Proactive Modeling: Auto-Generating Models From Their
Semantics and Constraints’

Tanumoy Pati, Dennis C. Feiock, and James H. Hill
Dept. of Computer and Information Science
Indiana University-Purdue University Indianapolis
Indianapolis, IN USA

tpati@cs.iupui.edu, dfeiock@iupui.edu, hilli@cs.iupui.edu

ABSTRACT

This paper discusses how DSML semantics and constraints enable
proactive modeling—a form of model intelligence that foresees
model transformations, automatically executes them, and prompts
the modeler for assistance when necessary. This paper also shows
how we integrated proactive modeling into the Generic Model-
ing Environment (GME). Our experience using proactive model-
ing shows that it can reduce modeling effort by both automatically
generating required model elements, and guiding modelers to select
what actions should be executed on the model.

Keywords
proactive modeling, model intelligence, domain-specific modeling
language, model-driven engineering

1. INTRODUCTION

Model-Driven Engineering (MDE) [5] powered by domain-specific
modeling languages (DSMLs) [3] allows developers to define the
abstractions and semantics of a given domain using intuitive graph-
ical representations, and define constraints that govern interactions
of the abstractions. The DSMLs are then used by modelers to
model concepts for the target domain. Lastly, model interpreters
transform constructed models into concrete artifacts .

Traditionally, the process of using DSMLs to create models is pri-
marily a manual process. This means that it is the responsibility
of the modeler to manually craft and manage their models, such
as adding and deleting model elements, setting attributes, and en-
suring constraints are not violated. Because creating a model can
be a tedious and time-consuming process—especially when with
dealing with complex DSMLs and large models—model intelli-
gence techniques (e.g., constraint solvers [1, 6, 7] and model guid-
ance [2, 8]) have emerged as an approach to alleviate this concern.
For example, modelers can manually create a partial model and

*This work was sponsored in part by the Maritime Operations Di-
vision (MOD) of the Australian Defense Science and Technology
Organization (DSTO).

use constraint solvers to automatically generate a complete solu-
tion. Likewise, modelers can select a model element and model
guidance engines will highlight valid associations (e.g., connec-
tions and references), or how to resolve violated constraints after
the model has been created.

Although model intelligence is improving the usability of DSMLs,
it is still plagued by manual processes. As highlighted above, it
is the modeler’s responsibility to manually create a partial model
before invoking constraint solvers. Likewise, model guidance tech-
niques engage the modeler affer they make a selection. It, however,
can be hard for the modeler to know what actions can occur next—
especially if the modeler is not familiar with the DSML. Likewise,
“fixing” a model implies the modeler has to first create a model.
This is typically a manual process through trial-and-error, even with
current state-of-the-art model guidance techniques. Finally, it is the
modeler’s responsibility to manage model consistency and correct-
ness above and beyond manually, or automatically, evaluating con-
straints after completing actions (i.e., reactive constraint checking).

Because of the current challenges discussed above, there is need for
improved model intelligence techniques that better assists modelers
in the modeling process. Based on this understanding, the main
contributions of this paper are as follows:

e It introduces proactive modeling, which is a form of model
intelligence that foresees plausible model transformations and
executes them automatically, and prompts the modeler for as-
sistance when needed; and

e It shows how proactive modeling is implemented in GME
as a GME add-on (i.e., a domain-independent event handler)
named the Proactive Modeling Engine (PME).

Finally, experience from applying PME to a simple DSML and
other DSMLs (not discussed in this paper) show that it can sig-
nificantly reduce modeling effort. It, however, is necessary to pro-
vide mechanisms that allow modelers control how engaged proac-
tive modeling is with the model and modeler.

Paper organization. The remainder of this paper is organized as
follows: Section 2 introduces an example DSML that motivates
the need for proactive modeling; Section 3 presents an overview of
proactive modeling; Section 4 discusses the design and implemen-
tation of the PME; Section 5 compares our work on proactive mod-
eling with other related works; and Section 6 provides concluding
remarks and lessons learned.

