). SPLASH Dsm 2012

UML4COP: UML-based DSML for

Context-Aware Systems

Naoyasu Ubayashi (Kyushu University, Japan)
Yasutaka Kamei (Kyushu University, Japan)
October 22, 2012 g\%i/é

o
E

Overview

11| Development of context-aware systems

e . _|isnot easy !
] Voo

UML4COP: UML-Based DSML
: for designing
Each context is context-aware systems

| modeled separately

COP (Context-Oriented Programming)
Context can be freated as a module!

MDSOC (Multi-Dimensional Separation of Concerns)

Motivation

UML4COP

Program Implementation Based on
UML4COP

Discussion and Future work

Motivation

Context-awareness plays an important
role in developing adaptive software.

However, It is not easy to design and
Implement such a context-aware system,
because its system configuration can be
dynamically changed.

It is hard to check whether a design
model is correctly implemented and itfs
behavior is faithful fo the design.

COP: New Programming Paradigm

COP(Context-Oriented Programming)
can treat context as a software module.

Layer-based modularization.

ContextJ*, Contextd, Jcop, ContextL.

We apply the notion of COP to a design
method for developing context-aware

systems.
UML4COP

Hirschfeld, R., Costanza, P., and Nierstrasz, O.:
Context-oriented Programming,
Journal of Object Technology (JOT), vol. 7, no. 3, pp.125-151, 2008.

Example: ContextJ*

Employer Person

Address Layer

Employment Layer

Name: Tanaka; Address: Kyoto

public class Employer impls
layers.define(Layers.Addre:
public String toString() {

Name: Tanaka; Address: Kyoto;
[Employer] Name: Suzuki; Address: Tokyo

return layers.next(this) +"; Address: " + address;}}); pss: " + address;}});

public void eva

with(Layers.Addre

public void evall

layers.define(Layers.Employment,new IPerson() {
public String toString() {
return layers.next(this) +"; [Employer] " + employer;}});

Our Approach: UML4COP

DSML (Domain-Specific Modeling
Language) for designing context-aware
systems.

Each context is modeled separately from o
base design model representing only
primary system behavior.

A system design model af a certain period
of fime is composed by merging associated
confexts.

View: Base

/ - | >

sd Address Layer J sd Address + Employment Layer

% PEEE Person | Employer |
- Actor T
i 1 H Actor

View | toString() § ;
<<layered method [Address]>> i toString())-i-
toString() L <<layered method [Address]>>
toString()
q << method [Employment]>>
toString()
toString()
<<layered method [Address]>>
toString()

stem Design Mode

View

dV

UML4COP

UML4COP Models

View Model

O Confext representation.
O Extension of class + sequence diagrams.

O COP-specific stereotypes.
<<layered method>>

Context Transition Model
O Context transitions.
O Extension of state machine diagrames.

O Triggered by COP-specific events.
layerin (entering a layer)
layer out (exiting from a layer)

View Model

View: Employment Layer

pkg Employment Layer sd Employment Layer

Person Employer

Person

: Agtor

- - | . E«Iayered method>>
+ <<layered method>> toString() : String i toString() > oString()

. N
ey - N

“"‘n

.,

. '.\

" [Employer] " + employer ", [Employer] " + employer

toString()

Tarr, P., Ossher, H., Harrison, W., and Sutton, S.M., Jr.:

N Degrees of Separation: Multi-dimensional Separation of Concerns,
21st International Conference on Software Engineering (ICSE'99),
ppP.107-119, 1999.

Context Transition Model

stm Context Transition)

B Address]
Layer
Layer Out
Layer Out < > Layer |
SRl The order of
[- entering a layer

can be specified.

Model Composition

sd

Address Layer

% | Person |
: Actor

% Person Employer

: Aqtor I I

‘ sd Address + Employment Layer)

§ toString() »

We can easily understand system
behavior by composing
views according 1o context transifions.

| T W |

Name: Tanaka; Address: Kyoto Name: Tanaka; Address: Kyoto;

[Employer] Name: Suzuki; Address: Tokyo

Program Implementation Based
on UML4CQOP

Translation info COP Languages

A design model in UML4COP can be
easily implemented using COP
languages.

We use ContextJ* whose language
features are provided as Java classes.

