
Empirical Comparison of Language Workbenches
Steven Kelly

MetaCase
Ylistönmäentie 31

40500 Jyväskylä, Finland
+358 14 641000 ext. 21

stevek@metacase.com

ABSTRACT

Production use of Domain-Specific Modeling languages has

consistently shown productivity increase by a factor of 5–10.

However, the spread of DSM has been slowed by projects stalling

even before the language was built, often citing problems with the

chosen tool. With a wide variety of language workbench tools for

DSM, there is a need for objective empirical tool comparison –

particularly as the little research so far shows a range of 50 times

more effort between the most and least efficient tools. This article

looks at existing empirical research and an experimental design

for a future comparison. We aim at increasing objectivity and

repeatability while keeping overall effort practical, and providing

worthwhile returns for the participants.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Computer-aided software

engineering (CASE).

D.2.6 [Programming Environments]: Graphical environments

D.2.8 [Metrics]: Product metrics, Performance Measures

G.3 [Probability and statistics]: Experimental design

General Terms

Measurement, Performance, Design, Economics, Reliability,

Experimentation, Human Factors, Languages.

Keywords

experiment design, language workbench, comparison, survey,

quantitative, qualitative.

1. INTRODUCTION
Where Domain-Specific Modeling languages have made it into

production use, the results have been promising: consistently high

increases in productivity [1]. However, many projects that have

looked at using DSM have stalled before production or even

piloting. Aside from usual reasons that affect all projects, one of

the most common complaints has been about the chosen tool – the

language workbench or its resulting modelling tool. With a wide

variety of language workbenches for DSM, there has been a

surprisingly small amount of empirical research comparing them.

The evidence seems to be that there is a large difference in how

much work is needed to achieve the same tool support for a DSM

language with different language workbenches: some

workbenches require 50 times more work than others [2].

Language developers who are also programmers may prefer the

freedom of working with a framework rather than a tool, but that

can be 2000 times slower [3]. Even among mature tools

specifically designed for DSM, research can show an order of

magnitude difference between the top two [2] (Figure 1 below).

This article aims to form a preliminary investigation of the area of

empirical comparison of language workbenches. We will look at

the particularly challenges of quantitative comparison in this area,

the different factors that could be compared, and previous

comparisons. Based on this we will offer a suggestion for an

experimental design appropriate for a future comparison.

2. CHALLENGES OF COMPARISON
Conducting an empirical comparison of language workbenches is

difficult, particularly given the wide range of effort required for

the same results. In most cases, only an unrealistically small

language could be built purely for an experiment: otherwise using

the less efficient tools will take too long. The more realistic data

available from full-sized industrial cases will always – by the

definition of domain-specific – be based on building different

languages, and hence be unable to help. Even if the same team

builds the same language again with another language workbench,

learning effects will undermine the comparison: not only is the

language and task more familiar, but most likely the earlier case

was their first DSM project anyway.

Empirical research in industry has thus tended to concentrate on

comparing the productivity of building systems with the DSM

languages to the pre-DSM productivity, and setting that against

the effort to create the DSM solution. Those figures have direct

value to the company in assessing which approach to use to build

their products, and also in estimating the up-front cost and return

on investment of using DSM on another domain. Another

company looking at the results can see that the tool used was

successful (or not), and hence whether it is worthy of their

consideration, but not whether it is better or worse than another

tool would have been.

Several different kinds of comparison are thus possible, e.g.:

a) comparing language workbenches as different ways of

producing a DSM tool for the same language;

b) comparing the effort to update the resulting DSM tool

when the LWB, problem or solution domain evolves;

c) comparing the productivity of the resulting DSM tool

and generation against hand-writing the same code;

d) comparing the productivity of different languages made

for the same domain with different workbenches;

e) comparing the performance of the resulting DSM tool:

how long the user has to wait for the tool to open a

model, generate code, show model changes etc.

All of these are interesting and useful comparisons, but for

reasons of space and focus we will concentrate here on a).

Although b), c) and d) have a higher economic influence, they

only become relevant once a) has been accomplished, and that is

the main hurdle facing DSM today.