2. THE LIBRARY MANAGEMENT SYSTEM

The section introduces the Library Management System (LMS) ex-
ample, which is a system that helps librarians track their book in-
ventory, and patrons who have borrowed books from the library.

Modeling elements. There are many different ways to compose a
metamodel for the LMS. Figure 1 shows one simple example meta-
model for the LMS. As shown in this figure, the root element is a
Library model element. The Library model element contains five
basic model elements: Book, Patron, Librarian, HRStaff and Shelf;
two connection elements: Borrows (representing a patron borrow-
ing the connected book from the library), and Employees (repre-
senting a librarian hired by the connected HR staff); one reference
element Patronref that refer to patrons belonging to other libraries.

0.7 |se 0. |dst

HRStaff Librarian

<<Atom=> [2.9 <<Atom=>

Employees 2.10
Room : field <=Connection=> JobTitle : field
Salary : field
o

Shelf Library Patronref

=

<<Model>> <<Model>> | ==Reference>>

Location : field

]

o

i . Barrows

0., 3. <<Connection>>

Book
Patron

<<Atom>> <<Atom>>
= P
Title field Age: field
Author field :

) Major : field

Quantity : field Ci field
Department : fiald s

0.7 [we
0." [dst

Figure 1: An example GME metamodel for the Library Man-
agement System.

Constraints. The LMS has several constraints that govern its model.
Because the LMS is created in GME, the Object Constraint Lan-
guage (OCL) [4] is used to express the LMS’s constraints. Some of
the constraints for the LMS are as follows:
e Required city. As shown in Listing 1, this constraints checks
that all patrons who are a member of the library are from
Indianapolis.

1 self.City = "Indianapolis"

Listing 1: OCL constraint showing the required city.

e Book borrowing condition. As shown in Listing 2, this con-
straint validates that a patron can only borrow books that are
relevant to his/her field. For example, a Computer Science
student can only borrow books that are relevant to the field
of Computer Science.

1 self.connectedFCOs (Borrows)—>
2 forAll (p:Book | self.Major = p.Department)

Listing 2: OCL constraint showing the book borrowing condi-
tion.

e Patron referencing condition. As shown in Listing 3, this
constraint checks that the reference model element refers to
a patron that belongs to another library.

1 self.refersTo (). parent () < > self.parent ()

Listing 3: OCL constraint showing patron referencing condi-
tion.

An example model. Figure 2 shows an example model for the
LMS created using the metamodel shown in Figure 1.

WPUL X
T Name: IUPUI Library

Aspect: Madel_Aspect + | Base: N/A

| Modsl_papect | Zoom: 100% ~

e — -
Shelf:01 Shelr02
HRStaff H H
2 2 2 2
@ [~]
Librarian Raphael Tanmay Monica Lisa Michael
a
Patron ’ ’ ’ ’
—1 csto CK15 EN20 MBA1
&)
Patronref
&
Pauline
= - Nicole
B o2 a2 oz P
L @
Dean
» Douglas
4

Figure 2: An example model for the Library Management Sys-
tem.

3. OVERVIEW OF PROACTIVE MODEL-
ING

This section provides a detailed overview of proactive modeling in
DSMLs.

3.1 The Goal of Proactive Modeling

The term proactive modeling translates directly to foreseeing mod-
eling. The main goal of proactive modeling therefore is to automate—
as much as possible—the modeling process by foreseeing valid
model transformations (i.e., those that must be executed manually
by a modeler), and automatically executing them. If there are op-
tional model transformations, then proactive modeling queries the
modeler for what model transformation to execute, and executes
the selected model transformation (similar to model guidance).

