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ABSTRACT 

In this paper, we describe a novel approach of extracting models 

from natural language text sources. This requires linguistic analysis 

as well as techniques for interpreting and using the analysis results. 

Our linguistic analysis engine provides feature analysis for a rule-

based model element detection. Furthermore, the presented 

approach enables users to generate domain- and application-

specific model element detection rules based on natural language 

sample sentences. Detection rules also have to be connected to 

instantiation rules for the respective type of model element. This is 

done through a highly system-supported mapping step where users 

are able to choose elements from arbitrary meta models and to 

connect their properties with functions over natural language 

sentence parts. As both, the definition and application of detection 

rules is always a sensitive balancing act between precision and 

recall, these steps are highly interactive. That is why our current 

prototype also supports detection rule adaption and iterative rule set 

completion – always to the level of current need. 
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1. INTRODUCTION 
Transferring information into a machine-recognizable form is one 

of the most time-consuming tasks in IT projects. No matter if one 

wants to formalize a production process, if a data scheme has to be 

created or even both, the person in charge usually has to read 

process instructions, functional specifications, product requirement 

documents and other human readable documentation.  

Domain-specific modeling increases the number of possible target 

forms since each general purpose language is replaced by multiple 

domain specific languages (DSLs). The huge amount of different 

target forms requires an even greater amount of knowledge 

regarding formalisms, domain knowledge and tool usage. 

Combining the previously mentioned issues we can shape the core 

problem for which the approach below provides possible solutions: 

How to automatically transform various and already existing 

natural language sources into highly diverse and domain-specific, 

interlinked target models using a system which, in respect of 

domain-dependent knowledge parts, can be extended intuitively. 

Solving this task would save time, provided the possibility of 

objectively transforming unstructured information into structured 

forms or provided at least a possibility for checking models which 

has been created manually reading descriptions in natural language 

documents.  

Whereas there is rich tool support regarding the modeling task 

itself, the process of (semi-)automatically transforming informal 

information, meaning natural language texts, into formal models is 

most widely more a research topic than an market-ready feature of 

modeling tools [3]. 

Since the first steps in Natural Language Processing (NLP) during 

the 1940s [7] the knowledge about automatically interpreting 

unstructured natural language texts has grown enormously. 

Techniques of Information Extraction, Sentiment Analysis, 

Information Retrieval and others are used to “mine” structured 

information. These techniques base on more general analysis 

principles providing syntactic and semantic insights into natural 

language texts. 

Consequently this rich knowledge can also be used to support the 

modeling process. This paper presents a novel approach for semi-

automatically transforming natural language descriptions into 

formal models using syntactically and semantically enriched 

grammar rules for model element detection in combination with 

mapping functions for model element extraction. 

The core benefits of this approach particularly relevant to DSM are 

its meta-model variability, the intuitive extendibility and a training 

method that enables the system to handle exactly the problems 

which are relevant but does not require input for any probably 

occurring issue. Flexibility in terms of “training on demand” is 

essential since our prototypical system is intended to be trained by 

its users. The meta-model variability enables the user to use a meta 

model that fits the current domain. Without learning effort for users 

and with the possibility for partial training the time exposure for 

extending the system is less compared to an approach which 

requires expert knowledge in shaping linguistic detection rules.  

2. RELATED WORK 
There is a wide variety of approaches for transforming natural 

language texts into formal models. This is evident from both the 

large number of target languages and the differences in linguistic 

knowledge and information extraction steps used. Below we give 

summaries of the most important work. 

In [3] Friedrich et al. introduce a system for automatically 

generating process models in Business Process Model and Notation 

(BPMN) out of natural language process descriptions. The 

underlying multi-level analysis uses information of sentence level 

as well as of text level. During both levels a word model is 

synchronized which means holding all currently extracted model 

elements connected with their text passages.  

On sentence level a combination of lexico-syntactic rule set and 

techniques of text simplification [7], e.g. Anaphora Resolution, is 

used to identify and extract activity, actor and object candidates. 