3. BASIS OF COMPARISON
Even when we have decided what to compare, choosing a good

basis of comparison is by no means an easy task. Using a

modeling tool requires a certain level of ability; creating a

modeling tool with a language workbench requires more, often

being left to the top developer in an organization. Even more is

required of a language workbench creator, so attempting to rise

still higher to compare many language workbenches will be a

humbling experience for anyone.

Fortunately, we are not working in a vacuum, nor as the first to

attempt such a comparison. By looking at how comparisons are

performed in more mature areas, we can establish some ground

rules. And by looking at previous language workbench

comparisons, we can see the practical challenges and explanatory

strengths and weaknesses of various bases of comparison. Such

bases include feature coverage, lines of code, user satisfaction,

time, and cost. Qualitative approaches such as questionnaires

provide vital extra information to interpret and apply this data, but

for reasons of space we focus here on quantitative metrics.

3.1 Feature coverage
A large portion of the literature on language workbenches is

composed of descriptions of the authors’ own new or improved

language workbench. Academic rigor demands a ‘Related Work’

section, but other factors tend to push such a description into

focusing on features where the new workbench excels. The

quality of investigation into others’ language workbenches is

unencouragingly low. The majority of authors apparently do not

even trouble to download the other tools, and many statements are

so clearly wrong that the first search engine result on the topic

would have corrected them.

In addition, the interpretation of a feature defined in a couple of

words is highly subjective. Attempts to add more explanation tend

only to narrow the definition down to fit only that implementation

of the feature present in the author’s own workbench. Even with a

common understanding of a feature, there is generally no clear

standard or agreement on what level of support must be present to

say the feature is present.

Most seriously, however, the presence or absence of most features

is not yet proven to have any effect on actual performance or

usefulness of the language workbench. Indeed, the things that

neophyte users expect, or a new workbench creator may decide to

implement, surprisingly often turn out to be a false step in terms

of the end results – a feature found in many tools may turn out to

be the GOTO of the workbench world.

3.2 Lines of code
As with programming languages, the number of lines of code

required to implement a system is a tempting basis for

comparison. However, even with improvements to filter out the

effects of white space and comments, research shows that lines of

code is a poor comparitor of development effort between two

projects – even by the same team in the same language. A line of

code for some complicated issue may take orders of magnitude

longer than for a simple issue. Measuring only the final lines of

code also ignores that a given line of code may have been

rewritten many times or even deleted.

Where those projects are performed by different teams, and in

particular with different languages, the comparison breaks down

completely. In this case, the system would be the whole DSM

solution – the language concepts, rules, concrete syntax,

semantics (by generation or interpretation), and editor tooling.

The construction of these different areas requires different

languages even within one workbench, meaning that we are

comparing apples + oranges against pears + grapes. As some of

the areas are not even created with textual languages, but with a

graphical language or by using a user interface, we also face the

task of trying to map those approaches into some kind of textual

syntax, possibly created just for the experiment. It goes without

saying that the reliability of such results approaches zero. An

order of magnitude difference may still be visible, but a tool could

easily be twice as good as another yet obtain worse results.

3.3 User satisfaction
In many ways, user satisfaction is the most honest and useful

measure of tool success. If we want to predict which

programming language or tool will be chosen for the next project,

knowing which the users like the most will give us more

information than knowing the feature list or how many lines they

will have to write. In a non-commercial setting, and if decisions

are made by the users from their own point of view, their favorite

tool will be the winner almost every time.

In a commercial setting, or where other factors encourage a

broader and more long term view, user satisfaction becomes just

one part of the equation. The desire for familiarity and

apprehension about moving outside one’s comfort zone may be

outweighed by a sufficiently large and well-attested benefit of

using something else. Measuring of user satisfaction before and

after such a change will be a useful exercise. However, comparing

several language workbenches in this way is limited by the

longitudinal nature of such comparisons. In addition, user

satisfaction is not only highly subjective, but significantly affected

by things like team spirit and general mood, unrelated to the tools

in question.

