
Domain-Specific Languages for

Composing Signature Discovery Workflows
Ferosh Jacob*, Adam Wynne+, Yan Liu+, Nathan Baker+, and Jeff Gray*

*Department of Computer Science, University of Alabama, AL

+Pacific Northwest National Laboratory, Richland, WA

1

Signature Discovery

Initiative (SDI)

The most widely understood signature is the human fingerprint

Biomarkers can be used to indicate the presence of disease or identify a drug resistance

Anomalous network traffic is often an indicator of a computer virus or malware

Combinations of line overloads that may lead to a cascading power failure

A signature is a unique or distinguishing measurement, pattern or collection of data

that identifies a phenomenon (object, action or behavior) of interest

2

SDI high-level goals

• Anticipate future events by detecting precursor
signatures, such as combinations of line overloads that
may lead to a cascading power failure

• Characterize current conditions by matching
observations against known signatures, such as the
characterization of chemical processes via comparisons
against known emission spectra

• Analyze past events by examining signatures left behind,
such as the identity of cyber hackers whose techniques
conform to known strategies and patterns

3

SDI Analytic Framework (AF)

 Solution: Analytic Framework (AF)

• Legacy code in a remote machine is wrapped and

exposed as web services,

• Web services are orchestrated to create re-usable tasks

that can be retrieved and executed by users

4

Challenge:

An approach that can be applied across a broad

spectrum to efficiently and robustly construct candidate

signatures, validate their reliability, measure their quality

and overcome the challenge of detection

Challenges for scientists

in using AF

• Accidental complexity of creating service wrappers

In our system, manually wrapping a simple script that has a

single input and output file requires 121 lines of Java code

(in five Java classes) and 35 lines of XML code (in two

files).

• Lack of end-user environment support

Many scientists are not familiar with service-oriented

software technologies, which force them to seek the help of

software developers to make Web services available in a

workflow workbench.

5

A domain-specific

modeling approach

We applied Domain-Specific Modeling (DSM) techniques to

• Model the process of wrapping remote executables.

The executables are wrapped inside AF web services using a Domain-

Specific Language (DSL) called the Service Description Language

(SDL).

• Model the SDL-created web services

The SDL-created web services can then be used to compose

workflows using another DSL, called the Workflow Description

Language (WDL).

6

Output generated as Taverna

workflow executable 7

1. Submit job

 2. Check status

 3. Download files

Example application:

BLAST execution

 Service description (SDL) for BLAST submission

Workflow description (WDL) for BLAST

8

Implementation

Script metadata

(e.g., name, inputs)

SDL

(e.g., blast.sdl)

WDL

(e.g., blast.wdl)

Inputs

Outputs

Web services

(e.g., checkJob)

Taverna workflow

(e.g., blast.t2flow)

Workflow

Web services

(Taverna engine)

Retrieve documents

(AF framework)

Apply templates

(Template engine)

Execution

@Runtime

9

Related works

• Compared to domain-independent workflows like JBPM

and Taverna, our framework has the advantage that it is

configured only for scientific signature discovery

workflows.

• Most of these tools assume that the web services are

available. Our framework configures the workflow

definition file that declares how to compose services

wrappers created by our framework.

10

Summary

We successfully designed and implemented two DSLs (SDL

and WDL) for converting remote executables into

scientific workflows. SDL can generate services that are

deployable in a signature discovery workflow using

WDL. We separated the domain-specific information

required to create the workflows from the accidental

complexities introduced by webservices and the Taverna

workflow engine, which allows end-users (scientists) to

design and develop workflows

11

Questions ? 12

Example application:

BLAST execution

Submit BLAST
job in a cluster

Check the status of
the job

Download the output files
upon completion of the job.

13

Xtext grammar for WDL 14

An overview of

SDL code generation

No Service Utils/Script {Inputs (type)] [Outputs(type)] LOC Total LOC (files)

1 echoString echo [0][1 (doc)] 10+13+1+6 30(4)

2 echoFile echo [1 (String)] [1 (doc)] 10+14+1+6 31(4)

3 aggregate cat [1(List doc)] [1 (doc)] 10+20+1+7 38(4)

4 classifier_Training R [2 (doc), 1 (String)] [1 (doc)] 11+24+2+8 45(4)

5 classifier_Testing R [3 (doc), 1 (String)] [1 (doc)] 12+29+2+8 51(4)

6 accuracy R [1 (doc)] [1 (doc)] 11+19+1+6 37(4)

7 submitBlast SLURM, sh [3 (doc)] [2 (String)] 17+27+2+8+18 72(5)

8 jobStatus SLURM, sh [1 (String)] [1 (String)] 10+14+1+6 31(4)

9 blastResult cp [1 (String)] [1 (doc)] 10+14+1+6 31(4)

10 mafft mafft [1 (doc)] [1 (doc)] 10+18+1+6 35(4)

15

Taverna classification workflow 16

