
UML4COP: UML-based DSML for Context-Aware Systems

Naoyasu Ubayashi

Kyushu University

ubayashi@acm.org

Yasutaka Kamei

Kyushu University

kamei@ait.kyushu-u.ac.jp

Abstract
Context-awareness plays an important role in developing
flexible and adaptive systems. However, it is not easy to de-
sign and implement such a context-aware system, because
its system configuration can be dynamically changed. This
paper proposes UML4COP, a UML-based design method
for COP (Context-Oriented Programming). UML4COP is a
DSML (Domain-Specific Modeling Language) for design-
ing context-aware systems. In UML4COP, each context is
modeled separately and a system design model at a certain
period of time is composed by merging associated contexts.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures—Languages

General Terms Design

Keywords Context-Aware System, Context-Oriented Pro-
gramming

1. Introduction
Context-awareness improves the system usage and availabil-
ity. Introducing the notion of context-awareness, we can de-
velop flexible and adaptive systems that can change their be-
havior according to their context such as location [9]. How-
ever, it is not easy to design and implement such a context-
aware system, because its system configuration can be dy-
namically changed. It is hard to check whether a design
model is correctly implemented and its behavior is faithful
to the design.

To deal with this problem, this paper applies the notion
of COP (Context-Oriented Programming) [6] to a design
method for developing context-aware systems. COP, a new
programming paradigm, can treat context as a software mod-
ule and enables programmers to describe the context-aware
behavior elegantly. Using COP, context-dependent behavior
can be separately described from the primary system behav-
ior i.e., context-independent behavior.

This paper proposes UML4COP, a UML-based design
method for COP. UML (Unified Modeling Language) [12]
is a standard modeling notation widely used in industries.
UML4COP, a DSML (Domain-Specific Modeling Lan-
guage) for designing context-aware systems, is a lightweight
UML extension consisting of stereotypes specific to context-

awareness. The semantics of standard UML diagrams are
slightly changed to represent context-awareness. In UML4COP,
each context is modeled separately from a base design model
representing only primary system behavior. A system design
model at a certain period of time is composed by merging
associated contexts. Since a system design model contains
multiple views including structural and behavioral aspects,
it is preferable to independently model these views as con-
texts in terms of MDSOC (Multi-Dimensional Separation
Of Concerns) [10]. Our approach is basically language-
independent. That is, UML4COP can be applied to different
COP languages.

The remainder of this paper is structured as follows. In
Section 2, we introduce COP briefly. In Section 3, we show
UML4COP. In Section 4, program implementation based
on UML4COP is provided. In Section 5, we discuss the
remaining problems. Concluding remarks are provided in
Section 6.

2. COP
COP provides a mechanism for dynamically adapting the
behavior to the new context. There are several COP lan-
guages such as ContextJ*, ContextJ, JCop (Java-based lan-
guages), and ContextL (Lisp-based languages) [1–3, 5, 6].
Using these COP languages, the primary system behavior
can be separated from the context-aware behavior.

In most COP languages, context is described bylayers,
a context-aware modularization mechanism. A layer, which
defines a set of related context-dependent behavioral varia-
tions, can be considered a software module.

By entering a layer or exiting from the layer, a pro-
gram can change its behavior. That is, a program captures
context-dependent behavior by entering a layer. A layer, a
kind of crosscutting concern, can range over several classes
and contain partial method definitions implementing behav-
ioral variations. A set of partial methods belonging to the
same layer represents the context-dependent behavior. There
are two kinds of partial methods:plain methodand layered
method. The former is a method whose execution is not af-
fected by layers. The latter consists of a base method defini-
tion, which is executed when no active layer provides a cor-
responding partial method, and partial method definitions.
Partial methods are activated when a program enters a layer.