On text level more complex model elements like sequences and 

gateways are detected using lexical markers and (inter-)sentence 

dependencies. In a final step on this level descriptions of different 

aspects of the same model element are merged. In general this 

approach uses fixed rule sets which can be parameterized by 

individual word lists.  



 

 

The IBM Research Division developed a prototypical system, 

called Online Analysis Environment (OAE), for transforming 

industrial use case descriptions into appropriate formal 

representations. “An Analysis Engine for Dependable Elicitation of 

Natural Language Use Case Description” [14] describes this 

approach as a three-phases process. First the text passes pre-

processing steps, e.g. tokenization, lemmatization and basic 

syntactic structure parsing, i.e. Part-Of-Speech-Tagging [7] and 

identifying syntactic word groups (phrases) as well as identifying 

grammatical functions of particular sentence parts. This is followed 

by a dictionary annotation phase where verbs are tagged using 

semantic word categories, e.g. INPUT, OUTPUT, READ, etc.  

The final phase, process building, uses all previously extracted 

information to perform a pattern matching “over tokens, phrases 

and already identified patterns” [14]. A pattern can be understood 

as follows: 

 Pattern: Noun VerbalPhrase the system. 

 Matching sentence: Users contact the system. 

Ordering of extracted elements, merging identical elements with 

different regarded aspects and presenting potential processing error 

causes are the last steps of the whole process. 

There are several other approaches, e.g. [4] and [13] which come 

up with different grades of convenience, user friendliness and 

flexibility as well as different target models. In the following 

section we discuss which requirements a respective system should 

meet in order to provide a maximum of convenience, user 

friendliness and flexibility. 

3. REQUIREMENTS 
This section summarizes requirements which shall be fulfilled by a 

system that is designed to provide support for automated modeling 

tasks which start with natural language descriptions as source. 

Natural Language Interface (NLI). The most intuitive way for 

users to describe processes, use cases and other objects of interests 

is to specify all aspects using their respective native language 

[2][5]. Thus, the NLI should particularly consider the diversity of 

natural language depending on the individual person and domain. 

However, according to Li, Dewar and Pooley most of the 

comparable systems do not take this into account: 

“[…] they are limited by the simplicity of input NL expressions and 

the size of those descriptions (typically <200 words).” [13] 

Domain and language independence. In the context of domain 

specific modeling it is also important to enable the system to 

capture domain specific terms and expressions whereas the system 

itself has to be domain independent. This means that the detection 

algorithm as well as the used linguistic background knowledge 

must be language independent or at least easily exchangeable in 

such a way that detection and extraction knowledge specifically 

tailored to the domain of interest may be created. 

At the end this means that there should be one system for all 

languages and target models instead of one system for each.  

Transparency of linguistic expert knowledge. Customizable 

linguistic rule sets or parameterizable machine learning algorithms 

may perform well but the user usually needs linguistic expert 

knowledge for adjusting the system’s behavior. This would cause 

an overhead which could annihilate the advantage of the automatic 

transformation. Therefore, the system should keep the used 

linguistic knowledge transparent.  

Adaptability and Feedback. Many NLP applications require a 

training phase which often is based on supervised learning 

techniques. The aim is to learn a real function which provides the 

desired results when it is applied on unseen data. In statistical 

approaches learning this function is time consuming since it mostly 

requires a manual task where lots of raw data is annotated with the 

desired function value. The more complex a function is the more 

training data is necessary to approximate the real function as close 

as possible [11]. Mostly the mentioned statistical approaches aim 

to build an approximation of the full function. Instead, it should be 

possible to successively train fragments according to the current, 

domain- and application-specific needs. This aspect mainly refers 

to the completeness of the detection engine. Another aspect is the 

possibility to adjust the detection engine in the case of error 

occurrence. In this case, an appropriate solution is to request the 

user to provide structured feedback and to adjust the configuration 

of the detection engine considering this feedback. 

It is possible to state more requirements but we postpone them as 

later refinements since we want to focus our key innovations. 

