
Dynamic Symbol Templates and Ports in MetaEdit+
Steven Kelly

MetaCase
Ylistönmäentie 31

40500 Jyväskylä, Finland
+358 14 641000 ext. 21

stevek@metacase.com

Risto Pohjonen
MetaCase

Ylistönmäentie 31
40500 Jyväskylä, Finland
+358 14 641000 ext. 27

rise@metacase.com

ABSTRACT

A graphical language definition is often divided into its abstract

syntax and concrete syntax. The concrete syntax of a DSM

language used on paper or in a drawing tool is often rich and

varied, whereas many language workbenches only easily support

rather simple boxes or icons, with more complex symbols quickly

hitting a “customization cliff” and requiring manual

programming. In this demonstration, we show the new dynamic

symbol functions, templates and ports in MetaEdit+ 5.0. These

extend the WYSIWYG symbol definition of MetaEdit+ with

iterative and recursive possibilities, useful both for building

common complex symbols and opening up new possibilities.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Computer-aided software

engineering (CASE).

D.2.6 [Programming Environments]: Graphical environments

General Terms

Design, Human Factors, Languages.

Keywords

demonstration, language workbench, concrete syntax.

1. INTRODUCTION
Standard wisdom on graphical languages splits a language

definition into its abstract syntax and concrete syntax. The

concrete syntax of a DSM language used on paper or in a drawing

tool is often rich and varied, whereas many language workbenches

only easily support rather simple boxes or icons, with more

complex symbols quickly hitting a “customization cliff” and

requiring manual programming.

MetaEdit+ has always allowed WYSIWYG specification of

complex graphical symbols, with dynamic elements that can be

revealed based on the model data, and subobject symbols similar

to GMF’s Compartments [1]. Subobjects can either be freeform in

the diagram, e.g. in UML Use Case Systems, or as lists in the

symbol with definable alignment, e.g. a UML Class’s Attributes.

MetaEdit+ 5.0 [2] adds a new symbol element, Template, which

allows symbols to have elements that can repeat in more complex

patterns and contain various content, including recursive symbols.

The templates offer declarative definition for the common cases,

with the possibility of using the MetaEdit+ Reporting Language

for specifying more complex behavior. In this demonstration, we

show the new dynamic symbol functions, templates and ports in

MetaEdit+ 5.0, both for building common complex symbols and

opening up new possibilities.

2. BACKGROUND
The GOPPRR meta-metamodel of MetaEdit+ is designed for

graphical modeling languages, with concepts of Graph, Object,

Property, Relationship, Role and Port. Roles form the endpoints

of relationships, and ports are points or areas on the perimeter of

an object that roles can connect to with specific semantics. Before

version 5.0, ports were defined statically in the metamodel: an

object type might be defined to have an In port and an Out port, or

in a more complex case an Electrical port with properties

Direction: In, Signal type: Analog, and Voltage: +5V. Constraints

can be specified for how points can be connected, e.g. an Out port

can only be connected to an In port, or an Electrical port with

Signal type: Analog can only be connected to another Electrical
port with Signal type: Analog.

These ports thus covered a wide range of languages, in addition to

the even wider range of languages already covered by rules on

relationships and roles, with no ports needed. However, a certain

class of port usage was not supported: where the ports arise

dynamically in an object, depending on other information in the

model – the list of Attributes in a Class, allowing roles to connect

to an Attribute (Figure 1), or the set of Interface objects defined

in a subgraph of a Component object.

Figure 1: Simple attribute-based dynamic ports

In these cases, the symbol must update with some kind of

repeating element, depending on the number of ports it has in the

model. Unlike the static ports, such dynamic ports arise only at

modeling time, and cannot be specified by the metamodeler.

Instead, MetaEdit+ must provide the metamodeler with facilities

for specifying how to find the dynamic ports for an object, obtain

a small port subsymbol to represent each, and lay out the port

symbols as part of the object symbol. We called the new symbol

element that implemented these facilities Template. In keeping

with the WYWIWYG nature of the MetaEdit+ Symbol Editor, as

much as possible of the Template definition is visual and

interactive: the iterative layout of the subobjects and the space

allocated for each can be edited like any other vector graphic

element. Figure 2 shows a Template for ports that would appear

on the left, bottom and right sides of the green object symbol, in a

small box for each (the dotted blue box shows the area allocated,

the actual choice of symbol to display there is made at runtime).

Figure 2. Template layout

During the development of these Template facilities, we noticed

that some “ports” may want to appear graphically but not allow

connection. For instance, some UML tools display colored ball

symbols similar to Figure 1, but within the symbol and not

allowing connection. This gave rise to the idea of using the

Template facilities to allow the specification of iterating and/or

recursive parts of symbols in the more general non-port case. We

thus allowed each Template to specify whether it resulted in just

subsymbols or also ports.

3. DEMONSTRATION
In the demonstration we will look at some motivating examples

from real and representative DSM languages, and show how these

can be accomplished in MetaEdit+ 5.0, and how they contributed

to the requirements for the Template design and implementation.

Some of the examples we will cover can be seen in [3] and [4],

others will be new for this demonstration.

As an example, Figure 3 shows the definition for the Class symbol

in Figure 1. This symbol uses two overlaid templates to provide a

complex visualization: the template on the right takes care of

displaying the normal list of attributes with their names etc.,

whereas the template on the left is used to display the colored

balls. Both templates use the same method to find the subobjects,

collecting them from the Class’s list of Attributes, as shown in

Figure 4. The left template also offers its subobjects as ports: roles

can connect to the colored balls.

Making these facilities available via a WYSIWYG Symbol Editor

and dialogs offering simple selections for common cases enables

new users to get started more quickly and proceed more efficiently

than if they were provided only as part of a programming

framework. Experience to date shows that the Template facilities

are able to concisely specify a wide range of needs found in actual

languages, and new users have been able to use them in ways we

had not even envisaged, learning solely from the supplied

documentation.

Figure 3. Definition of the symbol for Figure 1

Figure 4. Specifying where to find the dynamic ports from

REFERENCES
[1] Eclipse. GMF Tutorial. Retrieved 3.10.2013.

http://wiki.eclipse.org/GMF_Tutorial_Part_2

[2] MetaCase. MetaEdit+ Version 5.0 Workbench User’s Guide.

Retrieved 18.8.2013.

http://metacase.com/support/50/manuals/mwb/Mw.html

[3] Kelly, S., Pohjonen, R. 2011. MetaEdit+ 5.0 Beta Primer.

Retrieved 18.8.2013. http://www.metacase.com/download/

metaedit/MetaEdit+%205.0%20Beta%20Primer.pdf

[4] MetaCase. Advanced dynamic symbols and ports in

MetaEdit+. Retrieved 18.8.2013. http://www.metacase.com/

webcasts/EnhancedDynamicBehaviorWithTemplates.html

