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ABSTRACT

Model-based solutions are becoming more sophisticated be-
cause of the advent of new types of models, languages, and
editors. To deal with this complexity, some of the current
Integrated Development Environments (IDEs) offer Model
Management Systems (MMSs) that provide functionalities
to visualize, navigate, and search the modeling artifacts ex-
isting in a workspace. Each MMS defines the types of mod-
eling artifacts that it supports and, commonly, furnish ex-
tensibility mechanisms for including new ones. However, the
use of those mechanisms usually requires a big implementa-
tion effort. As a result, when an MMS does not support all
the types of modeling artifacts that a model-driven engineer
uses, he/she discards it and ends up manipulating his/her
solution through file system views which is not appropri-
ate when projects become larger. In this paper we present
some of our preliminary results towards the construction of
MoMS-DL, a domain-specific language to define (and au-
tomatically generate) customized Eclipse-based MMSs im-
proving the daily work of model-driven engineers.
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1. INTRODUCTION

The use of model-driven engineering (MDE) has increased in
the last years. Nowadays, there is large variety of tools, lan-
guages, and editors that model-driven engineers can use dur-
ing the construction of models-based solutions. In fact, they
use not only models, metamodels and transformations but
also weaving models, high-order transformations, UML pro-
files, grammars for domain-specific languages, among others
modeling artifacts [4]. As a result, the process of building a
model-based solution is becoming more and more complex.

In order to improve the productivity of model-driven engi-
neers, it is desirable to have suitable IDEs that facilitate
the manipulation of modeling artifacts by offering facilities
such as friendly visualization, navigation, and searching [6].
Such facilities can be easily found in IDEs designed from
scratch for model-based techniques (e.g., MetaEdit+ [3]).
However, the situation changes in the case of other IDEs ini-
tially conceived for code-centric paradigms that have been
later adapted for supporting model-based technologies (e.g.,
Eclipse Modeling Framework [10]). The idea of enriching
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code-centric IDEs for providing model-centric capabilities
has been largely studied in the literature under the concept
"model management”. Because of this, one can find sev-
eral model management systems (MMSs) built on the top
of code-centric IDEs.

In general, three common elements can be identified among
MMSs: (1) metadata repositories; (2) models-centric views;
and (3) searching engines. A metadata repository is a soft-
ware artifact where some relevant information about the
modeling artifacts (such as their location) is stored. The
model-centric views show the modeling artifacts organized
in hierarchies defined by their role in the models-based solu-
tion instead of their location in the file system. The search-
ing engine is composed of several queries over the metadata
repository that facilitate the searching of modeling artifacts.
One of the best known examples of this type of MMSs is
the AMMA platform presented by Bézivin et al in [1]. In
that case, the metadata repository is a model that the au-
thors term as megamodel; the models-centric views show the
modeling artifacts classified by their types (e.g., metamodel,
transformation, UML profile); and the searching engine is a
set of OCL-based queries over the megamodel.

Commonly, the scope of an MMS is limited to a predefined
set of modeling artifacts and, in order to increase their func-
tionality, these tools offer extensibility mechanisms. The
idea is that model-driven engineers can extend the MMS if
they use types of modeling artifacts that are not initially in-
cluded in the scope of the MMS. However, the use of those
extensibility mechanisms requires a deep understanding of
the software architecture and, in many cases, the code. From
our point of view, this is one of the main shortcomings of
the current approaches because, before extending a MMS,
model-driven engineers prefer to manipulate their modeling
artifacts by means of the classical file system views that
IDEs like Eclipse offers by default. This is not appropriate
when models-based solutions become large.

In this paper we present our preliminary results towards the
construction of an approach that facilitates the customiza-
tion of MMSs. To do so, we first motivate the problem by
illustrating some of the shortcomings that model-driven en-
gineers have to deal with when they do not use any MMS.
Then, we introduce a tool that provides: @ a domain-specific
language, called "MoMS-DL”, that enables the definition of



MMSs; and @ a generation process that, from a MoMS-
DL script, automatically generates a customized MMS that
overcomes the studied shortcomings. Each of our generated
MMSs is composed of a metadata repository and a set of
features for friendly visualization and searching of modeling
artifacts within a models-based solution.

