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ABSTRACT

In order to conduct operations research studies on complex
systems, CEA/CESTAE] has been using and developing a
new generation of simulator. The inherent complexity of
such simulations ensues from the large spectrum of physical
phenomena involved. As a consequence the description of
a scenario and the analysis of parametric studies are time-
consuming tasks. In this paper, we illustrate how the use of
modeling techniques can help users construct and interpret
simulation scenarios, especially users who are not computer
scientists. To that end, we present a domain-specific mod-
eling language for operations research. Moreover its associ-
ated tool, which is deployed in a large industrial context, is
introduced along with model examples.

1. INTRODUCTION

The use of numerical simulations by manufacturers to im-
prove the design of systems and to guarantee their require-
ments becoming more and more widespread. A set of nu-
merical simulation software tools has been developed to val-
idate individually each function of the systems designed at
CEA/CESTA. But to find the best compromise between
these various functions, we designed an operations research
simulator that provides global parametric evaluations. These
evaluations must meet the following objectives:

e Assess precisely the impact of a physical phenomenon
on all or part of the system by using complex models
designed by experts. These models may have different
levels of detail and involve a large amount of data.

e Evaluate the impact that changing system parameters
will have on the success of a given scenario.

The range of potential physics fields, detail levels, and be-
haviour possibilities is extremely broad, and many different
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skills are needed to fully model them. To build a scenario,
users must establish the following variables: goals of each
side, number and type of actors, strategy (motion path,
behaviour, resource management, algorithms), hierarchy of
communication systems.

In 2005, CEA/CESTA decided to design a new operations
research simulator. In a nutshell, the requirements for this
new simulator were:

e Unique Platform: able to handle the various stages of
the simulation process (actors modeling, scenarios def-
inition, simulations execution, results analysis) within
the same software.

e Abstraction: users are physicists not computer scien-
tists, modeling actors and creating scenarios must be
as simple as possible and easily understandable.

e Capitalization: capture and share the knowledge and
skills of several physicists.

e Maintenability: insure a life expectancy superior to
twenty years for models.

To fulfill these requirements we decided to rely on model-
driven engineering techniques. The choice of MDE seemed
natural as many of these requirements are now beginning
to be recognized as MDE benefits in the literature [10]. In
addition this development was part of a broader program
initiative launched at CEA/CESTA to introduce MDE to
different domains such as high-performance computing [9}
14] and graphical user interface for dataset edition|12].

This paper is organised as follows: first we describe the over-
all architecture and process of the simulator (Section ;
secondly we present and explain our domain-specific mod-
eling language for operations research (Section ; finally in
Section {4] we discuss similar projects and identify potential
avenues for future work.

2. SIMULATOR OVERVIEW

The simulator results from the combination of a platform
with several models. As a matter of fact the platform act
as a host which manages the interaction of different actors
based on an initial scenario. The platform is able to gener-
ate code from models and execute them on-the-fly. In this
section we first describe the general architecture we chose
to adopt for the development of this simulator. Then we
present the different phases that make up the simulation
process. Finally we outline the execution model.



2.1 General Architecture

The execution engine of the platform manages the simu-
lated time. Time scheduling is subject to the production
of events. We voluntarily chose a simple design based on a
discrete events communication paradigm for the simula-
tion execution. This choice was made for three key reasons:
it is formally and simply defined, users rapidly understand
it and above all the previous simulator was based on this
paradigm.
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Figure 1: Simulator General Architecture

Execution

In discrete systems, state variables change only at discrete
points of time, even the global time variable is discrete. Dur-
ing the simulation, the execution engine takes into account
messages (or events) sent by actors, stores them and dis-
tributes them according to their chronology. These messages
must therefore be dated prior to the current simulation time.

The execution engine also features all of the services users
expect from such simulation platforms: configuration man-
agement, debugging, scripting, GUI customisation, auto-
matic documentation generation. The general architecture
of this platform is shown in Figure[I] The design approach
illustrated here is based on the notion of re-usable software
components.

We will not present in this paper all the functionalities and
implementation details of the simulation platform but should
indicate that the platform is mainly implemented in C++.
Graphical user interfaces rely on the wxWidgets toolkit.

2.2 Simulation Process

The overall simulation process is introduced in Figure us-
ing the SPEM notation [13|. The global process is made of
two sub-processes, the one on the left concerns the defini-
tion of models by domain experts and the one on the right
concerns the instantiation and execution of models by oper-
ations researchers.