With this in mind, proactive modeling focuses on automating the
following aspects of the modeling process:

o Automated model creation. This aspect of proactive model-
ing involves automatically creating different model elements
when a related model element is first created. For exam-
ple, when a Library model element is added to the model,
all its child model elements (e.g., Book, Patron, and Librar-
ian) should be automatically added to the Library model ele-
ment up to the required quantity. This is different from cur-
rent model intelligence techniques in that the current tech-
niques do not support auto-generating elements in the re-
quired quantity, or they do not support auto-generation at all,
unless the modeler manually creates a partial model.

e Decision-making. This form of proactive modeling involves
presenting the modeler with a list of valid model transfor-
mations (or actions) (e.g., create a connection, adding a ref-
erence, and adding a new model element) that can occur

based on the current state of the model. After selecting an
action, proactive modeling executes the action. For exam-
ple, when a modeler wants to add a Patronref model element,
proactive modeling presents the modeler with a list of all the
possible Patrons that the Patronref model element can refer-
ence. Upon selecting a Patron model element, the reference
is auto-generated. This form of automation, which requires
human-intervention, is different from current model intelli-
gence techniques in that it is triggered automatically when
automated modeling reaches a stopping point.

Figure 3 provides a high-level overview of the proactive modeling
process. As shown in this figure, proactive modeling resides be-
tween the modeler and the model. The proactive modeling engine
(1) automatically adds modeling elements to the model. When the
proactive modeling engine reaches a stopping point, (2) it then in-
teracts with the modeler to select what transformations to apply to
the model. In the end, the modeler does not interact directly with
the model. Instead, the modeler interacts with the model through
the proactive modeling engine.

Proactive
Modeling

modeler

Figure 3: Overview of the proactive modeling process.

3.2 Insights for Realizing Proactive Modeling
In order for proactive modeling to function it must get its insight
from somewhere. Because a DSML is well-defined, it is possible
for proactive modeling to gain insight from analyzing a DSML as
follows:

e Semantic analysis. Semantic analysis is the process of an-
alyzing a DSML’s metamodel at runtime to discover infor-
mation about its model elements. For example, when adding
a Patronref element to the model, semantic analysis of the
LMS metamodel (see Figure 1) will identify that a Patron-
ref model element can reference a Patron model element. By
performing semantic analysis, proactive modeling can col-
lect any type of information that is relevant to a model ele-
ment without being bound to the target DSML.

e Constraint analysis. Constraint analysis is the process of
parsing and analyzing a DSML’s constraints collected dur-
ing the semantic analysis process. For example, semantic
analysis of Patronref returns the constraint shown in List-
ing 3, which is then parsed and evaluated to generate the list
of possible Patrons that can be referenced. By performing
constraint analysis, proactive modeling can not only evaluate
constraints, but also use them to provide modeling guidance
and auto-generate model elements.

There can be other types of analysis integrated into proactive mod-
eling, such as layout analysis where actions are performed based
on the layout of modeling elements, and user-intent analysis where
actions are performed based on past knowledge of how a modeler
creates a model, but we have scoped the work to these two forms of
analysis. This is because semantic and constraint analysis is based
on static, well-defined information.

3.3 Mutable vs. Immutable Constraints

As explained above, it is possible to analyze a DSML’s constraints
and determine what elements should be added to the model, or a
list of valid modeling actions. For example, saying the number of
Patrons must equal 3 means that proactive modeling can automat-
ically ensure the number of patrons is always 3 since 3 does not
change. On the other hand, saying that the number of patrons must
equal the number of books means that proactive modeling needs
modeler intervention because both the number of patrons and books
can be modified.

Based on the two examples above, constraints can be classified as
either mutable or immutable. A mutable constraint is a constraint
that evaluates two variable expressions. An immutable constraint
is a constraint that evaluates a variable expression and a constant
expression. Because an immutable constraint has constant values,
it is possible to automatically execute actions that transform the
model towards the constant value. Mutable constraints, however,
require modeler intervention because one model element must act
as the constant value in the constraint evaluation.