Address Layersd 

 : Actor

Person

[Add a string]
"; Address: " + address

toString()

<<layered method>>

toString()

Employer

 : Actor

toString()

<<layered method>>

toString()

Employment Layersd 

 : Actor

Person Employer

[Add a string]
"; [Employer] " + employer

toString()
<<layered method>>

toString()

toString()

Address Layerpkg 

+ <<layered method>> toString() : String

Person

+ <<layered method>> toString() : String

Employer

[Add a string]
"; Address: " + address

Employment Layerpkg 

+ <<layered method>> toString() : String

Person

Employer

[Add a string]
"; [Employer] " + employer

Basepkg 

+ main() : void

Test

+ toString() : String

- address : String
- name : String

Person

+ toString() : String

- address : String
- name : String

Employer

print name

Basesd 

PersonSystem.outTest

println(Person)

toString()

print name

Figure 1. An Example Model Described in UML4COP

Layers are composed at run-time. The configuration of lay-
ers changes dynamically.

In COP, context-aware systems can be constructed by
dynamically composing a set of associated layers, which are
modules encapsulating the context-dependent behavior.

3. UML4COP
In this section, we propose UML4COP, which can represent
context-dependent behavior in a modular way as illustrated
in Figure 1.



Address Layersd 

 : Actor

Person

toString()

<<layered method [Address]>>

toString()

Address + Employment Layersd 

Person

 : Actor

toString()

<<layered method [Address]>>

toString()

Employer

<<layered method [Address]>>

toString()

<<layered method [Employment]>>

toString()

toString()

Figure 2. System Behavior of a Person “Tanaka” (Left: Address Layer, Right: Address and Employment Layers)

Context Transitionstm 

Base Address 
Layer

Employment 
Layer

Layer In

Layer Out

Layer Out Layer In

Figure 3. Context Transition

3.1 Overview

Currently, design methods for COP are not yet proposed
although several COP languages are provided as mentioned
above. In this section, we introduce UML4COP in which
context-dependent behavior is specified using standard UML
notations and stereotypes specific to context-awareness.

UML4COP consists of two kinds of models:view model
andcontext transition model. The former described in class
diagrams and sequence diagrams represents context. The
latter described in state machine diagrams represents context
transitions triggered by COP-specific events such aslayer in
(entering a layer) andlayer out(exiting from a layer).

3.2 View Model

Figure 1 shows an example model described in UML4COP.
This example modified from [5] is an application that dis-

plays a message containing a person’s name, address, and
employer. The message content changes according to the be-
longing context.

In UML4COP, a system design model is composed by
multiple views representing base or layers. Each view model
consists of class diagrams (structural aspects) and sequence
diagrams (behavioral aspects). A base view represents the
structure and behavior in case of belonging to no layer. A
layer view represents the structures and behavior specific to
a context. Plain methods and layered methods are defined in
a base view and layer views, respectively. In Figure 1, there
is one base view and two layer views:AddressandEmploy-
ment. In Addresslayer, a layered methodtoString is called
to display an address. On the other hand, inEmployment
layer, another layered methodtoString is called to display
an employer’s profile.

We can easily understand system behavior by composing
views according to context transitions. Figure 2 shows two
cases: 1)Addresslayer and 2) bothAddressandEmployment
layers. We can understand the behavioral difference between
two cases. The output below shows an execution result of a
program implementing the design model shown in Figure 1
and Figure 2. The same print statement of a person “Tanaka”
behaves differently according to the context.

