

model[NL]generation: Natural Language Model Extraction
Lars Ackermann

University of Bayreuth, Germany
Universitaetsstrasse 30

95440 Bayreuth, Germany
+49-921-55-7624

lars.ackermann@uni-bayreuth.de

Bernhard Volz
University of Bayreuth, Germany

Universitaetsstrasse 30
95440 Bayreuth, Germany

+49-921-55-7629

bernhard.volz@uni-bayreuth.de

ABSTRACT

In this paper, we describe a novel approach of extracting models

from natural language text sources. This requires linguistic analysis

as well as techniques for interpreting and using the analysis results.

Our linguistic analysis engine provides feature analysis for a rule-

based model element detection. Furthermore, the presented

approach enables users to generate domain- and application-

specific model element detection rules based on natural language

sample sentences. Detection rules also have to be connected to

instantiation rules for the respective type of model element. This is

done through a highly system-supported mapping step where users

are able to choose elements from arbitrary meta models and to

connect their properties with functions over natural language

sentence parts. As both, the definition and application of detection

rules is always a sensitive balancing act between precision and

recall, these steps are highly interactive. That is why our current

prototype also supports detection rule adaption and iterative rule set

completion – always to the level of current need.

General Terms

Algorithms, Documentation, Human Factors, Languages.

Keywords

Modeling Tools, Natural Language Modeling, Information

Extraction, Natural Language System Modification.

1. INTRODUCTION
Transferring information into a machine-recognizable form is one

of the most time-consuming tasks in IT projects. No matter if one

wants to formalize a production process, if a data scheme has to be

created or even both, the person in charge usually has to read

process instructions, functional specifications, product requirement

documents and other human readable documentation.

Domain-specific modeling increases the number of possible target

forms since each general purpose language is replaced by multiple

domain specific languages (DSLs). The huge amount of different

target forms requires an even greater amount of knowledge

regarding formalisms, domain knowledge and tool usage.

Combining the previously mentioned issues we can shape the core

problem for which the approach below provides possible solutions:

How to automatically transform various and already existing

natural language sources into highly diverse and domain-specific,

interlinked target models using a system which, in respect of

domain-dependent knowledge parts, can be extended intuitively.

Solving this task would save time, provided the possibility of

objectively transforming unstructured information into structured

forms or provided at least a possibility for checking models which

has been created manually reading descriptions in natural language

documents.

Whereas there is rich tool support regarding the modeling task

itself, the process of (semi-)automatically transforming informal

information, meaning natural language texts, into formal models is

most widely more a research topic than an market-ready feature of

modeling tools [3].

Since the first steps in Natural Language Processing (NLP) during

the 1940s [7] the knowledge about automatically interpreting

unstructured natural language texts has grown enormously.

Techniques of Information Extraction, Sentiment Analysis,

Information Retrieval and others are used to “mine” structured

information. These techniques base on more general analysis

principles providing syntactic and semantic insights into natural

language texts.

Consequently this rich knowledge can also be used to support the

modeling process. This paper presents a novel approach for semi-

automatically transforming natural language descriptions into

formal models using syntactically and semantically enriched

grammar rules for model element detection in combination with

mapping functions for model element extraction.

The core benefits of this approach particularly relevant to DSM are

its meta-model variability, the intuitive extendibility and a training

method that enables the system to handle exactly the problems

which are relevant but does not require input for any probably

occurring issue. Flexibility in terms of “training on demand” is

essential since our prototypical system is intended to be trained by

its users. The meta-model variability enables the user to use a meta

model that fits the current domain. Without learning effort for users

and with the possibility for partial training the time exposure for

extending the system is less compared to an approach which

requires expert knowledge in shaping linguistic detection rules.

2. RELATED WORK
There is a wide variety of approaches for transforming natural

language texts into formal models. This is evident from both the

large number of target languages and the differences in linguistic

knowledge and information extraction steps used. Below we give

summaries of the most important work.