4. THE DESIGN AND IMPLEMENTATION
OF PROACTIVE MODELING IN GME

This section discusses how proactive modeling is realized in GME
via the Proactive Modeling Engine.

4.1 Mapping Proactive Modeling into GME
Both semantic and constraint analysis can be integrated into GME
at run-time without being bound to a specific DSML. Before going
into the implementation details of proactive modeling in GME, it
is first necessary to understand how the analysis maps into GME.
Based on the functionality of GME, we have classified constraints
into the following four categories:

e Containment constraints. Modelers can define multiplic-
ity specification (also known as cardinality) on containment
relationships. The multiplicity specification determines the
acceptable number of containment relationships allowed be-
tween a parent model element and a child element. For exam-
ple in Figure 1, the containment relationship between Book
model element and Library model element has a multiplicity
of 3. .*. This means that a Library model element should
contain at least 3 Book model elements at all times.

o Attribute constraints. Modelers can define constraints that
validate attribute values with respect to expected values or
other elements. For example, Listing 1 illustrates that the
expected city for a patron is “Indianapolis”.

e Association constraints. Modelers can define association
relationships between two model elements using a Connec-
tion model element. Modelers can refine association rela-
tionships using constraints and reduce the possible destina-
tion model elements of a connection. For example, List-
ing 2 shows an association constraint imposed on Patron that
governs the Borrows connection between a Book and Patron
model element.

e Reference constraints. Modelers can define aliases (or point-
ers) to other model elements by using the Reference model
element. For example, Figure 1 shows how the LMS meta-
model defines a Patronref model element that refers to Patron
model elements. Modelers can also impose constraints on
references, which validate that the referenced model element
meets a condition. For example, Listing 3 shows a reference

constraint imposed on Patronref, which specifies that a Pa-
tronref can only reference Patrons from another library.

4.2 The Proactive Modeling Engine

Figure 4 provides an overview of the Proactive Modeling Engine
(PME), which is a GME add-on that implements proactive mod-
eling. A GME add-on is a domain-independent event handler that
receives events dictating what model actions have occurred (i.e.,
model element creation and selection). It is worth noting that if a
GME add-on modifies the model, then the event that corresponds to
the modification is sent to all loaded add-ons—including the add-
on that modified the model. Lastly, all GME add-ons are stateful.

Domains-specific Modeling Language

Proactive Modeling Engine (as GME add-on)

Modeler Guidance Handler
”

Containment Attribute Association Reference
Handler Handler | Handler 4 Handler

OCL Parser & Evaluator

The Generic Modeling Environment (GME)

U

Figure 4: Architecture of Proactive Modeling Engine (PME).

As shown in Figure 4, the PME is composed of the following key
components:

e OCL parser and evaluator. The OCL parser is responsi-

ble for parsing OCL constraints and dynamically creating an
abstract syntax tree from the parsed OCL constraints. Be-
cause a GME add-on is stateful, the parsed OCL expres-
sions are cached for retrieval later on. The OCL parser in
the PME is designed and implemented using the Boost Spirit
Parser Framework (boost—spirit.com). This parser
works only with constraints defined in the DSML and is in-
dependent of the DSML’s metamodel. This allows the OCL
parser to be used as a standalone parser.
The OCL evaluator for the PME works as follows: it is in-
voked by handlers on the root node of the abstract syntax tree
(AST). The individual objects that form the AST are respon-
sible for evaluating a certain aspect of the constraint (e.g., a
method or expression). The evaluation control traverses the
AST in a top-down fashion and each object returns back the
evaluated result back to its parent, stopping at the root. PME
then transforms the model based on the evaluated value and
information collected during semantic analysis.

e Containment handler. The containment handler is respon-
sible for automating the model element creation process by
resolving the containment relationships between model ele-
ments. For example, when a Library model is added to the
example model shown in Figure 2, the containment handler
first analyzes the LMS’s metamodel to identify what model
elements a Library model can contain through semantic anal-
ysis. In this case, the containment handler will identify the
Book, Patron, Borrows, Shelf, HRStaff, Librarian, Employ-
ees, and Patronref model element types.