-- In Address Layer

Name: Tanaka; Address: Kyoto

-- In Address Layer and Employment Layer

Name: Tanaka; Address: Kyoto;

[Employer] Name: Suzuki; Address: Tokyo

3.3 Context Transition Model

In UML4COP, context transitions are specified using state
machine diagrams as shown in Figure 3. Each state repre-
sentsbaseor layer. In Figure 3, first, this example system



[List 1]
01: public class Test {
02: public static void main(String[] args) {
03: final Employer suzuki =
04: new Employer("Suzuki", "Tokyo");
05: final Person tanaka =
06: new Person("Tanaka", "Kyoto", suzuki);
07:
08: with(Layers.Address).eval(new Block() {
09: public void eval() {
10: System.out.println(uchio);
11: }
12: });
13:
14: with(Layers.Address,
15: Layers.Employment).eval(new Block() {
16: public void eval() {
17: System.out.println(uchio);
18: }
19: });
20: }
21: }

[List 2]
01: public class Layers {
02: public static final Layer Address =
03: new Layer("Address");
04: public static final Layer Employment =
05: new Layer("Employment");
06: }

[List 3]
01: public class Person implements IPerson {
02: private String name;
03: private String address;
04: private IEmployer employer;
05:
06: public Person(String newName,
07: String newAddress,
08: IEmployer newEmployer) {
09: this.name = newName;
10: this.address = newAddress;
11: this.employer = newEmployer;
12: }
13:
14: public String toString() {
15: return layers.select().toString();
16: }
17:
18: private LayerDefinitions<IPerson> layers =
19: new LayerDefinitions<IPerson>(new IPerson() {
20: public String toString() {
21: return "Name: " + name;
22: }
23: });
24:

25: { layers.define(Layers.Employment,
26: new IPerson() {
27: public String toString() {
28: return layers.next(this) +
29: "; [Employer] " + employer;
30: }
31: });
32:
33: layers.define(Layers.Address,
34: new IPerson() {
35: public String toString() {
36: return layers.next(this) +
37: "; Address: " + address;
38: }
39: });
40: }
41: }

[List 4]
01: public class Employer implements IEmployer {
02: private String name;
03: private String address;
04:
05: public Employer(String newName,
06: String newAddress) {
07: this.name = newName;
08: this.address = newAddress;
09: }
10:
11: public String toString() {
12: return layers.select().toString();
13: }
14:
15: private LayerDefinitions<IEmployer> layers =
16: new LayerDefinitions<IEmployer>(new IEmployer() {
17: public String toString() {
18: return "Name: " + name;
19: }
20: });
21:
22: { layers.define(Layers.Address,
23: new IEmployer() {
24: public String toString() {
25: return layers.next(this) +
26: "; Address: " + address;
27: }
28: });
29: }
30: }

Figure 4. ContextJ* Program

can enterAddresslayer. Next, the system can enterEm-
ploymentlayer (in this case, the system belongs to both of
Addresslayer andEmploymentlayer) or exit fromAddress
layer. Figure 3 shows that the system cannot belong to only
Employmentlayer. The order of entering a layer is also spec-
ified. To deal with the modeling complexity, it is possible
to decompose a context transition model into hierarchically
composed models if the system size is large.

As mentioned in this section, we can design a context-
aware system in a modular way by introducing UML4COP
in which both contexts and context transitions can be explic-
itly specified based on the notion of MDSOC.

4. Program Implementation Based on
UML4COP

A design model in UML4COP can be easily implemented
using COP languages. In this paper, we use ContextJ*. Al-
though JCop is the most recent Java-based COP implemen-
tation, we use the old ContextJ* whose language features
are provided as Java classes—new syntax is not introduced
in ContextJ*.

In List 1 - 4 (Figure 4), we show a ContextJ* program
implementing the design in Figure 1. In this program, two
objectsemployer (suzuki)(List 1: line 03 - 04, List 4) and
person (tanaka)(List 1: line 05 - 06, List 3) change their
behavior corresponding to the context.AddressandEmploy-



Table 1. ContextJ* Execution Trace
No. Execution Event (ContextJ*) Information ContextJ* Code (Line)
01: [Layer with] Address List 1: line 08
02: [Method call] println List 1: line 10
03: [Method execution]
04: [Method call] toString (Person) List 1: line 10
05: [Method execution]
06: [Layered method call] toString (Person’s Address layer) List 3: line 35 - 38
07: [Layered method execution]
08: [Base method call] toString (Person) List 3: line 20 - 22
09: [Base method execution]
10: [Layer without] List 1: line 12