3.4 Time
Like lines of code, time is something that is objectively

measurable. It is most reliable when used to measure tasks

comfortably within a user’s ability, but may tend to infinity for

tasks near the limit of that ability. The measurement is easy and

largely repeatable for experiments, but harder for industrial use,

where users may work on many other things throughout the day.

Separating out work on different areas is easier where the task is

more focused on tool use rather than extended periods of thinking.

Unlike lines of code, time is equally comparable across languages,

whether in one or several workbenches: we are adding hours +

hours, not apples + oranges. It also reveals the effort spent on

multiple versions of the same line, or on lines that were eventually

deleted. In academic situations, and in commercial situations

where time-to-market is critical, time is itself the variable of

interest; in non-time-critical commercial situations, it is an

excellent proxy for the primary variable of cost.

Whether time spent or lines of code produced are a better measure

of the size of a project, in terms of possible future maintenance

effort, is unclear. Time does however reflect the cost of learning

better than lines of code; whether that is desirable depends on the

experiment – whether we want to know how long a tool takes to

learn, how long the first project will take including learning time,

or how long projects will take going forward.

3.5 Cost
For many commercial situations, and some academic situations,

the overall financial cost of creating and providing users with a

DSM tool, and having them use it to produce systems, is the

primary variable. This includes the initial and maintenance costs

of the tool, and the time of the language creator and users. This

cost is then compared against alternative ways of producing the

same systems.

The normal trade-offs between commercial and free tools apply,

but here there are two levels: firstly that of using the language

workbench to produce a DSM tool, and then using the resulting

DSM tool to produce systems. In all but the smallest cases or most

inefficient language workbenches, the overwhelming factor is the

productivity of using the resulting DSM tool. Assume a modeler

produces as much as he costs, at a fully-weighted cost per month

of 4,000€. If the DSM tool increases his productivity by a factor

of 7.5, his value per month is 30,000€. Compared with this

increased value of 26,000€, even the most expensive tools cost

less than 1% — less than the difference between a productivity

increase of 7.5 or 7.6.

As the challenge of DSM introduction is more that a project stalls

at the language development stage because of problems with the

tool, rather than because of a difference in final productivity of

7.5 rather than 7.6, cost seems not to be a particularly revealing

variable. Trying to obtain a generally and globally applicable total

cost comparison is difficult because of marked differences in

developer salaries, different tool prices in different territories,

volume discounts, and non-public pricing. While cost is thus not

objectively applicable in such a comparison for general use, it can

easily be factored in by a particular company into their own

calculations based on language development time and

productivity.

4. PREVIOUS COMPARISONS
In 1993, in what is probably the first language workbench

comparison, Marttiin et al. [4] compared three tools (QuickSpec,

RAMATIC, and Customizer), offering a framework for

comparison that took into account the different tasks in language

development and the effectiveness of the tools for carrying out the

task. They used the five languages of the SMARTIE method as

sample languages to be implemented in all the tools. At this early

stage of language workbenches, the focus was primarily on

whether the tools could faithfully implement the various features

of the languages. A positive feature of the comparison, missing

from many, was that the authors contacted the workbench makers

for support and to ensure the reliability of their results.

Isazadeh [6] compared five graphical language workbenches

(Metaview, Toolbuilder, MetaEdit+, 4thought and CASEmaker)

in terms of features, architecture, and ability to model the same

sample language, a variant of finite state machines. The results of

the empirical experiment were subjective ratings for how simple

each tool made six areas of work such as concepts or complex

constraints. Toolbuilder and MetaEdit+ came out equal top, with

tools in general splitting into those like the former that offered a

“very high level of expressive power” but made all tasks “very

difficult”, and those like the latter that focused on making

common tasks easy. This is the normal trade-off between low-

level and high-level approaches: neither approach is the correct

one, the contingencies of a situation determine which to choose.

After these early comparisons, we will not consider the large

number of non-empirical or purely feature-based comparisons,

focusing instead on those that provide quantitative comparisons.