After the containment handler completes its semantic analy-

W S

Fle Eat View Toos Window Help
T AL eI RN AR o)

ERXRXBODY AR LG s>

WY N=T o
sneno2 Nemubrary x
T Name: Newiiary Libeay. Aspect [Model Aspect v Base: NIA

. -
i W e N

Booka

Ios

i HRSIa

Figure 5: Model created by PME when a Library model ele-
ment is added to the model.

sis, it uses constraint analysis to parse and analyze each con-
straint associated with the newly created model element, by
forwarding the constraints to the OCL parser and evaluator.
If a constraint is a containment constraint and is violated,
then containment handler auto-generates the model elements
associated with that constraint until it is valid. For exam-
ple, when a Library model element is added to the model,
then PME will auto-generate 3 Book, 3 Patron, 2 Shelf, 2
HRStaff, and 2 Librarian model elements as shown in Fig-
ure 5.

Attributes handler. The attributes handler is responsible for
handling a model element’s attribute values during the cre-
ation process, i.e., ensuring the created object does not vio-
late any attribute constraints. This, however, does not mean
that a modeler cannot change an attribute’s value after the
model has been created.

For example, when a Patron model is added to the model
shown in Figure 2, the attributes handler first analyzes the
LMS’s metamodel to identify its attributes. The attribute
handler then collects the constraints associated with the Pa-
tron model element and forwards it to the OCL parser and
evaluator. The attributes handler, however, evaluates only the
attribute constraints associated with Patron model element
(shown in Listing 1). In this example, the value of City at-
tribute is automatically set to “Indianapolis” (see the lower
right window in Figure 5).

Association handler. The association handler is responsible
for identifying valid destination model elements for a given
source model element when making a connection between
two model elements. For example, to create a connection
between a Patron model and Book model, the modeler first
selects a Patron model. The selection triggers the association
handler to analyze the metamodel and present the modeler
with a list of valid connection types. Once the modeler se-
lects a connection type, the association handler identifies all
valid endpoint models for the selected connection type.

The handler then collects, one at a time, the constraints as-
sociated with Patron model element (i.e., the source model
element) and forwards them to the OCL parser. The associa-
tion handler then evaluates the association constraints, which
allows it to filter any model elements that will violate its con-
straints. Figure 6 shows PME displaying a list of valid des-
tination model elements for Tanumoy patron (a Computer
Science student). This is similar to current state-of-the-art
techniques in model guidance.

Figure 6: Dialog of valid Book elements presented to modeler
when a Patron model is selected.

o Reference handler. The reference handler is responsible for
identifying valid model elements that can be referred to by
a reference model element. For example, when a modeler
adds a Patronref model to the model, the reference handler
gathers a list of valid model types that can be referenced by
a Patronref model (e.g., Patron model types). The reference
handler then uses the type information to gather a list of all
elements that are instances of the identified model types. For
example in Figure 7, the reference handler will gather the
following Patron models: Tanumoy, Monica, Lisa, Michael,
Joe, Raphael, and Sam.

| _J | Pr—-—————————
csto weA1

[

som

(2]

o cncel] | |pean

Figure 7: Dialog of valid Patron models presented to modeler
when Patronref model element is added to model.