This remainder of this paper is structured as follows: Section
[2]introduces a set of definitions we use along the rest of the
paper. Specifically, it clarifies the vocabulary concerning to
metadata registries and megamodeling. Section presents a
motivating example that we use in Section [] for describing
the shortcomings of code centric IDEs for MDE. Also, we
use this example in Section [f] for illustrating the MoMS-DL
language and explaining the generation process for MMSs.
Section [6] discuses the related work and Section [7 concludes
the paper and presents the future work.

2. BACKGROUND

The use of the term “metadata” has become very popular
to the point that it is difficult to find a definition that
encompasses all the meanings that this term has received
[5]. Indeed, the abstract idea of metadata as “data about
data” seems to be the only point where all these definitions
agree. In this sense, it is important to identify: (1) what
are the data that need to be considered and (2) what are
the data (about the data to be considered) that are rele-
vant and that should be stored. From the implementation
point of view, the “metadata repository” is the software ar-
tifact where the metadata is physically stored whereas the
"metadata schema”is the definition of the structure that the
metadata repository must conform to.

In the case of the MMSs for MDE, the data to be consid-
ered correspond to the set of modeling artifacts involved in
a model-driven solution whereas the data to be stored cor-
respond to the location of the modeling artifacts and the
relationships existing among each of them. Furthermore,
metadata repositories can be implemented as a special type
of models (termed "megamodels”) whose structure is defined
in metamodels 11}, 4].

Figure [[] illustrates the previous definitions by using a sim-
ple situation in an Eclipse workspace that contains a model-
based solution composed of three modeling artifacts: a meta-
model MMA, a metamodel MMB, and a model-to-model trans-
formation A2B that produces models conforming to MMB from
models conforming to MMA. These three modeling artifact
correspond to the data to consider. The metadata reposi-
tory (implemented as a megamodel) contains the informa-
tion about their location and the relationships among them.
In this case, the relationships are the dependencies between
the transformation and the metamodels i.e., source and tar-
get. The megamodel conforms to a metamodel that defines
the supported types of modeling artifacts i.e., metamodels
and transformations, and the interesting relationships.

3. MOTIVATING EXAMPLE: AN MTC FOR
PROTOTYPING MAZE-GAMES

We propose, as motivating example, a software development
scenario where a model-driven engineer builds a model-based
solution for maze-games automatic prototyping [7]. Specif-
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Figure 1: A simple megamodel (metadata repository)

ically, this solution is a model transformation chain (MTC)
that, from a high-level game model, automatically produces
the code of the game that can be deployed in the games
engine Torque2D [2]. We chose this example because, al-
though simple, its implementation requires more than mod-
els, metamodels, and transformations. Weaving models and
domain-specific languages are also involved.

3.1 Maze-games

In general, a maze game consists of a playground where dif-
ferent objects can be placed. The game turns around a main
character, usually controlled by the player, that has to de-
velop a particular purpose during the game. Depending on
the game, the main character must interact with other el-
ements in order to achieve the goal. Depending on their
behavior, these elements can be either dynamic or static de-
pending. Dynamic elements develop some actions whereas
static elements are either obstacles or boundary delimiters
for the playground. Pacman is one of the most famous ex-
ample of this type of games. In this case, the main character
is the yellow smiley-face that dies if touched by the ghosts
(dynamic elements) and that feeds the intermittent straw-
berries (static elements) for increasing the score.

3.2 MTC for maze-games prototyping

The inputs of the generation process (shown at the top of
Figure [2), are threefold: (i) a maze game model; (ii) an in-
stances model; and (iii) a weaving model between (i) and
(ii). The maze game model contains the definition of the
game and includes a characterization of the elements exist-
ing in the game (dynamics and statics). These elements are
defined in terms of their properties and the way in which
they interact each other. The instances model specifies the
amount of each type of element that should be instantiated
for a particular level and their initial positions. Because
the definition of the element types and the instances are de-
fined in separate models, it is necessary to provide a weav-



ing model for relating each element type with each instance
type. These models are input of a model-to-model trans-
formation that creates a platform specific model with the
definition of the game in terms of the Torque2D concepts.
Then, this model is transformed to TorqueScript code that
can be finally deployed in the games engine.