Two types of context specification
O Layer-in-class (ContextJ¥)
O Class-in-layer (similar to AOP)

Layer in

[List 1]
01: public class Test {
02: public static void main(String[] args) {

03: final Employer suzuki =
04: new Employer ("Suzuki®, "Tokyo");

05: final Person tanaka =

06: new Person("Tanaka", "Kyoto", suzuki);
07:

08: with(Layers.Address) .eval (new Block() {
09: public void eval() {

10: System.out.println(uchio) ;

11: }

12: B;

13:

14: with(Layers.Address,

15: Layers.Employment) .eval(new Block() {
16: public void ewval() {

17: System.out.println(uchio) ;

18:

[List 21

01: public class Layers {

02: public static final Layer Address =
03: new Layer("Address");

04: public static final Layer Employment =
05: new Layer("Employment");

06: }

[List 3]

01: public class Person implements IPerson {
02: private String name;

03: private S5tring address;

04: private IEmployer employer;

05:

06: public Person(String newName,

o7: String newlAddress,

08: IEmployer newEmployer) {

08: this.name = newlName;

10: this.address = newAddress;

11: this.employer = newEmployer;

12: }

13:

14: public String toString() {

15: return layers.select().toString();

i6: 1

17:

18: private LayerDefinitions<IPerson> layers =
19: new LayerDefinitions<IPerson>(new IPerson() {
20: public String toString() {

21: return "Name: " + name;

22: ¥

23: 1>H

24:

layers.define(Layers.Employment,
new IPerson() {
public String toString() {
return layers.next(this) +
"; [Employer] " + employer;

layers.define(Layers.Address,
new IPerson() {
public String toString() {
return layers.next(this) +
", Address: " + address;

[List 4]
: public class Employer implements IEmployer

private String name;
private String address;

public Employer(String newName,
String newAddress) {
this.name = newlName;
this.address = newAddress;

}
public String toString() {
return layers.select().toString();

}

private LayerDefinitions<IEmployer> layers

Layered
Method

Address

new LayerDefinitions<IEmployer>(new IEmpfloyer() {

public String toString() {
return "Name: " + name;
i

{ layers.define(Layers.Address,
new IEmployer() {
public String toString() {
return layers.next(this) +

": Address: " + address;

Layer

Discussion and Future work

Everything is OK<e

An essential problem specific to context-
awareness still remains.

Although a UML4COP model is easy to read,
It is Not necessarily easy 10 check whether
Ifs program execution is faithful to ifs
requirements (e.g., NFR).

Future Work

We are developing RV4COP, a runtime

verification mechanism based on UML4COP.

Both a system design mod
execution frace data at a
time are translated into @

el and actudl
certain period of
ogical formula.

We use an SMT (Safisfiabilr

'y Modulo

Theories) solver, a tool for deciding the

saftisfiability of logical form

Uchio, S., Ubayashi, N., and Kamei, Y.:

ulas.

CJAdyviser: SMT-based Debugging Support for ContextJ*,

3rd Workshop on Context-Oriented Programming (COP 2011) (Workshop at ECOOP 2011), 2011.

20

RVACOP

UML4COP

NFR specification Logical Formulo

+

Execution Trace Dato Logical Formula

No. _Eaccution Event (Conteatl*®)

Ol [Layerwit] Address

02 [Method call] println

03: [Method exccution]

04: [Method call] toString (Person)

05: [Method execution] -~
06: [Layered method call] toString (Person’s Addiess layer)

07 [Layered method eaccution]

08: [Base method call] toString (Person)

09: [Base method execution]
10 [Layer without]

11: [Layer with] Address

12 [Layer with] Employment

13: [Method call] println

14 [Method exccution]

15. [Method call] toString (Person)

16: [Method execution]

17 [Layered method call] toString (Person’s Employ
18: [Layered method eaccution]

19: [Layered method call] toString, (Person’s Addres:
20: [Layered method execution]

21 [Base method call] toString (Person)

22 [Base method execution]

23 [Method call] toString (Employer)

24 [Method exccution]

25 [Layered method call] toString (Employer’s Add
26 [Layered method execution]

27 [Base method call] toString (Employer)

28 [Base method execution]
29: [Layer without]

UML4COP, a UML-based design
method for COP, is proposed.

UML4COP and COP improve the
expressiveness for designing and
Implementing context-aware
systems.

As the next step, we plan to
develop RV4COP.

Thank you for your attention.

€