The handler then collects, one at a time, the constraints asso-
ciated with selected reference model element and forwards
them to the OCL parser and evaluator. The reference han-
dler evaluates each OCL constraint with the goal of filtering
the initial list of plausible model elements such that no ele-
ment in the final list violates any constraints. Figure 7 shows
an example of PME displaying the list of Patron model el-
ements that validate the constraint shown in Listing 3 (i.e.,
Joe, Raphael, and Sam) when the modeler adds a Patronref
model element to the model.

e Modeler guidance handler. The modeler guidance handler
is responsible for providing a modeler with a list of valid op-
erations to execute when proactive modeling finishes auto-
generating model elements. The operations presented to the
modeler are in compliance with both the DSML’s semantics
and the constraints. For example, when a modeler starts a
new project, the modeler guidance handler presents the mod-
eler with the list of all the model elements that can be added
to the RootFolder. Likewise, the modeler guidance han-

dler prompts the modeler to select a model to operate. Upon
selection, the modeler is presented with a list of operations
that are specific to the selected model as shown in Figure 8.

shei:02
tion

Figure 8: Dialog of valid operations for Library model.

The modeler guidance operations currently supported by PME
are as follows:

e Add a modeling element. This operation is used to
add a selected model type to a selected parent model if
allowed.

e Delete a modeling element. This operation is used to
delete a model element from the selected parent model
element if allowed.

e Create a connection. This operation is used to create
a connection between two model elements within the
selected parent model element.

The modeler guidance handler therefore provides relevant and valid
operations to the modelers, which reduces the modeler’s decision
set and can improve their modeling experience. Likewise, we can
easily extend the modeler guidance handler to support other opera-
tions as we learn them.

4.3 Chain Reactions in PME

As stated above, PME is a GME add-on and a GME add-on is
a reentrant component. This means that when PME modifies the
model, PME will receive an event associated with the latest modifi-
cation. Upon receiving the new event, PME handles the new event
similar to how it handled the previous event. If there is no decision-
making need on the modelers part, then PME automatically handles
the event (per the discussion above). If PME requires user input,
then it queries for it and proceeds.

In the best case scenario, the first model modification (e.g., starting
a new project, or opening an existing project) triggers PME and
PME auto-generates all the elements required in the model. In this
scenario, modeling effort is very low since the modeler does not
have to do anything. In the worst case scenario, the modeler is
prompted by PME after each modification to the model since PME
is not able to automatically generate anything. In this scenario,
PME is similar to manually creating a model except for the fact
that PME ensures you only execute valid actions.

S. RELATED WORKS

Partial model creation. Sen et al. [6] presented a framework for
generating model completion recommendations in model editors.
In their approach, the metamodel is transformed into a constraint
logic program (CLP) [6], and processed by a Prolog engine. The

processed CLP is then able to complete a partial model (i.e., one
that has been manually created by the modeler). Our approach ex-
tends their effort in that proactive modeling can assist in either au-
tomatically creating the partial model, or recommending what ac-
tions to take on the model. Once the modeler has a valid partial
model created using PME, the modeler can use their approach to
complete it.

Hessellund et al. [1] created an extension of the Eclipse Model-
ing Framework called SmartEMF. SmartEMF provides support for
representing, checking, and maintaining four kinds of consistency
constraints: well-formedness of individual artifacts, referential in-
tegrity across artifacts, references with additional constraints, and
style constraints. Similar to Sen et al., SmartEMF provides edit-
ing guidance to the modeler by evaluating precondition constraints
that exist on editing operations. Our work therefore extends Hes-
sellund’s in that it can not only provide modeling guidance to mod-
elers but it can also automatically perform model transformations,
such as automatically adding/deleting of valid model elements in
accordance with the constraints.

White et al. [7] created a Domain-Specific Intelligence Framework
(DSIF) that provides model guidance for large and complex mod-
els. White’s approach also converts constraints to a Prolog knowl-
edge base, and the knowledge base is used to auto-generate com-

plete models from partial models that satisfy the original constraints.

Our approach extends White’s DSIF in that it can assist with cre-
ating the partial model, which is currently done manually, that is
needed to auto-generate the complete model.