11: [Layer with] Address List 1: line 14 - 15
12: [Layer with] Employment List 1: line 14 - 15
13: [Method call] println List 1 : line 17
14: [Method execution]
15: [Method call] toString (Person) List 1: line 17
16: [Method execution]
17: [Layered method call] toString (Person’s Employment layer) List 3: line 27 - 30
18: [Layered method execution]
19: [Layered method call] toString (Person’s Address layer) List 3: line 35 - 38
20: [Layered method execution]
21: [Base method call] toString (Person) List 3: line 20 - 22
22: [Base method execution]
23: [Method call] toString (Employer) List 3: line 37
24: [Method execution]
25: [Layered method call] toString (Employer’s Address layer) List 4: line 24 - 27
26: [Layered method execution]
27: [Base method call] toString (Employer) List 4: line 17 - 19
28: [Base method execution]
29: [Layer without] List 1: line 19

mentlayers are described in List 2. In ContextJ*, an object
can enter a context by usingwith. For example,suzukiand
tanakaenterAddressandEmploymentlayers (List 1: line 14
-15) and exit from the layers (List 1: line 19). The content
of each layer is described in two classesPerson(List 3) and
Employer(List 4). For example,Addresslayer ranges over
Person(List 3: line 33 - 39) andEmployer(List 4: line 22
- 28). LayerDefinitions (List 3: line 18),define (List
3: line 25, 33),select (List 3: line 15), andnext (List 3:
line 28, 36) are language constructs for layer definitions. The
base view in Figure 1 is mapped to the two classesPerson
andEmployer. The context views are mapped to layer de-
scriptions ranging over two classes.

In COP, there are two kinds of layer declaration strategies
[1]: class-in-layerand layer-in-class. The former is a strat-
egy in which a layer is defined outside a class. This type is
similar to aspect-orientation [7, 8]. A set of related layerdef-
initions, a kind of crosscutting concerns, are completely sep-
arated from class definitions, a kind of primary concerns. On
the other hand,layer-in-classis a strategy in which a layer
is defined within a class. In this case, it is easy to understand
the whole of a class definition. Each strategy has merits and
demerits. In COP, a developer can choose either of them al-
though ContextJ* supports onlylayer-in-class. UML4COP
can deal with both strategies.

5. Discussion and Future Work
Although UML4COP and COP improve the expressiveness
for designing and implementing context-aware systems, the
essential problems specific to context-awareness still remain
even if we use UML4COP and COP. In this section, we point
out the problems in verifying context-aware systems.

Table 1 shows an actual logging trace of the example
ContextJ* program.

Although the ContextJ* program is easy to read, the ac-
tual behavior is complicated. It is not necessarily easy to
check whether this program correctly implements the de-
sign shown in Figure 1. Actually, this program behavior
does not conform to the design. Whentanaka (person)en-
ters theAddressandEmploymentlayers, the layered method
toString(Addresslayer) is invoked after the layered method
toString (Employmentlayer) is invoked. This violates the
order of message sequence shown in Figure 2. This bug is
caused by the usage of the ContextJ* framework consisting
of LayerDefinition, define, select, andnext. The or-
der of layered method definitions is not correct. Of course,
this bug can be easily fixed after the programmer under-
stands the ContextJ* language specifications. However, it is
not necessarily easy for a novice to understand the above
behavior. If the number of layers and the number of classes
associated to the layers increase, it becomes difficult to un-



derstand the detailed behavior even if the programmer is an
expert.

In context-aware systems, it is difficult to check the de-
sign consistency, the correspondence between design and its
implementation, and non-functional properties specified in
a design. That is, it is not easy to check whether a design
model is correctly implemented in ContextJ*. Although the
structural aspects modeled by class diagrams can be easily
mapped to a ContextJ* program, it is hard to check the corre-
spondence between context-dependent behavior modeled by
sequential diagrams and actual ContextJ* implementation.