4. APPROACH 
The following passages describe concepts and algorithms of our 

prototypical implementation of an interactive and dynamic rule 

based model extraction system. A main principle is to define formal 

model element detection rules in natural language. Linguistic 

analysis tools are used to extract particular aspects of model 

element descriptions and to enrich plain syntactic structure 

detection rules with semantic and additional syntactic information. 

Passage 4.1 describes structure and content of these rules. 

In order to correctly map detected information from sentences to 

formal model element properties the system includes an interactive 

mapping phase for newly created detection rules (see subsection 

4.4). The algorithm used for applying the rules to arbitrary natural 

language model descriptions is called Unification [7]. We use a 

modified concept and implementation – Adaptive Fuzzy 

Unification. 

Another core principle is to avoid defining all rules before being 

able to use the system. Instead the rules and mappings are defined 

iteratively according to the current need. This also includes a 

supervised learning step for correcting falsely failing rules based 

on user’s error feedback, which is considered within subsections 

4.3 and 4.5, respectively. 

  

Figure 1. Feature Structure Meta Model 



 

 

4.1 Templates 
Talking about rules hereafter means talking about linguistic 

templates for sentence structures, contents and dependencies. 

Syntactic parse trees [7] form the template basis. Linguistic 

analysis tools are used to detect aspects of model element 

descriptions and are able to enrich syntactic sentence structure 

analyses with additional information. Considering the natural 

language sentence “The manager notifies the customer” the 

syntactic structure is shown in Figure 2a.  

The format the figure shows is a so called Feature Structure (FS) 

[7] representation. A Feature Structure is a hierarchical 

composition or, more precisely, a tree of features. Figure 1 shows 

the meta model for Feature Structures used in our current prototype. 

Primarily there are two different specializations for Feature 

Structures: Complex FS and Atomic FS. These two classes form the 

hierarchical structure, which can also be seen in Figure 1 since the 

meta model element FeatureStructure shows recursive 

characteristics. The other specializations are discussed during the 

following subsections. 
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Figure 2. Left (a): Syntactic Structure of example sentence, 

Right (b): Reduced Feature Structure 

In the case of Figure 2a all keys are syntactic categories, e.g. 

phrases (S, NP, VP) or Part-Of-Speech (POS) tags1 (DT, NN, 

VBZ). Each value is a complex Feature Structure except those 

below the POS tags. These are atomic values, concretely the plain 

words. Combining both produces a hierarchical structure which has 

to be interpreted from left to right where each nesting level refines 

the previous. This is a valid alternative representation for a 

linguistic context-free phrase-structure-grammar tree [7]. 

The rules for detecting model elements are based on such syntactic 

Feature Structures. 

4.2 Reduce and Enrich Feature Structures  
Reduce. Using Feature Structures for representing hierarchical 

syntactic sentence structures provides flexibility. To form a model 

element detection rule we discard two hierarchy levels from the 

Feature Structures: the words themselves and their POS tags. The 

reason for discarding the words is that this level overspecializes the 

rules to match only the source sentence itself. POS tags are likewise 

too specific since they limit the detection rule to a very strict syntax. 

Consider the following examples (including POS tags): 

 The(DT) manager(NN) contacts(VBZ) the(DT) employees(NNS) .(.) 

 Managers(NNS) contact(VB) the(DT) employees(NNS) .(.) 

In the case of process modeling it is quite likely to instantiate model 

elements of the same type for both sentences. But if the detection 

rule contains POS tags the detection would fail because the first 

sentence contains an article as first word (the second not), a singular 

noun (plural in second sentence) and a third-person verb form 

(base-form word in second case). This means that two rules for 

detecting the same type of model element are required because of, 

                                                                 

1 See http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 

(called up 8/5/2013) for list of specifiers 

in terms of process modeling, slight modifications. This would 

significantly increase the number of necessary rules.   

Instead only the phrase structure (cf. Figure 2b) is used – which in 

turn is too general for detecting model elements. For instance it is 

possible to distinguish between “The manager notifies the 

customer” and “The manager is the customer”, since they have the 

same phrase structure.  