In [3] Friedrich et al. introduce a system for automatically

generating process models in Business Process Model and Notation

(BPMN) out of natural language process descriptions. The

underlying multi-level analysis uses information of sentence level

as well as of text level. During both levels a word model is

synchronized which means holding all currently extracted model

elements connected with their text passages.

On sentence level a combination of lexico-syntactic rule set and

techniques of text simplification [7], e.g. Anaphora Resolution, is

used to identify and extract activity, actor and object candidates.

On text level more complex model elements like sequences and

gateways are detected using lexical markers and (inter-)sentence

dependencies. In a final step on this level descriptions of different

aspects of the same model element are merged. In general this

approach uses fixed rule sets which can be parameterized by

individual word lists.

The IBM Research Division developed a prototypical system,

called Online Analysis Environment (OAE), for transforming

industrial use case descriptions into appropriate formal

representations. “An Analysis Engine for Dependable Elicitation of

Natural Language Use Case Description” [14] describes this

approach as a three-phases process. First the text passes pre-

processing steps, e.g. tokenization, lemmatization and basic

syntactic structure parsing, i.e. Part-Of-Speech-Tagging [7] and

identifying syntactic word groups (phrases) as well as identifying

grammatical functions of particular sentence parts. This is followed

by a dictionary annotation phase where verbs are tagged using

semantic word categories, e.g. INPUT, OUTPUT, READ, etc.

The final phase, process building, uses all previously extracted

information to perform a pattern matching “over tokens, phrases

and already identified patterns” [14]. A pattern can be understood

as follows:

 Pattern: Noun VerbalPhrase the system.

 Matching sentence: Users contact the system.

Ordering of extracted elements, merging identical elements with

different regarded aspects and presenting potential processing error

causes are the last steps of the whole process.

There are several other approaches, e.g. [4] and [13] which come

up with different grades of convenience, user friendliness and

flexibility as well as different target models. In the following

section we discuss which requirements a respective system should

meet in order to provide a maximum of convenience, user

friendliness and flexibility.

3. REQUIREMENTS
This section summarizes requirements which shall be fulfilled by a

system that is designed to provide support for automated modeling

tasks which start with natural language descriptions as source.

Natural Language Interface (NLI). The most intuitive way for

users to describe processes, use cases and other objects of interests

is to specify all aspects using their respective native language

[2][5]. Thus, the NLI should particularly consider the diversity of

natural language depending on the individual person and domain.

However, according to Li, Dewar and Pooley most of the

comparable systems do not take this into account:

“[…] they are limited by the simplicity of input NL expressions and

the size of those descriptions (typically <200 words).” [13]

Domain and language independence. In the context of domain

specific modeling it is also important to enable the system to

capture domain specific terms and expressions whereas the system

itself has to be domain independent. This means that the detection

algorithm as well as the used linguistic background knowledge

must be language independent or at least easily exchangeable in

such a way that detection and extraction knowledge specifically

tailored to the domain of interest may be created.

At the end this means that there should be one system for all

languages and target models instead of one system for each.

Transparency of linguistic expert knowledge. Customizable

linguistic rule sets or parameterizable machine learning algorithms

may perform well but the user usually needs linguistic expert

knowledge for adjusting the system’s behavior. This would cause

an overhead which could annihilate the advantage of the automatic

transformation. Therefore, the system should keep the used

linguistic knowledge transparent.

Adaptability and Feedback. Many NLP applications require a

training phase which often is based on supervised learning

techniques. The aim is to learn a real function which provides the

desired results when it is applied on unseen data. In statistical

approaches learning this function is time consuming since it mostly

requires a manual task where lots of raw data is annotated with the

desired function value. The more complex a function is the more

training data is necessary to approximate the real function as close

as possible [11]. Mostly the mentioned statistical approaches aim

to build an approximation of the full function. Instead, it should be

possible to successively train fragments according to the current,

domain- and application-specific needs. This aspect mainly refers

to the completeness of the detection engine. Another aspect is the

possibility to adjust the detection engine in the case of error

occurrence. In this case, an appropriate solution is to request the

user to provide structured feedback and to adjust the configuration

of the detection engine considering this feedback.