Kelly and Rossi [5] performed a laboratory experiment to

compare graphical and matrix-based metamodeling in MetaEdit+.

11 students were trained in both, randomly divided into the two

groups, and given 3 hours to metamodel parts of the nascent

UML. Their results were graded on the accuracy and

completeness of various categories of metamodel elements, e.g.

entities, unary relationships, and binary relationships. The

hypothesis that matrices would help on relationships was

supported (73% score for matrix users, 54% for diagrams);

elsewhere there was no clear difference. To our knowledge this is

the only test of the contribution of a particular feature of a

language workbench to metamodeler performance – hopefully we

will see more in the future.

Kelly [3] compared an existing Eclipse GEF implementation of a

graphical logic gate language with the time required to model a

similar language in MetaEdit+. A COCOMO estimate was used to

transform the GEF Java code size (332KB, 120 files, over 10,000

lines) into a time value of 13 man-months (2000 hours), which

compared unfavorably with the one hour required to create the

same results in MetaEdit+. Using standard programmer LOC

productivity figures to convert Java lines of code into time

allowed a comparison across different tools and languages, where

the latter tool also had no textual syntax. Using an existing

implementation in the slower tool allowed a comparison to be

performed within a reasonable time, despite the wide range of

speeds; copying another tool’s implementation rather than a

neutral specification puts the latter tool at a slight disadvantage,

which may narrow the speed difference found.

Pelechano et al. [8] compared Microsoft DSL tools with Eclipse

EMF+GMF+MOFScript, having roughly half of 48 students use

each tool. The students used the tools in a 1-semester laboratory

course to build a DSL and code generation, and answered a

questionnaire after the course. Most questions were a mix of

feature support and user satisfaction. Each student chose their own

DSL and generation target, most of which seem to have been code

generation from UML diagrams; there does seem to have been

metamodeling in all cases. Students did not get a chance to try the

other tool, but when asked at the end whether they would use the

same tool or another, 100% of the Eclipse users said they would

remain faithful. The other answers also indicate a preference for

Eclipse; it is not revealed whether Eclipse and Java, or Visual

Studio and C#, were equally known by the students before. As the

former are far more common in universities, preference for the

familiar would seem to be a threat to validity in this and other

studies using students. A positive factor, often missing from

comparisons, is that the exact versions of the tools used are stated.

A bias to familiarity with Eclipse seems to have been avoided in

Özgür’s Master’s thesis [9], which compared Microsoft DSL

Tools and Eclipse EMF+GMF, developing the same business

entity language with each. He also compared UML, MDA,

Software Factories, and Domain-Specific Modeling as

approaches, again seemingly more objectively than most. He

found both toolsets usable, with Microsoft’s being easier to use

and Eclipse supporting OMG standards. Unfortunately, no

quantitative figures are provided in this otherwise well-rounded

thesis.

De Smedt [7] compared his department’s AToM3 with MetaEdit+

and Poseidon on a simple road traffic language as a student

project. He found he was slightly faster with MetaEdit+ than

AToM3. The time figure for Poseidon was only a quarter of that

for the other tools, because it had no functions for and was thus

unable to attempt the transformation and simulation tasks. (This

kind of omission or comparison of unlike work is common in

student projects and Master’s theses: a Spanish project [10]

compared MetaEdit+ and DSL Tools, but left out concrete syntax

time from the total time for DSL Tools “because it took so long”,

while including the corresponding time for MetaEdit+.) The

known threat to impartiality, where a comparison includes a tool

from the author’s own organization, is exacerbated in cases where

a student submits his assessment for grading by his superiors who

made the tool.

El Kouhen et al. [2] produced what may be the best empirical

comparison of graphical language workbenches to date. They

created BPMN support in each of five tools (RSA, GME,

MetaEdit+, Obeo, and Eclipse GMF). Rather than students or

makers of the tools, their users were the authors: Eclipse

committers on the Papyrus project, which aimed to produce its

own language workbench. They graded the tools on various

features, but also on the total time taken to create the abstract

syntax, concrete syntax and rules (Figure 1). The wide range of

results is particularly interesting given the users’ familiarity with

Eclipse GMF and ECore, which is also used in RSA and Obeo.