Ambiguities are the logical consequence. The reduction to phrase 

structure templates is also problematic because there may be use 

cases where you want to distinguish e.g. between plural and 

singular nouns, meaning that in some cases the word and/or POS 

tag level would be useful. Due to Feature Structure’s flexibility one 

has the possibility to solve this problem “organically” by enriching 

them with additional features.  

Enrich. Syntactic structures are, referring to natural language, 

ambiguous themselves [3]. After reducing the Feature Structures 

we encounter a lot of additional unwanted ambiguities. This is 

where we make use of semantic and additional syntactic 

information. From each phrase we select the syntactically most 

important word, which is called head word or briefly head [12], and 

perform some feature analyses. The set of extracted features 

currently consists of: 

 LexAbs: Taxonomic abstraction [10] 

 SynDep: Syntactic clause dependencies, e.g. nsubj or 

dobj [9] 

After this analyses each complex Feature Structure, which means 

each phrase, contains a complex Feature Structure with key HEAD. 

It is enriched by inserting all extracted features for the 

corresponding head word (cf. Figure 3). 
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Figure 3. Reduced and Enriched Feature Structure 

We experienced that these rule modifications achieve 

disambiguation in many cases. Regarding the two example 

sentences given above, it is now possible to distinguish between an 

interaction (“notifies”) and some kind of entity specialization 

(“is”). How to extract these features and how they are used for 

disambiguation is shown within the next two subsections. 

4.3 Training: Feature Structure Composition 

considering Transparency of Linguistic 

Knowledge 
Figure 3 indicates that detection rules can become very complex, 

especially for more complex sentences. Defining these rules in their 

native language, which means writing Feature Structures, implied 

additional linguistic knowledge and a significant overhead. That is 

why a principle is used which enables the user to create such rules 

using natural language. 

For each sentence, which shall be detected by some rule, it is 

possible to find more sentences which describe the same type of 

model element in the same way. Considering some of these 



 

 

samples, one can identify common linguistic features as the 

following examples show: 

 The manager notifies the customer. 

 An employee meets his colleague. 

In both cases there is some kind of interaction between two persons. 

This knowledge can be reconstructed using the following 

principles. 

Corresponding Heads. The statement that a person interacts with 

another person has been built by comparing the two example 

sentences. Concretely some of the corresponding words have been 

compared, which are manager/employee, notifies/meets and 

customer/colleague. These head word pairs or corresponding heads 

are used to find commonalities between the sample sentences 

through feature analysis. Head words are inherited from bottom to 

the root of the parse tree. In Figure 2a this can be seen considering 

the entry HEAD[1]. 

LexAbs. Person is a taxonomic abstraction of manager/employee 

and customer/colleague respectively whereas interacts is the 

generalization of notifies/meets. Using taxonomies, a word 

classification hierarchy, it is possible to identify these abstractions 

automatically by searching for the Least Common Subsumer (LCS) 

[1]. The LCS is the taxonomy term with the greatest distance to the 

root term and must subsume all given words. If and only if a LCS 

can be found for some particular set of corresponding heads this 

feature and its manifestation is declared as commonality.  

SynDep. Rule definitions like in Figure 3 also include syntactic 

clause dependencies. If a corresponding head of some particular 

example sentences participates in a clause dependency and the 

dependency partner is also included in the complete Feature 

structure a new Feature Structure is inserted. In this case the value 

is a reference to the dependency partner’s Feature Structure. If the 

dependency partner is not one of the head words the plain word is 

included. Clause dependencies provide information like “manager 

is the subject referring the predicate interact”. If and only if these 

relations exist between the same syntactical partners, i.e. the head 

words with the same index or lexical equal words, this feature is 

included as additional commonality describing typed relations 

between sentence parts.  

Resulting Training Process. If the system encounters a sentence it 

is not able to interpret, this is handled as a so called seed sentence 

and the training process starts. Since the main task of the feature 

analysis is resolving ambiguities the user has to provide at least one 

additional sample sentence with the same syntax as the seed 

sentence and the same type of target model element. Using these 

sample sentences the system creates a new template with the phrase 

structure of the samples and performs the mentioned feature 

analyses. The condition for including a feature in the new detection 

rule is that it has been identified as commonality over all given 

samples as stated above.  