It is possible to state more requirements but we postpone them as

later refinements since we want to focus our key innovations.

4. APPROACH
The following passages describe concepts and algorithms of our

prototypical implementation of an interactive and dynamic rule

based model extraction system. A main principle is to define formal

model element detection rules in natural language. Linguistic

analysis tools are used to extract particular aspects of model

element descriptions and to enrich plain syntactic structure

detection rules with semantic and additional syntactic information.

Passage 4.1 describes structure and content of these rules.

In order to correctly map detected information from sentences to

formal model element properties the system includes an interactive

mapping phase for newly created detection rules (see subsection

4.4). The algorithm used for applying the rules to arbitrary natural

language model descriptions is called Unification [7]. We use a

modified concept and implementation – Adaptive Fuzzy

Unification.

Another core principle is to avoid defining all rules before being

able to use the system. Instead the rules and mappings are defined

iteratively according to the current need. This also includes a

supervised learning step for correcting falsely failing rules based

on user’s error feedback, which is considered within subsections

4.3 and 4.5, respectively.

Figure 1. Feature Structure Meta Model

4.1 Templates
Talking about rules hereafter means talking about linguistic

templates for sentence structures, contents and dependencies.

Syntactic parse trees [7] form the template basis. Linguistic

analysis tools are used to detect aspects of model element

descriptions and are able to enrich syntactic sentence structure

analyses with additional information. Considering the natural

language sentence “The manager notifies the customer” the

syntactic structure is shown in Figure 2a.

The format the figure shows is a so called Feature Structure (FS)

[7] representation. A Feature Structure is a hierarchical

composition or, more precisely, a tree of features. Figure 1 shows

the meta model for Feature Structures used in our current prototype.

Primarily there are two different specializations for Feature

Structures: Complex FS and Atomic FS. These two classes form the

hierarchical structure, which can also be seen in Figure 1 since the

meta model element FeatureStructure shows recursive

characteristics. The other specializations are discussed during the

following subsections.

(𝐚) (𝐛)

[

𝑆

[

 𝑁𝑃 [

𝐷𝑇 𝑇ℎ𝑒
𝑁𝑁 𝑚𝑎𝑛𝑎𝑔𝑒𝑟

]

𝑉𝑃 [
𝑉𝐵𝑍 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑠

𝑁𝑃 [
𝐷𝑇 𝑡ℎ𝑒
𝑁𝑁 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

]
]
]

]

[𝑆 [
𝑁𝑃
𝑉𝑃 [𝑁𝑃]

]]

Figure 2. Left (a): Syntactic Structure of example sentence,

Right (b): Reduced Feature Structure

In the case of Figure 2a all keys are syntactic categories, e.g.

phrases (S, NP, VP) or Part-Of-Speech (POS) tags1 (DT, NN,

VBZ). Each value is a complex Feature Structure except those

below the POS tags. These are atomic values, concretely the plain

words. Combining both produces a hierarchical structure which has

to be interpreted from left to right where each nesting level refines

the previous. This is a valid alternative representation for a

linguistic context-free phrase-structure-grammar tree [7].

The rules for detecting model elements are based on such syntactic

Feature Structures.

4.2 Reduce and Enrich Feature Structures
Reduce. Using Feature Structures for representing hierarchical

syntactic sentence structures provides flexibility. To form a model

element detection rule we discard two hierarchy levels from the

Feature Structures: the words themselves and their POS tags. The

reason for discarding the words is that this level overspecializes the

rules to match only the source sentence itself. POS tags are likewise

too specific since they limit the detection rule to a very strict syntax.

Consider the following examples (including POS tags):

 The(DT) manager(NN) contacts(VBZ) the(DT) employees(NNS) .(.)

 Managers(NNS) contact(VB) the(DT) employees(NNS) .(.)