4. SOME SHORTCOMINGS OF CODE CEN-
TRIC IDES ADAPTED FOR MDE

In this section we use the motivating example presented
above to illustrate some of the shortcomings of classical IDEs
that model-driven engineers have to deal with when they do
not use any MMS.

4.1 Models visualization

The first shortcoming refers to the visualization and ma-
nipulation of a model-based solution where models have to
be manipulated in code-centric views such as the package
explorer or project navigator. In such views, models are
treated as data files without any differentiation from code
or documentation artifacts. As a result, a model-based so-
lution looks like a set of projects and the semantics of each
of them is only stored in the mind of the engineer.

Figure [2] illustrates this fact. At the top there is an abstract
representation of the MTC for generating maze-games code.
This representation is very close to the way in which the
model-driven engineer imagines the MTC. At the button,
we show the way in which the model-driven engineer actu-
ally visualizes the MTC in a code-centric view. Notice that
those images are not similar at all. Indeed, the model-driven
engineer is responsible for understanding how the projects
represent each of the artifacts that compose the model-based
solution.
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Figure 2: Code-centric views for model-based projects

4.2 Models searching

The second shortcoming is related to the way in which model-
driven engineers search models. While java developers have
enhanced searching mechanisms that allow to perform spe-
cialized searches in terms of classes, methods, attributes,
and interfaces; model-driven engineers have to comply with
the classical file search. Since this type of search is exclu-
sively based on syntax matches, there is a large amount of
non-relevant search results when the files are written in mod-
eling languages such as UML, XMI, or ECORE. Suppose for

example that the model-driven engineer needs to know the
set of models conforming to a given metamodel. He/she
would have to perform a file search with the URI of the
metamodel. As a result, the model-driven engineer will ob-
tain not only the models but also all the artifacts that con-
tains that URI including java code and configuration files.

5. OUR APPROACH

As already said earlier, these limitations can be overcome
by means of the construction of well-engineered MMSs. The
problem arises when a model-driven engineer requires to use
modeling artifacts that are not supported by the selected
MMS and, hence, customization is required. Most of the
MMSs that offer some type of customization provide strate-
gies based on extensibility. In that sense, the software devel-
oper that wants to extend the MMS should: understand the
extensibility strategy; build the extensions (probably writing
code and/or models); re-compile the code of the platform;
and re-install it. In this process, software developers need
to understand some implementation issues of the MMS and,
in most of cases, they are not necessary willing to deal with
all this additional work. As a result, the use of MMSs is
usually discarded when those does not fulfill by default all
the initial requirements.

In order to avoid this limitation, we propose raising the level
of abstraction in which customization is performed. Hence,
we provide MoMS-DL (Model Management Systems Defi-
nition Language), a domain-specific language where the re-
quirements of a specific model-driven engineer can be ex-
pressed and we offer a generation process that automati-
cally produces the code of the MMS. In other words, we en-
able customization by automatic generation instead of cus-
tomization by extensibility.

5.1 MoMS-DL: language concepts

We believe that the requirements that a model-driven en-
gineer demands to a MMS can be expressed in terms of
the types of modeling artifacts involved in a model-driven
solution and the existing relationships among them. Our
hypothesis is that, if we have that information, we can au-
tomatically produce a MMS that offer model-centric capabil-
ities specialized in those artifacts. In that sense, MoMS-DL
is a language intended to provide the expressiveness enough
for defining a megamodel (i.e., a model that represents a set
of modeling artifacts and the relationships among them).

Figure [3] shows the MoMS-DL metamodel. In that meta-
model the central concept is the MetaMegaModel that is com-
posed by a set of modeling artifacts represented by the Ar-
tifactType concept. Each artifact type has references and
attributes. A reference represents a relationship between
two types of modeling artifacts whereas an attribute refers
to a typed characteristic i.e., string, integer, double, float.
Both, references and attributes have a multiplicity defini-
tion.