In this way the user only is asked to provide additional natural 

language sentences for which a template shall be extracted. This 

keeps the linguistic background knowledge hidden. 

The generation of new templates is necessary for detecting 

sentences with the same features. Now the system is able to detect 

those sentences but it is not able to instantiate the respective model 

elements since the mapping of sentence parts to model element 

properties and the type to instantiate are unknown. 

                                                                 

2 We treat a Unification as unsuccessful if it does not produce a Unifier. 

4.4 Mapping 
For instantiating the formal model element with the correct 

properties, it is necessary to define mapping expressions. Each 

expression is a key path through a sentence Feature Structure to 

some contained target Feature Structure. For instance, considering 

the example in Figure 3 the path S-NP-HEAD points to the complex 

Feature Structure surrounding “person”. Depending on the level 

which is reached by one particular expression the Feature Structure 

spans one to n words where n is the number of words in the 

sentence. Our implementation does not only cover simple “copy 

and paste” mappings, but also more complex ones such as 

interpreting natural language strings as values of a certain data type 

(“not” may be mapped to a Boolean value, e.g. “false”) or functions 

on strings such as concatenation. Each mapping expression is 

firmly connected with a detection rule and therefore ensures 

expression evaluation validity. This generic approach enables the 

system to deal with arbitrary model types if a respective meta model 

is provided. 

4.5 Adaptive Fuzzy Unification 
Unification [7] is an algorithm which takes at least two Feature 

Structures as input, compares them successively and provides a 

merged Feature Structure as output. The latter is the consensus of 

all input Feature Structures. Only features which can be reached by 

the same key path are compared. If their values are equal the feature 

is included in the output Feature Structure, called Unifier. 

The Unification algorithm can be used to compare a defined 

detection rule and a natural language sentence which describes 

some model element. In order to be able to perform the comparison 

it is necessary to represent the sentence as Feature Structure, too. 

This means that the same algorithms and tools are used to 

syntactically and semantically analyze the respective sentence that 

have been used to form the detection rules. Since the sentence to 

analyze is not compared to any other sentences the resulting Feature 

Structure contains all extractable features. 

One change which comes into play with the modifier Fuzzy is the 

feature-type sensitive comparison. This means that the algorithm 

uses feature-type based Unificators. An AtomicFeatureUnificator 

compares atomic features, e.g. clause dependencies between a 

determiner and a noun. If multiple possible feature manifestations 

are allowed, an AtomicMultivaluedFeatureUnificator can be used 

to determine if a single feature manifestation of one particular 

Feature Structure can be found within the possible manifestations 

of the multivalued Atomic Feature Structure. Finally, the 

LexAbsUnificator compares the lexical abstraction feature by 

searching for the Least Common Subsumer of all input Feature 

Structures. If this LCS is a heritage of the rule’s LexAbs feature or 

it is equal to, the Unification succeeds. 

If a feature holds a reference as value this reference is resolved and 

the responsible Unificator evaluates the referenced Feature 

Structure. Considering Figure 1 this is implemented using the 

EReference that is called pointer. 

The Unification of two Feature Structures can fail2 for several 

reasons – even in cases where it should be successful. By traversing 

a Feature Structure the algorithm also compares the visited feature 

key paths of all input Feature Structures. Each divergence is tracked 

and if no detection rule syntactically fits perfectly the user receives 

feedback. Otherwise the corresponding mapping expressions are 

applied. The former case is where the attribute adaptive of this 



 

 

particular Unification algorithm can be justified. Adaptive in this 

case means that for each input sentence falsely non-fitting rules are 

modified automatically according to the following principles: 

 LexAbs:  

If the rule’s lexical abstraction is not general enough the 

input sentence is used to find a more general LCS. 

 Other non-matching atomic features:  

In this case the rule seems to have overspecialized the 

detection scope. This problem is solved by discarding 

the interfering feature. 

 Additional phrases:  

In some cases the rule was created from natural 

language sentences with “noise”, e.g. an uninformative 

parenthesis like “of course” or “logically”. In cases of 

additional phrases the rule marks these as optional. 