In the case of process modeling it is quite likely to instantiate model

elements of the same type for both sentences. But if the detection

rule contains POS tags the detection would fail because the first

sentence contains an article as first word (the second not), a singular

noun (plural in second sentence) and a third-person verb form

(base-form word in second case). This means that two rules for

detecting the same type of model element are required because of,

1 See http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

(called up 8/5/2013) for list of specifiers

in terms of process modeling, slight modifications. This would

significantly increase the number of necessary rules.

Instead only the phrase structure (cf. Figure 2b) is used – which in

turn is too general for detecting model elements. For instance it is

possible to distinguish between “The manager notifies the

customer” and “The manager is the customer”, since they have the

same phrase structure.

Ambiguities are the logical consequence. The reduction to phrase

structure templates is also problematic because there may be use

cases where you want to distinguish e.g. between plural and

singular nouns, meaning that in some cases the word and/or POS

tag level would be useful. Due to Feature Structure’s flexibility one

has the possibility to solve this problem “organically” by enriching

them with additional features.

Enrich. Syntactic structures are, referring to natural language,

ambiguous themselves [3]. After reducing the Feature Structures

we encounter a lot of additional unwanted ambiguities. This is

where we make use of semantic and additional syntactic

information. From each phrase we select the syntactically most

important word, which is called head word or briefly head [12], and

perform some feature analyses. The set of extracted features

currently consists of:

 LexAbs: Taxonomic abstraction [10]

 SynDep: Syntactic clause dependencies, e.g. nsubj or

dobj [9]

After this analyses each complex Feature Structure, which means

each phrase, contains a complex Feature Structure with key HEAD.

It is enriched by inserting all extracted features for the

corresponding head word (cf. Figure 3).

[

𝑆

[

 𝑁𝑃 [𝐻𝐸𝐴𝐷 [

𝐿𝑒𝑥𝐴𝑏𝑠 𝑝𝑒𝑟𝑠𝑜𝑛
𝑛𝑠𝑢𝑏𝑗 [1]

]]

𝑉𝑃 [

𝐻𝐸𝐴𝐷[1] [𝐿𝑒𝑥𝐴𝑏𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡]

𝑁𝑃 [𝐻𝐸𝐴𝐷 [
𝐿𝑒𝑥𝐴𝑏𝑠 𝑝𝑒𝑟𝑠𝑜𝑛
𝑑𝑜𝑏𝑗 [1]

]]
]

]

]

Figure 3. Reduced and Enriched Feature Structure

We experienced that these rule modifications achieve

disambiguation in many cases. Regarding the two example

sentences given above, it is now possible to distinguish between an

interaction (“notifies”) and some kind of entity specialization

(“is”). How to extract these features and how they are used for

disambiguation is shown within the next two subsections.

4.3 Training: Feature Structure Composition

considering Transparency of Linguistic

Knowledge
Figure 3 indicates that detection rules can become very complex,

especially for more complex sentences. Defining these rules in their

native language, which means writing Feature Structures, implied

additional linguistic knowledge and a significant overhead. That is

why a principle is used which enables the user to create such rules

using natural language.

For each sentence, which shall be detected by some rule, it is

possible to find more sentences which describe the same type of

model element in the same way. Considering some of these

samples, one can identify common linguistic features as the

following examples show:

 The manager notifies the customer.

 An employee meets his colleague.

In both cases there is some kind of interaction between two persons.

This knowledge can be reconstructed using the following

principles.

Corresponding Heads. The statement that a person interacts with

another person has been built by comparing the two example

sentences. Concretely some of the corresponding words have been

compared, which are manager/employee, notifies/meets and

customer/colleague. These head word pairs or corresponding heads

are used to find commonalities between the sample sentences

through feature analysis. Head words are inherited from bottom to

the root of the parse tree. In Figure 2a this can be seen considering

the entry HEAD[1].