5.2 Using MoMS-DL

Let us illustrate the use of MoMS-DL in the motivating ex-
ample. Listing [1|is a segment of the MoMS-DL script that
would produce the MMS supporting the MTC for maze-
games. Because of the space limitation, we only include the
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Figure 3: MoMS-DL metamodel

definition of models, metamodels, model-to-model transfor-
mations, and weaving models.

e A metamodel is an artifact type that has two at-
tributes: the path and the URI. The path is a string
representing the location of the file in the workspace
whereas the URI is a string with an address that can
be used for locating the metamodel in the web.

e A model is an artifact type that, besides its only at-
tribute "path" referring to its location in the workspace,
has a relationship called "conformsTo" to the type
Metamodel that represents the conformance relation-
ship.

e A model-to-model transformation is an artifact
type that, besides its only attribute "path" referring
to its location in the workspace, has two references
to metamodel referring to the "source" and "target"
metamodels of the transformation.

e A weaving model is an artifact type that has the
"path" attribute and three references. The first ref-
erence is called "weavingMM" and refers to the meta-
model that contains the well-formedness constraints of
the weaving. The other two references called "left-
Model" and "righModel" refer to the left and right
parts of the weaving.

5.3 Tool implementation and generator of

model management systems

We implemented MoMS-DL with EMFText [12]. Conse-
quently, we can offer a friendly editor with content assistance
and syntax coloring. Meantime, the generation of model
management systems from MoMS-DL scripts is a process
composed by three different code generators. They produce
the metadata repository; the models-centric views; and the
models searching engine. Let us explain each of those gen-
erators.

5.3.1 Generation of the metadata repository

The result of this generation process is a metadata reposi-
tory implemented as a megamodel. To achieve this, we need:
(1) a metamodel for the megamodel; and (2) a mechanism
for manipulating megamodels by creating, deleting and up-
dating the references to the concrete files so the metadata
repository can be synchronized with the file system.

MetaMegaModel MetaMegaModelForMazeGames {

artifactTypes{
ArtifactType Metamodel{
attributes{
attribute path : string [1]
attribute uri : string [1]

ArtifactType Model{
attributes{
attribute path : string [1]
}
references{
reference conformsTo : Metamodel [1]
}

}

ArtifactType M2MTransformation{
attributes{
attribute path : string [1]
}
references{
reference source
reference target

: Metamodel [1...x]

: Metamodel [1...x]
}

}

ArtifactType WeavingModel {

attributes/{
attribute path : string [1]

}

references{
reference weavingMM : Metamodel [1]
reference leftModel : Model [1]
reference rightModel : Model [1]

e Construction of the metamodel for the meg-

amodel: The metamodel of the megamodel can be
built directly from the MoMS-DL script since it con-
tains the types of modeling artifacts and the relation-
ships among them. Hence, we just need to transform
the MoMS-DL script to a metamodel. To do so, we
first parse the MoMS-DL script and obtain a model
that conforms to the MoMS-DL metamodel.

Figure[4]shows the metamodel for the megamodel that
would be generated for our motivating example ex-
pressed in Listing[I] Notice that it is just two different
representations of the same thing. However, having
this information expressed in a metamodel allows to
have a model where the metadata is directly stored.
Figure |5] illustrates this idea by presenting a segment
of the megamodel (represented as an objects model)
corresponding to the metadata of the model-to-model
transformation from maze-games to Torque2D. In that
model, each modeling artifact is represented by an ob-
ject that is an instance of a particular artifact type of
the metamodel. As a result, we can have a structured
metadata that can be manipulated and consulted.

Manipulation of the megamodel: In order to main-
tain the megamodel synchronized with the file system,
we automatically generate a set of CRUD operations
that allow to manipulate the megamodel programmat-
ically by creating, removing and updating megamodel
elements (i.e., references to concrete files). Then, we
offer a set of menu options that enable the invocation
of such CRUD operations on the megamodel by includ-
ing new artifact types. In that sense, the model-driven
engineer is responsible for using those menu options in
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order to maintain the megamodel up to date.