Figure 1: Days to implement BPMN [2]

A notable omission from the report is the lack of reference to

related work. Had it been submitted for peer review this would no

doubt have been corrected. The reason for not submitting these

results as a publication, particularly after so much work, remains

an open question. The report is also a good example of the

problem of guessing features which would contribute to effective

usability of a language workbench. The authors spend three pages

listing a variety of factors that they measure from the tools before

the experiment to obtain a “usability” percentage, divided into

“efficiency”, “task visibility” and “visual coherence”. The tool

with the worst “efficiency” and “task visibility” percentages

turned out to be the fastest, and the tool with the best “task

visibility” percentage turned out to be the slowest. Looking at the

criteria, it seems they are more measures of how much the tools

follow the user interface patterns familiar in Eclipse, rather than

anything objectively good. Indeed the actual measured speed of

use of the tools may point to a need to re-evaluate some user

interface decisions that Eclipse users have become accustomed to

expect. Similarly the common programmer’s desire for every

detail of a task to be visible appears to run counter to productivity:

e.g. only by hiding unnecessary details can third generation

programming languages be more productive than assembly

language – a principle surely familiar to all DSM practitioners.

The report [11] from the 2013 Language Workbench Challenge is

the largest comparison of recent times, including mostly textual

but also graphical and projectional workbenches. All the tools

implemented a subset of a questionnaire language, presented

textually but amenable to other representations. Most

implementations were made by tool experts, often the tool

developers: a single user for most, but five for MPS and several

for Spoofax. The main purpose of LWC was to present the results

to each other, and development time and conditions were not

measured or controlled. The post hoc idea of writing an article

including measurements could thus only rely on feature coverage

and lines of code, although it was known these were not well

comparable. Some tools generated JavaScript (vanilla or with

libraries like jQuery), others Java; Spoofax generated an existing

Spoofax DSL; still others used interpretation within the

workbench.

Figure 2: Lines of code to implement LWC2013 features [11]

It was found that lines of code per feature increased with feature

coverage: the easier features were done first, the later ones being

inherently harder or needing more lines of code as lower-level

facilities were used. Figure 2 shows the data obtained, along with

Excel’s best fit power curve. It is interesting to note that the

results for this initially textual language are in a much tighter

range than for the graphical language in El Kouhen et al. [2]. The

difference may be that this LWC task was heavy on generation

and light on concrete syntax. The facilities for writing generators

in the various tools may be rather similar in their productivity; at

least their approach and structure is often similar, as has been

noted for Eclipse’s Xpand and MetaEdit+’s MERL [12]. In

contrast, El Kouhen’s experiment included no generation, and the

BPMN language is heavy on concrete syntax. Our own experience

suggests that concrete syntax takes roughly three times as long as

abstract syntax when using MetaEdit+’s WYSIWYG vector

graphics-based Symbol Editor; using the programming or XML-

based concrete syntax definition found in many other graphical

tools could significantly increase that ratio.

5. SUGGESTED EXPERIMENT DESIGN
There are many possible and useful experiments to be performed

on language workbenches, but as stated before we will focus here

on an experiment to compare language workbenches as different

ways of producing a DSM tool for the same language.

5.1 Basis of comparison
As language workbenches have matured, feature coverage has

become less useful as part of a general experiment: all tools

should be able to cover the main features necessary for the bulk of

a language. Feature coverage is still useful for a non-experimental

comparison, and a particular feature may be investigated in its

own experiment. In a fixed time experiment, feature coverage

12

6

0,5

5

25

0

5

10

15

20

25

30

RSA GME MetaEdit+ Obeo GMF

Days to implement BPMN
Ensō Más

SugarJ

Whole
Platform

MPS Onion

MetaEdit+

Rascal

Xtext

Spoofax

0

1000

2000

3000

20 30 40 50 60 70 80 90 100

SLOC

% Feature Coverage

Total SLOC vs. Coverage
Below/right of curve = better

achieved could perhaps be used, but for any true comparison that

would require the same order of feature implementation, and also

equally sized features – a difficult task in general, rendered

impossible by the differing processes and abilities of tools in

different areas.