LexAbs. Person is a taxonomic abstraction of manager/employee

and customer/colleague respectively whereas interacts is the

generalization of notifies/meets. Using taxonomies, a word

classification hierarchy, it is possible to identify these abstractions

automatically by searching for the Least Common Subsumer (LCS)

[1]. The LCS is the taxonomy term with the greatest distance to the

root term and must subsume all given words. If and only if a LCS

can be found for some particular set of corresponding heads this

feature and its manifestation is declared as commonality.

SynDep. Rule definitions like in Figure 3 also include syntactic

clause dependencies. If a corresponding head of some particular

example sentences participates in a clause dependency and the

dependency partner is also included in the complete Feature

structure a new Feature Structure is inserted. In this case the value

is a reference to the dependency partner’s Feature Structure. If the

dependency partner is not one of the head words the plain word is

included. Clause dependencies provide information like “manager

is the subject referring the predicate interact”. If and only if these

relations exist between the same syntactical partners, i.e. the head

words with the same index or lexical equal words, this feature is

included as additional commonality describing typed relations

between sentence parts.

Resulting Training Process. If the system encounters a sentence it

is not able to interpret, this is handled as a so called seed sentence

and the training process starts. Since the main task of the feature

analysis is resolving ambiguities the user has to provide at least one

additional sample sentence with the same syntax as the seed

sentence and the same type of target model element. Using these

sample sentences the system creates a new template with the phrase

structure of the samples and performs the mentioned feature

analyses. The condition for including a feature in the new detection

rule is that it has been identified as commonality over all given

samples as stated above.

In this way the user only is asked to provide additional natural

language sentences for which a template shall be extracted. This

keeps the linguistic background knowledge hidden.

The generation of new templates is necessary for detecting

sentences with the same features. Now the system is able to detect

those sentences but it is not able to instantiate the respective model

elements since the mapping of sentence parts to model element

properties and the type to instantiate are unknown.

2 We treat a Unification as unsuccessful if it does not produce a Unifier.

4.4 Mapping
For instantiating the formal model element with the correct

properties, it is necessary to define mapping expressions. Each

expression is a key path through a sentence Feature Structure to

some contained target Feature Structure. For instance, considering

the example in Figure 3 the path S-NP-HEAD points to the complex

Feature Structure surrounding “person”. Depending on the level

which is reached by one particular expression the Feature Structure

spans one to n words where n is the number of words in the

sentence. Our implementation does not only cover simple “copy

and paste” mappings, but also more complex ones such as

interpreting natural language strings as values of a certain data type

(“not” may be mapped to a Boolean value, e.g. “false”) or functions

on strings such as concatenation. Each mapping expression is

firmly connected with a detection rule and therefore ensures

expression evaluation validity. This generic approach enables the

system to deal with arbitrary model types if a respective meta model

is provided.

4.5 Adaptive Fuzzy Unification
Unification [7] is an algorithm which takes at least two Feature

Structures as input, compares them successively and provides a

merged Feature Structure as output. The latter is the consensus of

all input Feature Structures. Only features which can be reached by

the same key path are compared. If their values are equal the feature

is included in the output Feature Structure, called Unifier.

The Unification algorithm can be used to compare a defined

detection rule and a natural language sentence which describes

some model element. In order to be able to perform the comparison

it is necessary to represent the sentence as Feature Structure, too.

This means that the same algorithms and tools are used to

syntactically and semantically analyze the respective sentence that

have been used to form the detection rules. Since the sentence to

analyze is not compared to any other sentences the resulting Feature

Structure contains all extractable features.

One change which comes into play with the modifier Fuzzy is the

feature-type sensitive comparison. This means that the algorithm

uses feature-type based Unificators. An AtomicFeatureUnificator

compares atomic features, e.g. clause dependencies between a

determiner and a noun. If multiple possible feature manifestations

are allowed, an AtomicMultivaluedFeatureUnificator can be used

to determine if a single feature manifestation of one particular

Feature Structure can be found within the possible manifestations

of the multivalued Atomic Feature Structure. Finally, the

LexAbsUnificator compares the lexical abstraction feature by

searching for the Least Common Subsumer of all input Feature

Structures. If this LCS is a heritage of the rule’s LexAbs feature or

it is equal to, the Unification succeeds.