Whereas if the rule lacks a particular phrase it is 

included and marked likewise as optional. 

Without claiming for completeness these examples show the 

general adaptability of the enriched templates. 

No matter if adaption has been necessary or if one template directly 

has matched, a model element has been detected which starts the 

model element extraction step. 

4.6 Model Element Extraction 
First of all a model element instance is created using the type 

information from the associated mapping rule.  

Afterwards the model element’s properties are set. In Section 4.4 

key paths have been introduced. Following all key paths – not 

through the detection rule but through the new sentence’s Feature 

Structure which already has been created for the Unification step – 

leads to information which are used as the property’s data base. 

After applying the mapping functions previously mentioned the 

properties are set. This completes the model element extraction. 

5. EVALUATION  
The evaluation of the presented approach can be divided into two 

aspects: qualitative considering all requirements from section 3 and 

quantitative using manually composed test samples.  

5.1 Qualitative: Requirements Compliance 
Ref. “Natural Language Interface (NLI)”. In general the system 

is able to transform natural language texts into formal model 

elements through its ability to extract templates which generalize 

concrete natural language sentences and its mapping model for 

model element property extraction.  

Ref. “Transparency of linguistic expert knowledge”. The 

presented approach uses user-generated linguistic templates which 

include syntactic and semantic information for detecting particular 

model elements. To keep this knowledge hidden the user only is 

requested to provide sample sentences which describe the same 

type of model element. Feature analyzers automatically compose 

the linguistic detection template. Rules for model element 

instantiation and property setting are described by simply assigning 

sentence parts to properties. 

Ref. “Domain and language independence”. Currently the 

existing prototype is able to automatically analyze English 

language texts. But each language-dependent part of the system is 

integrated using an abstraction level which is why these parts can 

be replaced. Though the Stanford Parser supports other languages, 

                                                                 
3 See: http://casta-net.jp/~kuribayashi/multi/ (called up 8/5/2013) 

e.g. Chinese and German, it is exchangeable. WordNet is for 

English only but there are other semantic word nets3, e.g. Chinese 

Wordnet, plWordNet, etc. Feature Structure representation and our 

unification algorithm are completely language-independent.  

Since it is possible to provide individual meta models specified in 

EMF, domain independence is also given.  

Ref. “Adaptability and Feedback”. In the current state the 

prototype is able to detect causes for falsely failing template 

Feature Structures. Since multiple templates could fail for similar 

minor reasons it is difficult to decide which one is the most 

appropriate one. That is why the system presents the most probable 

fitting templates out of which the user may choose the correct one 

or even create a new template. In the former case the system adapts 

the existing template by re-analyzing the sample sentences used for 

extracting (and possibly previously modifying) the current template 

in combination with the sentence the template falsely missed. This 

always leads to a more general template which at least is able to 

detect the new sentence it falsely missed.  

5.2 Quantitative: First tests on hand-labeled 

data 
It is difficult to find an appropriate metric for quantitative 

evaluation of the current prototype, since the system improves 

iteratively and interactively. One of the core principles is to avoid 

requesting a complete training set in order to just raise the system 

to the ability level currently needed. So two stages of a first 

quantitative evaluation have been applied: 

1. Test for disambiguation ability of detection rules in the 

case of syntactically identical sentences but different 

model element types, 

2. Test of processing experience (complete pipeline). 

The first stage considers example process model descriptions from 

various sources [3]. In order to detect syntactic ambiguities 400 

sentences have been syntactically analyzed and grouped by equal 

parse trees. This identified about 300 different syntax patterns. 

Three different patterns with a total of 35 sentences have been 

annotated manually using tags for different model elements. Then 

a share of sentences with same syntax and same tags have been used 

to automatically produce a detection rule, respectively. This rule 

has been applied to all other sentences with the same syntax. 

Considering precision (about 0.82) and recall (about 0.9) regarding 

the detected model elements a final F1 score of 0.86 has been 

calculated. Compared to plain phrase-structure based detection 

rules this is an improvement of 0.17. Because only two additional 

feature types have been used the result is encouraging. 

