
UML4COP: UML-based DSML for

Context-Aware Systems

Naoyasu Ubayashi (Kyushu University, Japan)

Yasutaka Kamei (Kyushu University, Japan)

October 22, 2012

Overview

2

UML4COP: UML-Based DSML

 for designing

 context-aware systems

Development of context-aware systems

is not easy !

COP (Context-Oriented Programming)

Context can be treated as a module!

MDSOC (Multi-Dimensional Separation of Concerns)

Outline

Motivation

UML4COP

Program Implementation Based on

UML4COP

Discussion and Future work

3

Motivation

4

Motivation

Context-awareness plays an important

role in developing adaptive software.

However, it is not easy to design and

implement such a context-aware system,

because its system configuration can be

dynamically changed.

 It is hard to check whether a design

model is correctly implemented and its

behavior is faithful to the design.

5

COP: New Programming Paradigm

COP(Context-Oriented Programming)

can treat context as a software module.

Layer-based modularization.

ContextJ*, ContextJ, Jcop, ContextL.

We apply the notion of COP to a design

method for developing context-aware

systems.

6

UML4COP
Hirschfeld, R., Costanza, P., and Nierstrasz, O.:
Context-oriented Programming,
Journal of Object Technology (JOT), vol. 7, no. 3, pp.125-151, 2008.

Example: ContextJ*

7

Employer suzuki = new Employer(”Suzuki", ”Tokyo");

Person tanaka = new Person(”Tanaka", ”Kyoto", suzuki);

with(Layers.Address).eval(new Block() {

 public void eval() { System.out.println(tanaka); }});

with(Layers.Address, Layers.Employment).eval(newBlock() {

 public void eval() { System.out.println(tanaka); }});

public class Person implements IPerson {

layers.define(Layers.Address,new IPerson() {

 public String toString() {

 return layers.next(this) + "; Address: " + address;}});

layers.define(Layers.Employment,new IPerson() {

 public String toString() {

 return layers.next(this) + "; [Employer] " + employer;}});

public class Employer implements IEmployer {

layers.define(Layers.Address,new IEmployer() {

 public String toString() {

 return layers.next(this) + "; Address: " + address;}});

Employer Person

Name: Tanaka; Address: Kyoto

Name: Tanaka; Address: Kyoto;

[Employer] Name: Suzuki; Address: Tokyo

Our Approach: UML4COP

DSML (Domain-Specific Modeling

Language) for designing context-aware

systems.

Each context is modeled separately from a

base design model representing only

primary system behavior.

A system design model at a certain period

of time is composed by merging associated

contexts.
8

9

Base

Context

Context

Address Layersd

 : Actor

Person

toString()

<<layered method [Address]>>

toString()

Address + Employment Layersd

Person

 : Actor

toString()

<<layered method [Address]>>

toString()

Employer

<<layered method [Address]>>

toString()

<<layered method [Employment]>>

toString()

toString()

System Design Model

UML4COP

10

UML4COP Models

View Model

Context representation.

 Extension of class + sequence diagrams.

COP-specific stereotypes.

 <<layered method>>

Context Transition Model

Context transitions.

 Extension of state machine diagrams.

 Triggered by COP-specific events.

 layer in (entering a layer)

 layer out (exiting from a layer)

11

MDSOC

View Model

12

Tarr, P., Ossher, H., Harrison, W., and Sutton, S.M., Jr.:
N Degrees of Separation: Multi-dimensional Separation of Concerns,

21st International Conference on Software Engineering (ICSE'99),
pp.107-119, 1999.

Context Transition Model

13

Context Transitionstm

Base Address
Layer

Employment
Layer

Layer In

Layer Out

Layer Out Layer In

The order of

entering a layer

can be specified.

Model Composition

14

Address Layersd

 : Actor

Person

toString()

<<layered method [Address]>>

toString()

Address + Employment Layersd

Person

 : Actor

toString()

<<layered method [Address]>>

toString()

Employer

<<layered method [Address]>>

toString()

<<layered method [Employment]>>

toString()

toString()

 Name: Tanaka; Address: Kyoto Name: Tanaka; Address: Kyoto;

[Employer] Name: Suzuki; Address: Tokyo

We can easily understand system

behavior by composing

views according to context transitions.

Program Implementation Based

on UML4COP

15

Translation into COP Languages

A design model in UML4COP can be

easily implemented using COP

languages.

We use ContextJ* whose language

features are provided as Java classes.

Two types of context specification

Layer-in-class (ContextJ*)

Class-in-layer (similar to AOP)

16

17

Layer in

Layered

Method

Address

Layer

Discussion and Future work

18

Everything is OK?

An essential problem specific to context-

awareness still remains.

Although a UML4COP model is easy to read,

it is not necessarily easy to check whether

its program execution is faithful to its

requirements (e.g., NFR).

19

Future Work

We are developing RV4COP, a runtime

verification mechanism based on UML4COP.

Both a system design model and actual

execution trace data at a certain period of

time are translated into a logical formula.

We use an SMT (Satisfiability Modulo

Theories) solver, a tool for deciding the

satisfiability of logical formulas.

20

Uchio, S., Ubayashi, N., and Kamei, Y.:
CJAdviser: SMT-based Debugging Support for ContextJ*,
3rd Workshop on Context-Oriented Programming (COP 2011) (Workshop at ECOOP 2011), 2011.

RV4COP

21

Execution Trace Data

UML4COP

NFR specification
Logical Formula

Logical Formula

+

SMT Solver

Summary

UML4COP, a UML-based design

method for COP, is proposed.

UML4COP and COP improve the

expressiveness for designing and

implementing context-aware

systems.

As the next step, we plan to

develop RV4COP.

22

23

Thank you for your attention.

