some of our existing JAUS components
to ROS, and then executing those components on ROS using the
ROS2JAUS bridge, and comparing the results of the hardware-in-
the-loop system behaviors.

7. ACKNOWLEDGMENTS
This opportunity is supported by the National Science Foundation
and the Air Force Office of Scientific Research, under IIS-1262960
and CNS-1253334. We are thankful for the other participants of
the CAT Vehicle REU, and to Dr. Haris Volos and Dr. Tamal Bose
for their support.

8. REFERENCES
[1] K. J. Åström, R. E. Klein, and A. Lennartsson. Bicycle

dynamics and control. IEEE Control Systems Magazine,
25(4):26–47, August 2005.

[2] D. Coleman. Gazebo ROS API, June 2013.

[3] A. Gokhale, D. Schmidt, T. Lu, and B. Natarajan. CoSMIC:
An MDA generative tool for distributed real-time and
embedded applications. In International Conference on
Distributed Systems Platforms and Open Distributed
Processing/Open Distributed Processing -
Middleware(ODP), pages 300–306, 2003.

[4] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, and
G. Karsai. Rapid synthesis of high-level architecture-based
heterogeneous simulation: a model-based integration
approach. Simulation, pages 1–16, January 10 2012.

[5] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. ROS: an open-source
robot operating system. In ICRA Workshop on Open Source
Software, 2009.

[6] L. Sadlera, C. Rao, J. Rogers, and H. Nguyen.
ROStoJAUSBridge Manual. Army Research Laboratory,
March 2012.

[7] SAE AS-4:2010. JAUS Standard. SAE International,
Warrendale, PA, June 2010.

[8] D. Thorndike, E. Perko, B. Ballard, K. Levine, C. Rockey,
and M. Klein. Harlie. Project description, Case Western
Reserve University, 2010.

[9] S. Whitsitt and J. Sprinkle. Message modeling for the Joint
Architecture for Unmanned Systems (JAUS). In Proceedings
of the 8th IEEE Workshop on Model-Based Development for
Computer-Based Systems, pages 251–259, April 2011.

[10] S. Whitsitt and J. Sprinkle. A passenger comfort controller
for an autonomous ground vehicle. In 51st IEEE Conference
on Decision and Control, pages 3380–3385, 2012.

[11] S. Whitsitt and J. Sprinkle. Model based development with
the skeleton design method. In 20th IEEE International
Conference and Workshops on the Engineering of Computer
Based Systems, page (in press), 2013.

[12] S. Whitsitt and J. Sprinkle. Modeling autonomous systems.
AIAA Journal of Aerospace Information Systems, pages (in
press, accepted in final form), 2013.