If a feature holds a reference as value this reference is resolved and

the responsible Unificator evaluates the referenced Feature

Structure. Considering Figure 1 this is implemented using the

EReference that is called pointer.

The Unification of two Feature Structures can fail2 for several

reasons – even in cases where it should be successful. By traversing

a Feature Structure the algorithm also compares the visited feature

key paths of all input Feature Structures. Each divergence is tracked

and if no detection rule syntactically fits perfectly the user receives

feedback. Otherwise the corresponding mapping expressions are

applied. The former case is where the attribute adaptive of this

particular Unification algorithm can be justified. Adaptive in this

case means that for each input sentence falsely non-fitting rules are

modified automatically according to the following principles:

 LexAbs:

If the rule’s lexical abstraction is not general enough the

input sentence is used to find a more general LCS.

 Other non-matching atomic features:

In this case the rule seems to have overspecialized the

detection scope. This problem is solved by discarding

the interfering feature.

 Additional phrases:

In some cases the rule was created from natural

language sentences with “noise”, e.g. an uninformative

parenthesis like “of course” or “logically”. In cases of

additional phrases the rule marks these as optional.

Whereas if the rule lacks a particular phrase it is

included and marked likewise as optional.

Without claiming for completeness these examples show the

general adaptability of the enriched templates.

No matter if adaption has been necessary or if one template directly

has matched, a model element has been detected which starts the

model element extraction step.

4.6 Model Element Extraction
First of all a model element instance is created using the type

information from the associated mapping rule.

Afterwards the model element’s properties are set. In Section 4.4

key paths have been introduced. Following all key paths – not

through the detection rule but through the new sentence’s Feature

Structure which already has been created for the Unification step –

leads to information which are used as the property’s data base.

After applying the mapping functions previously mentioned the

properties are set. This completes the model element extraction.

5. EVALUATION
The evaluation of the presented approach can be divided into two

aspects: qualitative considering all requirements from section 3 and

quantitative using manually composed test samples.

5.1 Qualitative: Requirements Compliance
Ref. “Natural Language Interface (NLI)”. In general the system

is able to transform natural language texts into formal model

elements through its ability to extract templates which generalize

concrete natural language sentences and its mapping model for

model element property extraction.

Ref. “Transparency of linguistic expert knowledge”. The

presented approach uses user-generated linguistic templates which

include syntactic and semantic information for detecting particular

model elements. To keep this knowledge hidden the user only is

requested to provide sample sentences which describe the same

type of model element. Feature analyzers automatically compose

the linguistic detection template. Rules for model element

instantiation and property setting are described by simply assigning

sentence parts to properties.

Ref. “Domain and language independence”. Currently the

existing prototype is able to automatically analyze English

language texts. But each language-dependent part of the system is

integrated using an abstraction level which is why these parts can

be replaced. Though the Stanford Parser supports other languages,

3 See: http://casta-net.jp/~kuribayashi/multi/ (called up 8/5/2013)

e.g. Chinese and German, it is exchangeable. WordNet is for

English only but there are other semantic word nets3, e.g. Chinese

Wordnet, plWordNet, etc. Feature Structure representation and our

unification algorithm are completely language-independent.

Since it is possible to provide individual meta models specified in

EMF, domain independence is also given.

Ref. “Adaptability and Feedback”. In the current state the

prototype is able to detect causes for falsely failing template

Feature Structures. Since multiple templates could fail for similar

minor reasons it is difficult to decide which one is the most

appropriate one. That is why the system presents the most probable

fitting templates out of which the user may choose the correct one

or even create a new template. In the former case the system adapts

the existing template by re-analyzing the sample sentences used for

extracting (and possibly previously modifying) the current template

in combination with the sentence the template falsely missed. This

always leads to a more general template which at least is able to

detect the new sentence it falsely missed.