To deal with this problem, we are developing RV4COP,
a runtime verification mechanism based on UML4COP. In
RV4COP, both a system design model and actual execution
trace data at a certain period of time are translated into a
logical formula. The validity of a design model, the corre-
spondence between the design and the execution, and the
non-functional properties can be verified automatically. For
this checking, we use an SMT (Satisfiability Modulo Theo-
ries) solver [4], a tool for deciding the satisfiability of logical
formulas. SMT generalizes SAT (Satisfiability) by adding
equality reasoning, arithmetic, and other first-order theories.
Preliminary research results are shown in [11]. Actual ex-
ecution trace data are collected using AspectJ. In general,
it is not easy to apply a formal verification method to trace
analysis, because logged data tend to be huge. Our approach,
in which only the COP-specific events such aslayer in and
layer outare collected, can reduce the size of trace data.

6. Conclusion
This paper proposes UML4COP, a UML-based design method
for COP. UML4COP and COP improve the expressiveness
for designing and implementing context-aware systems. As
discussed in this paper, we plan to develop RV4COP towards
the next research step.

Acknowledgement
This research is being conducted as a part of the Grant-in-
aid for Scientific Research (B), 23300010 by the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

References
[1] Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., and

Perscheid, M.: A Comparison of Context-oriented Program-
ming Languages, InProceedings of the Workshop on Context-
oriented Programming (COP) 2009, co-located with ECOOP
2009, 2009.

[2] Appeltauer, M., Hirschfeld, R., Masuhara, H., Haupt, M.,
and Kawauchi, K.: Event-specific Software Composition in
Context-oriented Programming, InProceedings of the Con-
ference on Software Composition (SC) 2010, Springer LNCS
6144, pp 50-65, 2010.

[3] Appeltauer, M., Hirschfeld, R., Haupt, M., and Masuhara, H.:
ContextJ: Context-oriented Programming with Java, InJour-

nal of the Japan Society for Software Science and Technology
(JSSST) on Computer Software, vol. 28, no. 1, 2011.

[4] Biere, A., Heule, M., Maaren, H. V., and Toby Walsh, T.:
Handbook of Satisfiability, Ios Pr Inc, 2009.

[5] ContextJ* Homepage: http://soft.vub.ac.be/~pcostanz/contextj.html.

[6] Hirschfeld, R., Costanza, P., and Nierstrasz, O.: Context-
oriented Programming, InJournal of Object Technology
(JOT), vol. 7, no. 3, pp.125-151, 2008.

[7] Kiczales, G., Lamping, J., Mendhekar A., Maeda, C., Lopes,
C., Loingtier, J. and Irwin, J.: Aspect-Oriented Programming,
In Proceeding of European Conference on Object-Oriented
Programming (ECOOP’97), pp.220-242, 1997.

[8] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G.: An Overview of AspectJ, InProceed-
ings of European Conference on Object-Oriented Program-
ming (ECOOP 2001), pp.327-353, 2001.

[9] Kramer, J. and Magee, J.: Self-Managed Systems: an Archi-
tectural Challenge, InProceedings of 2007 Future of Software
Engineering (FOSE 2007), pp.259-268, 2007.

[10] Tarr, P., Ossher, H., Harrison, W., and Sutton, S.M., Jr.: N
Degrees of Separation: Multi-dimensional Separation of Con-
cerns, InProceedings of the 21st International Conference on
Software Engineering (ICSE’99), pp.107-119, 1999.

[11] Uchio, S., Ubayashi, N., and Kamei, Y.: CJAdviser: SMT-
based Debugging Support for ContextJ*, InProceedings of
the 3rd Workshop on Context-Oriented Programming (COP
2011) (Workshop at ECOOP 2011), 2011.

[12] UML: http://www.uml.org/