Lines of code seems fundamentally flawed as a method of

comparison for the different and non-textual languages used for

language definition. These problems are still prevalent but to a

lesser extent in the languages for generator definition.

Time is in many cases directly the variable of interest for the

implementation of a language and generators. It is also directly

comprehensible by readers without knowledge of the workbench

in question: if a task is known to take 25 days with GMF, the

effort is clear; if it takes 1400 lines of code in Spoofax, the reader

is unsure how much effort that requires compared to a more

familiar language like Java.

Cost is an important factor in considering an overall DSM project,

and even in choosing a single tool. It is not, however, an intrinsic

property of a tool – prices for the same tool vary by customer and

over time, and a previously commercial tool may even become

free and open source, as has happened with at least two language

workbenches. For an experiment in particular, cost would seem to

have no meaningful role.

Time thus appears to be the most useful basis of comparison,

which leaves the question of what time to measure and how to

measure it to a good degree of trustworthiness: we shall return to

these questions later in this section.

5.2 Users
Many of the previous comparisons have been performed by

students. This seems an extension of the fallacy of “compare

using what you can easily measure”: students are cheap, plentiful,

and need teaching in this area anyway. However, most

undergraduates are well below the level of the average language

workbench user, so a full experiment is often beyond their

abilities and a reasonable length, and even if performed will give

results of dubious value. More targeted experiments on a

particular feature may be possible, as in [5].

There is also the question of the practicality of the experiment: El

Kouhen’s comparison required nearly 10 weeks of effort, and

adding the last tool in would have added either 1% to the overall

effort, or over 100%. If all that effort were to be expended by the

same team, there would be a force pushing to leave slower tools

out, or to reduce the experiment to something that may be too

simple to give meaningful insight into real use. One option is to

use resources from different sources, teams or projects – yet no

team would want to be saddled with a randomly assigned yet

unfairly sized share. The approach of LWC may be the best: the

users would be people that are already associated with the tool,

either as makers or expert users (e.g. consultants). They have a

vested interest that encourages them to spend the time to have

their tool included in the comparison, and to do the tasks well.

Admittedly, poor performance in an earlier comparison may

discourage a team from participating in future – but hopefully

they would then use the saved effort to improve their tool.

Using experienced users gives more reliable and repeatable

results, but does not measure the cost of learning. That would

seem to be something that could be measured best separately

(perhaps by an experiment with postgraduate students): it is an up-

front cost to the first DSM project, but not subsequent projects.

We can thus separate out the costs of various phases: learning the

language workbench, creating a language with it, learning the

resulting DSM tool, and creating a system with it. As mentioned,

we focus here on language creation.

5.3 Tasks
Given the indications that effectiveness varies according to task

both across tools and within a tool, it seems clear that we want to

obtain figures for both the overall time for a tool, and for its

performance on individual task areas such as abstract syntax,

rules, concrete syntax, and generation or interpretation. This

motivates breaking the tasks down into clearly separate phases,

perhaps in a manner that would be unnatural in a real project: e.g.

it is common to add at least basic concrete syntax for each new

abstract syntax concept, even if a later phase would concentrate

on improving all the concrete syntax.

For the most realistic setting, the tools would be given a domain

description and the current code that is produced by hand (or

whatever similar output is required). This was the case in the

MDD-TIF07 workshop [13], the first comparison of language

workbenches used by their makers or expert users. A down side of

this approach was that the results were highly variable: some

languages were poor in quality, and all were different. This still

fulfilled the purpose of MDD-TIF – to familiarize tool makers

with other tools – particularly where the tools showed how to

create the languages from scratch in their presentation slot. it does

not however lend itself to a quantitative comparison of language

creation (although it could be useful if the extra step of measuring

the productivity of the resulting language was included).