5.3.2  Generation of the model-centric project views
As we said before, the classical file system views provided
by code centric IDESs show the modeling artifacts by using
a file system structure. From our point or view, a model-
centric project view should give a global perspective of the
modeling artifacts existing in the workspace classified them
by their types and not by their location in a folder hier-
archy. Hence, from each MoMS-DL script we generate a
model-centric project view where, for each ArtifactType we
include a modeling artifact category. This generation pro-
cess is based on a model transformation chain that produces
a model-centric view from the MoMS-DL script. Figure [f]
illustrates the generated view for the case of our motivating
example.

5.3.3  Generation of the searching engine

In order to improve the way in which the model-driven engi-
neer searches modeling artifacts, we provide a model search-
ing engine based on the relationships among modeling arti-
facts defined in the MoMS-DL script. For each relationship,
we generate two OCL queries for bi-directional searching.
Each query is implemented as an OCL statement that is ex-
ecuted over the instance of the megamodel for the current
workspace. The results are manipulated and displayed in
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Figure 6: Code-centric view vs. models centric view

the corresponding searching results view.

6. RELATED WORK

Despite research in model management is not new, so far
there is not a consensus about what that term exactly means.
Indeed, there are (at least) two conceptions about how model
management should be addressed. 1) operations-based model
management systems: they intent to facilitate the defini-
tion and execution of diverse operations on models such
as transformation, merging, or comparison; 2) indexation-
based model management systems: they intent to facilitate
manipulation of interdependent modeling artifacts by means
of indexation (i.e., capability of maintaining metadata reg-
istries that store the references among models).

In the first case, the prime example would be the EPSILON
suite [8] that aims at providing a family of interoperable
languages. Those languages are “task-specific” what means
that each of them is intended to support a special type of
operation. Thus, the model-driven engineer has a specific
language to implement transformations, another for merg-
ing, matching, and so on. There are other approaches, such
as 9], that offer customization mechanisms for operations-
based MMSs. Thus, model-driven engineers can define generic-
operations that can be applied to different types of model-
ing artifacts. For example, a merging operation that may
be used on both models and metamodels.

In this paper we are more interested on indexation-based
model management systems where one of the most famous
example is the AMMA platform [1]. AMMA provides a
complete infrastructure for supporting indexation of model-
ing artifacts following the concepts of modeling in-the-large
introduced by Jean Bézivin [1]. This platform provides a
megamodel, i.e., the metadata registry, and, based on it,
a pool of functionalities for facilitating the tasks of model-
driven engineers. Some of those functionalities are: Eclipse
views for navigating modeling artifacts; and searching en-
gines. The Eclipse views are intended to display modeling
artifacts involved in a models-based solution classified by
their types instead of the file system hierarchy where they
are located. The models searching engine [4] is based on
a domain-specific language that provides not only special-
ized searching for modeling artifacts but also programmatic
execution of operations for models manipulation. Similarly



to AMMA, it focuses on supporting the idea of "manipulat-
ing collections of related models” by offering Eclipse-based
tool support for models metadata and operations execution.
This approach offers also a graphical editor where the model-
driven engineer manually indexes the modeling artifacts in
a registry that, latter, serves to automate execution of the
operators.

7. CONCLUSIONS AND FUTURE WORK

The main contribution of our work is to provide mecha-
nisms for helping to the model-driven engineers to create
customizable model management systems (MMSs). With
the MMSs the model-driven engineers can have a better user
experience with the IDE to develop their model-driven so-
lutions. To have these suitable MMSs is important because
model-driven solutions have become more and more sophis-
ticated in terms of the amount and divers types of model-
ing artifacts they use. The contribution is in concrete the
MoMS-DL language that allows model-driven engineers to
define arbitrary megamodels. These megamodels are used
as metadata repositories that contain the relationships ex-
isting among modeling artifacts. Besides, from the scripts
in MoMS-DL and using the metadata registry we generate
automatically a pool of plugins to improve the productivity
of the developer.

There is still a long path to follow. Our on-going work in-
cludes extensions to the functionalities our plugins can of-
fer.We are working also on including the ideas of operations-
based model management systems by providing a work-flow
language to define new operations (simple and composite)
to manipulate modeling artifacts and the generation of the
corresponding tooling.
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