Secondly, the complete pipeline has been tested. Since this heavily 

interactive system hardly can be evaluated by calculating another 

F1 score we take the percentage of automatically processed 

sentences at the end of each working cycle. A working cycle means 

the complete processing of about 200 sentences belonging to two 

process model descriptions [3]. Afterwards a third description, 

including about 100 words, has been processed to measure the 

proportion of automatically processed sentences. The test includes 

two working cycles where, at the end of the first, 100% of the 

sentences could be processed automatically. The second, 

independent cycle showed a proportion of 80% automatically 

processable sentences. This high accuracy could be achieved since 

during the processing of the first 200 sentences the set of adaptable 

detection rules has been updated continuously.   



 

 

One source of error are incorrect parse trees provided by the 

Stanford Parser, e.g. it sometimes interprets the third person form 

of “to contact”, means “contacts”, as plural noun. A more accurate 

parser could solve this problem. 

Sometimes the system failed to determine a lexical abstraction 

because of words that are not contained in the lexical knowledge 

base. E.g. if the corresponding sample head words for rule creation 

are “Tim” and “manager” there is no entry for “Tim” in WordNet. 

This could be solved by using a named entity tagger [8]. 

In summary, the first test results are encouraging. Together with the 

lack of tools of this type this is a reason for further research. 

6. CONCLUSION AND FUTURE WORK 
With the presented approach we provide tool support for rule-based 

transformation of natural language texts to models. Rules can be 

defined using natural language as well. For that purpose our 

approach performs automatic linguistic analyses on sample 

sentences which shall be detected by some particular rule. The 

resulting rules are represented as Feature Structures. Using Feature 

Structures we are able to uniquely map features of a particular 

sentence to an instantiated model element. At least this enables the 

system to detect and instantiate model elements from an individual 

meta model as well as setting its properties.  

Without performing any training steps the system is not able to 

extract any model element. The knowledge base is composed 

“learning by doing”. It would be useful if the user is also supported 

in early states of the knowledge base. This could be achieved using 

statistical back-off models which provide suggestions for model 

element extractions. As data basis the text currently to transform 

could be used. Sentences with similar syntactic and semantic 

features could be generalized to a template Feature Structure which 

the user just has to accept or discard.  

For several reasons it is recommendable to integrate the solution 

for transforming natural language texts to models into a modeling 

platform with particular properties. Since it is possible to choose 

any meta model as transformation target, it would be helpful if one 

could define this meta model within the same environment where 

it is used. This means that the respective platform should provide 

support for defining modeling languages, models and in the ideal 

case also model instances. Sometimes it is necessary to be able to 

simultaneously use different modeling languages, e.g. in business 

process modeling with special impact of producing and consuming 

data. Defining an additional combined process and data description 

language would cause redundancy. If there already are modeling 

languages for describing processes and data respectively it would 

avoid this overhead if mutual linking is possible.  

In standard cases, e.g. UML-compliant target models or data 

schemes, the complete meta model may be known. In domain 

specific cases there may be many individual modeling languages 

which sometimes are built up while modeling a concrete example. 

This requires continuous extension of the used modeling language. 

Usually this entails time-consuming regeneration of parser, linker 

and other language engine components. Instant usage after 

language modification without regeneration would save much time 

in evolutionary meta modeling cases. 

Since the prototype presented within this paper is based on Eclipse 

it is easy to use it as plugin for a modeling platform with all 

properties described above and which also is an Eclipse application.  

                                                                 
4 Project Page: http://www.ai4.uni-bayreuth.de/omme (called up 8/5/2013) 

The Open Meta Modeling Environment (OMME)4 supports all of 

the desired features mentioned above. Additionally it supports 

advanced modeling patterns, e.g. Powertypes, Deep Instantiation 

and multiple meta levels [6]. It provides an automatically language-

derived textual concrete syntax as well as it supports defining own 

graphical notations. Since OMME is built upon Eclipse an 

integration of the natural language transformation technique 

discussed in the previous sections is straightforward. 
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