A more practical and targeted approach is to specify the desired

modeling language, thus skipping the creative stage of inventing a

language for a domain – probably more a test of DSM skill than

the tool. Some latitude can be allowed for the tools to deviate

from the language, although explanations should be given as to

why: readers will thus be aware of the trade-offs a tool has made

between a faithful rendition and an easier one.

For the output, experience with the Language Workbench

Challenge [11] has shown that much of the work of

implementation can end up being spent on creating a framework

for the generated code to run on, if such is not provided. Similarly

if the target platform is unfamiliar, significant effort is expended

on learning it – again not related to the tool. It is thus best to

specify the target platform, including which libraries etc. should

be used, and also to provide an example model and its resulting

reference implementation, so tools can just aim at generating that

code.

5.4 Measurement
Measuring the full time for a real project is not possible in an

experimental setting, nor is it believable if the developers or

proponents of the tools are asked to record their own times. One

option could be to reveal each individual task at a pre-set time,

and have users submit their results online as soon as they are

finished. The definition of “finished” is problematic, as work

under such time pressure will most likely contain bugs, which

would otherwise have been found and corrected at a later phase.

More seriously, it is unlikely that the tool makers will be willing

to commit ahead of time to these periods; a real customer’s

problem may appear and will take precedence.

One solution could be not to record the time for the process of

creation, but only for the creation of the finished result – in a

similar way to how lines of code only measures the final code.

Some information is certainly lost, but perhaps not critically, and

it is at least in a familiar fashion. Users could complete the task in

their own time, when convenient to them, and when finished they

could record a video of creating the task from scratch. As well as

providing an objective measure of that time, that would also serve

as a tutorial for new tool users to learn the tool. This has the added

benefit that any attempts to type or click as fast as possible are

counter-productive: they might “win” the comparison, but they

would certainly lose in getting new users to understand their tool.

At least at this stage in the market, that is a paramount concern for

all tools, commercial or otherwise.

Such an approach has already been successfully trialed in the first

Language Workbench Competition, where each tool was given 40

minutes to present how to create the languages and generators. In

practice only the MetaEdit+ presentation [14] did this from

scratch, with other tools showing the resulting languages or parts

of the language definitions that had been made earlier. A fixed

presentation time was thus not appropriate, given the variation of

speed of use of the tools. All tools however produced PDF

tutorials showing how to create the languages. A video of the

workbench completing the tasks would thus be possible and

comparable for all, even if it could not all be sensibly presented in

a workshop format.

Splitting the video into segments for each task will allow

investigation of the relative and absolute strengths of each tool, as

well as providing a more palatable tutorial for new users.

Although the aim would be for all tools to complete all tasks, it

would also improve the comparability if some tasks are omitted.

6. CONCLUSIONS
Domain-Specific Modeling has shown great promise for

improving the productivity of software development, and

language workbenches have shown great promise for efficient

creation of DSM solutions. In spite of several workshops and

comparisons, research shows that there is a wide range of

effectiveness in the tools, tool makers often misjudge the actual

value of features and approaches, and both tool makers and users

are reluctant to look at tools from outside their own frame of

reference – be that textual vs. graphical, Eclipse vs. Visual Studio,

OMG standards vs. DSM-specific.

An objective, trustworthy comparison may go some way to help

address these problems. Although achieving such a comparison

faces significant challenges, not only technical but also those of

personal or commercial interest, MDD-TIF and LWC have shown

that the tool makers are willing to participate. El Kouhen et al.’s

comparison also shows that new tool makers are ready to learn

from what is already out there – something that has sometimes

been lacking in the past – and that objective, quantitative results

can be obtained.

Combining the best features of previous comparison designs

allows us to avoid problems encountered earlier, and get closer to

a comparison that will be of real value to users contemplating

DSM, and also to current and future language workbench makers.

So far, this is just a sketch; further work and a trial will be needed

to flesh it out, and it must be combined with qualitative measures.

ACKNOWLEDGMENTS
Many thanks to the reviewers and the members of the Language

Workbench Challenge mailing list, whose suggestions, criticisms

and support contributed to this exploration. Opinions and failings

of course remain solely those of this author.