Decision making. Janota et al. [2] improved modeling experience
by their work on Interactive model derivation, which is a process
of constructing models and meta-models with the help of automatic
adaptive guidance. This guidance system assists a modeler by pro-
viding a list of valid edit operations to chose from. The major
work involved developing guidance algorithms for concrete model-
ing languages. These guidance algorithms identify transformations
that refine the model. Our approach extends Janota’s work in that
proactive modeling can not only provide decision-making capabil-
ities but also auto-generate model elements when a model element
is first created, i.e., automatically perform multiple editing opera-
tions. Moreover, proactive modeling also provides modelers with
a sequence of valid operations to choose from after it has finished
auto-generating model elements.

Constraint-driven model intelligence. White et al. [8] developed
a model intelligence mechanism that guides modelers towards cor-
rect models. In White’s approach, the modeler first selects a rela-
tionship type and an element for the new relationship. The model
intelligence then evaluates constraints associated with the selected
element. It then presents a list of valid elements that can be associ-
ated with the selected element. Our work extends White’s work in
that proactive modeling automates the modeling process based on
the metamodel’s semantics and constraints, not just its constraints.
Once the proactive modeling reaches a point where it needs human
intervention, it prompts the modeler for the next action. At that
point, our work is similar to White’s.

6. CONCLUDING REMARKS

As domain-specific models increase in both size and complexity, it
will be hard for modeler’s to cope. This was illustrated by current
model intelligence solutions. It, however, is necessary to go beyond
the existing model intelligence solution approaches because it will

enable to continue improving the modeler’s experience. As illus-
trated in this paper, we presented a model intelligence approach
called proactive modeling. We believe that this is a new area of
model intelligence has the potential to open new areas of research.
Based on our experience implementing proactive modeling in GME,
and applying it to several DSMLs, the following is a list of lessons
learned and future research directions:

e Assists novice modelers with learning a new DSML. Proac-
tive modeling guides a modeler throughout the modeling pro-
cess by providing list of valid operations to choose from.
Moreover, proactive modeling also enhances modeling ex-
perience through actions like auto-generation of elements,
auto-reference resolving, auto-connection resolving, and au-
tomatic value entry for constrained attributes. These features
of proactive modeling make it suitable for novice model-
ers because it prevents them from violating constraints, and
helps them get through the tedious, labor-intensive, time-
consuming process of manually creating a model.

e Proactive modeling can fall victim to the “Clippy” syn-
drome. Microsoft Office included an Office Assistant named
“Clippy” that would try to assist the end-user based on their
current actions. Unfortunately, “Clippy” was considered in-
trusive and annoying [9]. It is possible that proactive mod-
eling can fall victim to this condition, which we call the
“Clippy” syndrome. It is therefore critical that proactive mod-
eling finds a way to be useful without being too intrusive.
Otherwise, modelers will not want to use proactive modeling
engines regardless of their benefits.

PME is available in open-source format, and integrated into the
CoSMIC tool suite. CoSMIC can be download from the following
location: www . dre.vanderbilt.edu/cosmic.

7. REFERENCES

[1] A. Hessellund, K. Czarnecki, and A. Wasowski. Guided
development with multiple domain-specific languages. Model
Driven Engineering Languages and Systems, pages 46—60,
2007.

[2] M. Janota, V. Kuzina, and A. Wasowski. Model construction
with external constraints: An interactive journey from
semantics to syntax. Model Driven Engineering Languages
and Systems, pages 431-445, 2008.

[3] A.Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,

C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi. The

Generic Modeling Environment, 2001.

Object Management Group. Object Constraint Language,

2006.

[5] D. C. Schmidt. Guest editor’s introduction: Model-driven
engineering. Computer, 39(2):25-31, 2006.

[6] S. Sen, B. Baudry, and H. Vangheluwe. Domain-specific
model editors with model completion. Models in Software
Engineering, pages 259-270, 2008.

[7] J. White, D. C. Schmidt, A. Nechypurenko, and E. Wuchner.
Domain-Specific Intelligence Frameworks for Assisting
Modelers in Combinatorically Challenging Domains.
GPCE4QoS (October 2006), 2006.