5.2 Quantitative: First tests on hand-labeled

data
It is difficult to find an appropriate metric for quantitative

evaluation of the current prototype, since the system improves

iteratively and interactively. One of the core principles is to avoid

requesting a complete training set in order to just raise the system

to the ability level currently needed. So two stages of a first

quantitative evaluation have been applied:

1. Test for disambiguation ability of detection rules in the

case of syntactically identical sentences but different

model element types,

2. Test of processing experience (complete pipeline).

The first stage considers example process model descriptions from

various sources [3]. In order to detect syntactic ambiguities 400

sentences have been syntactically analyzed and grouped by equal

parse trees. This identified about 300 different syntax patterns.

Three different patterns with a total of 35 sentences have been

annotated manually using tags for different model elements. Then

a share of sentences with same syntax and same tags have been used

to automatically produce a detection rule, respectively. This rule

has been applied to all other sentences with the same syntax.

Considering precision (about 0.82) and recall (about 0.9) regarding

the detected model elements a final F1 score of 0.86 has been

calculated. Compared to plain phrase-structure based detection

rules this is an improvement of 0.17. Because only two additional

feature types have been used the result is encouraging.

Secondly, the complete pipeline has been tested. Since this heavily

interactive system hardly can be evaluated by calculating another

F1 score we take the percentage of automatically processed

sentences at the end of each working cycle. A working cycle means

the complete processing of about 200 sentences belonging to two

process model descriptions [3]. Afterwards a third description,

including about 100 words, has been processed to measure the

proportion of automatically processed sentences. The test includes

two working cycles where, at the end of the first, 100% of the

sentences could be processed automatically. The second,

independent cycle showed a proportion of 80% automatically

processable sentences. This high accuracy could be achieved since

during the processing of the first 200 sentences the set of adaptable

detection rules has been updated continuously.

One source of error are incorrect parse trees provided by the

Stanford Parser, e.g. it sometimes interprets the third person form

of “to contact”, means “contacts”, as plural noun. A more accurate

parser could solve this problem.

Sometimes the system failed to determine a lexical abstraction

because of words that are not contained in the lexical knowledge

base. E.g. if the corresponding sample head words for rule creation

are “Tim” and “manager” there is no entry for “Tim” in WordNet.

This could be solved by using a named entity tagger [8].

In summary, the first test results are encouraging. Together with the

lack of tools of this type this is a reason for further research.

6. CONCLUSION AND FUTURE WORK
With the presented approach we provide tool support for rule-based

transformation of natural language texts to models. Rules can be

defined using natural language as well. For that purpose our

approach performs automatic linguistic analyses on sample

sentences which shall be detected by some particular rule. The

resulting rules are represented as Feature Structures. Using Feature

Structures we are able to uniquely map features of a particular

sentence to an instantiated model element. At least this enables the

system to detect and instantiate model elements from an individual

meta model as well as setting its properties.

Without performing any training steps the system is not able to

extract any model element. The knowledge base is composed

“learning by doing”. It would be useful if the user is also supported

in early states of the knowledge base. This could be achieved using

statistical back-off models which provide suggestions for model

element extractions. As data basis the text currently to transform

could be used. Sentences with similar syntactic and semantic

features could be generalized to a template Feature Structure which

the user just has to accept or discard.

For several reasons it is recommendable to integrate the solution

for transforming natural language texts to models into a modeling

platform with particular properties. Since it is possible to choose

any meta model as transformation target, it would be helpful if one

could define this meta model within the same environment where

it is used. This means that the respective platform should provide

support for defining modeling languages, models and in the ideal

case also model instances. Sometimes it is necessary to be able to

simultaneously use different modeling languages, e.g. in business

process modeling with special impact of producing and consuming

data. Defining an additional combined process and data description

language would cause redundancy. If there already are modeling

languages for describing processes and data respectively it would

avoid this overhead if mutual linking is possible.

In standard cases, e.g. UML-compliant target models or data

schemes, the complete meta model may be known. In domain

specific cases there may be many individual modeling languages

which sometimes are built up while modeling a concrete example.