REFERENCES
[1] Kelly, S., and Tolvanen, J.-P. 2008. Domain-Specific

Modeling: Enabling Full Code Generation. Wiley.

[2] El Kouhen, A., Dumoulin, C., Gérard, S., and Boulet, P.

2012. Evaluation of Modeling Tools Adaptation. CNRS

HAL. http://hal.archives-ouvertes.fr/docs/00/70/68/41/PDF/

Evaluation_of_Modeling_Tools_Adaptation.pdf

[3] Kelly, S. 2004. Comparison of Eclipse EMF/GEF and

MetaEdit+ for DSM. In Proceedings of the OOPSLA &

GPCE Workshop on Best Practices for Model Driven

Software Development. http://www.softmetaware.com/

oopsla2004/mdsd-workshop.html

[4] Marttiin, P., Rossi, M. , Tahvanainen, V.-P., and Lyytinen,

K. 1993. A comparative review of CASE shells: A

preliminary framework and research outcomes. Information

and Management, 25:11-31.

[5] Kelly, S., and Rossi, M. 1998. Evaluating Method Engineer

Performance: An Error Classification and Preliminary

Empirical Study, Australian Journal of Information Systems

6(1).

http://dl.acs.org.au/index.php/ajis/article/download/316/283

[6] Isazadeh, H., 1997. Architectural Analysis of MetaCASE: A

Study of Capabilities and Advances, Master’s Thesis,

Queen’s University, Ontario, Canada. http://www.

collectionscanada.gc.ca/obj/s4/f2/dsk2/ftp04/mq20654.pdf

[7] De Smedt, P. 2011. Comparing three graphical DSL editors:

AToM3, MetaEdit+ and Poseidon for DSLs, University of

Antwerp. http://msdl.cs.mcgill.ca/people/hv/teaching/

MSBDesign/201011/projects/Philip.DeSmedt/report/report_

PhilipDeSmedt.pdf

[8] Pelechano, V. Albert, M., Javier, M., and Carlos, C. 2006.

Building Tools for Model Driven Development. Comparing

Microsoft DSL Tools and Eclipse Modeling Plug-ins. In

Proceedings of the Desarrollo de Software Dirigido por

Modelos - DSDM'06 (Junto a JISBD'06), Sitges (Barcelona)

España. http://ceur-ws.org/Vol-227/paper11.pdf

[9] Özgür, T. 2007. Comparison of Microsoft DSL Tools and

Eclipse Modeling Frameworks for Domain-Specific

Modeling In the context of the Model-Driven Development,

Master’s Thesis, School of Engineering, Blekinge Institute of

Technology, Sweden.

[10] Palarea, P. G., and Ramón, Ó. S. 2006. Metamodeling Tools:

Microsoft DSL Tools vs. MetaEdit+ [in Spanish].

http://dis.um.es/~jmolina/Pfc/DSLvsMetaedit.pdf

[11] Erdweg, S., van der Storm, T., Völter, M., Boersma, M.,

Bosman, R., Cook, W. R., Gerritsen, A., Hulshout, A., Kelly,

S., Loh, A., Konat, G., Molina, P. J., Palatnik, M., Pohjonen,

R., Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser,

E., van der Vlist, K., Wachsmuth, G., and van der Woning, J.

2013. The State of the Art in Language Workbenches:

Conclusions from the Language Workbench Challenge. In

Proceedings of the Software Language Engineering

conference (Indianapolis, USA, October 26-28, 2013).

Springer.

[12] Kelly, S., and Kern, H. 2009. Processing of MetaEdit Models

with oAW. http://www.metacase.com/blogs/stevek/

blogView?showComments=true&entry=3428923761

[13] Völter, M., Gray, J., Kelly, S., and White, J. 2007. Model-

Driven Development Tool Implementers Forum, Tools 2007.

http://www.dsmforum.org/events/MDD-TIF07/

[14] Kelly, S. 2011. MetaEdit+ LWC Demonstration. Video/PDF.

http://www.metacase.com/support/45/repository/#LWC