[8] J. White, D. C. Schmidt, A. Nechypurenko, and E. Wuchner.

Model intelligence: an approach to modeling guidance.

UPGRADE, 9(2):22-28, 2008.

Wikipedia. Office Assistant. http:

//en.wikipedia.org/wiki/Office_Assistant.

[4

—

[9

—

APPENDIX
A. DETAILS OF LIBRARY MANAGEMENT
SYSTEMS

A.1 Constraints

This section presents the list of constraints that have not been in-
troduced in Section 2, shown as follows:

e Minimum number of books required. This constraint is
used to enforce the minimum number of books that a library
must contain. As shown in Listing 4, this constraints checks
that a Library has at least 3 Book model elements. The con-
straint shown in this listing is automatically generated by GME
from the cardinality expressed on the containment connection
between the Library and Book model element in Figure 1.

1 let partCount = self.parts("Book")—>size in
2 (partCount >= 3)

Listing 4: OCL constraint showing minimum number of books
required.

e Minimum number of patrons required. This constraint is
used to enforce the minimum number of patrons that a library
must contain. As shown in Listing 5, the constraint checks
that a Library has at least 3 Patron model elements. The
constraint shown in this listing is automatically generated by
GME from the cardinality expressed on the containment con-
nection between the Library and Patron model element in Fig-
ure 1.

1 let partCount = self.parts("Patron")—>size in
2 (partCount >= 3)

Listing 5: OCL constraint showing minimum number of
patrons required.

e Minimum number of shelves required. This constraint is
used to enforce the minimum number of shelfs that a library
must contain. As shown in Listing 6, the constraint checks
that a Library has at least be at least 2 Shelf model elements.
The constraint shown in this listing is automatically generated
by GME from the cardinality expressed on the containment
connection between the Library and Shelf model element in
Figure 1.

1 let partCount = self.parts("Shelf")—>size in
2 (partCount >= 2)

Listing 6: OCL constraint showing minimum number of
shelves required.

e Number of HR staff required. This constraints checks that
a Library model contains at least 2 and at most 5 HRStaff ele-
ments as shown in Listing 7. The constraint shown in this list-
ing is automatically generated by GME from the cardinality
expressed on the containment connection between the Library
and HRStaff model element in Figure 1.

1 let partCount = self.parts("HRStaff") — size in
2 ((partCount >= 2) and (partCount <= 5))

Listing 7: OCL constraint showing the number of required HR
staff.

e Number of librarians required. This constraint checks the
the minimum and maximum number of librarians that work at
the library. As shown in Listing 8, the constraint checks that a
library has at least 2 and at most 10 Librarian model elements.

The constraint shown in this listing is automatically generated
by GME from the cardinality expressed on the containment
connection between the Library and Librarian model element
in Figure 1.

1 let partCount = self.parts("Librarian")—>size in
2 ((partCount >= 2) and (partCount <= 10))

Listing 8: OCL constraint showing the number of required li-
brarians.

e Required age. This constraint checks the age of each patron
that is a member of the library. As shown in Listing 9, a
patron must be at least 18 years of age. This is a domain-
specific constraint that is added manually by the person who
created the metamodel.

1 self.Age >= 18

Listing 9: OCL constraint showing the required age.

e Salary range. This constraint checks that a librarians salary
is within the accepted salary range. As shown in Listing 10,
the salary should be in the range $30,000 to $40,000. This
is a domain-specific constraint that is added manually by the
person who created the metamodel.

1 (self.Salary >= 30000) and (self.Salary <= 40000)
Listing 10: OCL constraint showing the salary range of a li-

brarian.

e Book borrowing limit. This constraint validates that a patron
can only borrow a certain number of books. As shown in
Listing 11, a patron can borrow only 5 books from the library.

1 self.attachingConnections (Borrows)—>size <= 5

Listing 11: OCL constrain showing the book borrowing limit.