This requires continuous extension of the used modeling language.

Usually this entails time-consuming regeneration of parser, linker

and other language engine components. Instant usage after

language modification without regeneration would save much time

in evolutionary meta modeling cases.

Since the prototype presented within this paper is based on Eclipse

it is easy to use it as plugin for a modeling platform with all

properties described above and which also is an Eclipse application.

4 Project Page: http://www.ai4.uni-bayreuth.de/omme (called up 8/5/2013)

The Open Meta Modeling Environment (OMME)4 supports all of

the desired features mentioned above. Additionally it supports

advanced modeling patterns, e.g. Powertypes, Deep Instantiation

and multiple meta levels [6]. It provides an automatically language-

derived textual concrete syntax as well as it supports defining own

graphical notations. Since OMME is built upon Eclipse an

integration of the natural language transformation technique

discussed in the previous sections is straightforward.

7. References
[1] Baader, F. and Küsters, R. 1998. Computing the least

common subsumer and the most specific concept in the

presence of cyclic ALN-concept descriptions. In KI-98:

Advances in Artificial Intelligence, O. Herzog and A.

Günter, Eds. LNCS. Springer Berlin Heidelberg, 129–140.

[2] Borman, L. 1985. Human factors in computing systems.

CHI '85 conference proceedings April 14 - 18 San

Francisco. Computer and Human Interaction Conference /

Literaturangaben. - Einzelaufnahme eines Zs.-Heftes.

Assoc. for Computing Machinery, New York, NY.

[3] Friedrich, F., Mendling, J., and Puhlmann, F. 2011. Process

Model Generation from Natural Language Text. In

Advanced Information Systems Engineering, Eds. Lecture

Notes in Computer Science. Springer Berlin Heidelberg,

Berlin, Heidelberg, 482–496.

[4] Ghose, A., Koliadis, G., and Chueng, A. Process Discovery

from Model and Text Artefacts. In 2007 IEEE Congress on

Services (Services 2007), 167–174.

[5] Hendrix, G. G. 1982. Natural-language interface. Comput.

Linguist. 8, 2, 56–61.

[6] Jablonski, S., Volz, B., and Dornstauder, S. A Meta

Modeling Framework for Domain Specific Process

Management. In 2008 32nd Annual IEEE International

COMPSAC, 1011–1016.

[7] Jurafsky, D. and Martin, J. H. 2009. Speech and language

processing. An introduction to natural language

processing, computational linguistics, and speech

recognition. Prentice-Hall-series in artificial intelligence.

Pearson Education International Prentice Hall

[8] L. Ratinov and D. Roth. 2009. Design Challenges and

Misconceptions in Named Entity Recognition. In CoNLL.

[9] Marneffe, M.-C. de and Manning, C. D. 2008. The Stanford

typed dependencies representation. In Coling 2008:

Proceedings of the workshop on Cross-Framework and

Cross-Domain Parser Evaluation. CrossParser ’08. ACL,

Stroudsburg, PA, USA, 1–8.

[10] Marta Fernandez and Caroline Eastman. 1990. Basic

Taxonomic Structures and Levels of Abstraction. Advances

in Classification Research Online 1, 1.

[11] Mohri, M., Rostamizadeh, A., and Talwalkar, A. 2012.

Foundations of machine learning. Adaptive computation

and machine learning. MIT Press, Cambridge, Mass.

[12] Pollard, C. and Sag, I. A. 1994. Head-driven phrase

structure grammar. Univ. of Chicago Press, Chicago, Ill.

[13] Pooley, L. D. Object-Oriented Analysis Using Natural

Language Processing. CiteSeerX, DOI=10.1.1.60.1836.

[14] Sinha, A., Paradkar, A., Kumanan, P., and Boguraev, B. A

linguistic analysis engine for natural language use case

description and its application to dependability analysis in

industrial use cases. In Networks (DSN), 327–336.