Even though we face two different profiles, a same person
may play these two roles. The choice of a clear separation
between the activities of definition and use of models was
made to enhance knowledge capitalization and reusability.
Furthermore, models are stored either in personal or shared
databases in order to stimulate collaboration between ex-
perts from different fields of physics, for example sensors
experts will not model flight mechanics themselves but can
use stored flight algorithms in their own scenarios. Each
step of this process can be performed within the simulation
platform from four different perspectives:

e Modeling Perspective: specification of actors by using
structural and behavioral models.
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Figure 2: Simplified Execution Model

e Scenario Perspective: definition of scenario composed
of instances of valid actors. These actor models can
either come from a personal or shared model database.

e FEzxecution Perspective: execution of scenario with vi-
sualization in 3D environment. User can control the
execution engine through a media player-like interface
(play, pause, stop, step by event, step by time).

o Analysis Perspective: analysis of results from simple or
parametric study. User can define data mining func-
tions, execute them and store results in several file
formats (csv, netCDF, html).

In addition to these perspectives, the simulation framework
implements user profiles in order to adapt the GUI and the
framework services more closely to users’ needs.

2.3 Execution Model

The general execution model of the simulation platform is
described in Figure[2 It is important to notice that there is
no parallelism between the different executions of actors’
behavior such as that encountered in multi-agent system
simulation. Within a scenario events are computed one by
one, sequentially. Even though this choice may appear as
strongly restrictive in terms of performance, two main rea-
sons motivated the choice of this execution model. On the
one hand, the sequentiality of events implies easier modeling
and debugging of behavioral models. On the other hand, the
simplicity of behavioral models executed within the platform
when compared to a specific real scale actor simulation (e.g.
a simulation that assess how a radar performs) means that
this system requires only relatively modest computational
resources. However parallelism can be exploited at a higher
level with parametric studies which sometimes involve thou-
sands of scenarios.
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Figure 3: Simulation process

Another particularity of the execution model is that there is
no human intervention in the execution process. The user
first defines a scenario composed of actors, then starts the
execution. The user can only stop the execution or put the
scenario on pause to examine the current status of individual
actors and variables. There is also no interaction with real
actors (e.g. a real sensor/device or parts of it) during the
execution, we do not manage the concept of federation of
HLA (High Level Architecture) defined in the IEEE 1516

norm .

3. MODELS PRESENTATION

The design of a domain-specific modeling language (DSML)
is a complex and tedious task which requires the formaliza-
tion of several aspects of the language. For instance, the
definition of the concrete syntax which acts as a go-between
concepts and users is essential, unfortunately this step is
frequently neglected . Similarly the definition of clear
semantics [@ plays an important role but requires an im-
portant investment. In order to ease this process and to
reduce design errors, we decided to start from well defined
languages. In this section we detail the different modeling
phases introduced in Section 2] by presenting each associated
metamodel.

3.1 Structural Models

The first part of the DSML is dedicated to the definition of
the structural decomposition of each actor. This definition
relies on a formalism based on UML class diagrams with
numerous syntactic and semantic restrictions compared to
the UML standard. We have opted for a classic use of this
formalism to represent the structure of the actors’ static
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Figure 4: Simplified class diagram metamodel

data and their sub-components. The available constructions
have, however, been considerably restricted to simplify the
work of users, who are not computer scientists.

The Figure [ shows the simplified metamodel dedicated to
structural modeling. Main constructions are Classes (called
PeDynamicClass), Packages (called PePackages), simple in-
heritance and associations (called PeRelation). The only dif-
ference between PeActor and PeSubComponent comes from
the fact that PeActors have one PeLifeCycle and can receive
PeFEvents. The Figure [5| presents an instance of this meta-
model with a classic decomposition of a Carrier system and
its sub-systems.
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Figure 5: Carrier class diagram model

As mentioned by Moody in , we observed that UML
graphical notations lack of cognitive effectiveness. Hence,
we chose to add one more visual dimension with a semantic
use of color in our diagrams. For example in our class dia-
gram formalism (see Figure, sub-classes do not show their
inherited attributes. We also use the black color to identify
new elements (event, attribute, behavior model, lifecycle) in
an actor. The green color represents the override of these el-
ements (changing default behavior, changing default value,
redefining behavior model or life cycle).

3.2 Behavioral Models

The first step in defining an actor’s behavior is to model its
general state. We chose to adopt a simplified version of Harel
statecharts . We use the concept of hierarchically-nested
states but we have removed the concept of orthogonal re-
gions. The statecharts diagram are called lifecycle diagrams
in the simulator. The Figure [f] shows their simplified meta-
model. The Figurem presents an instance of this metamodel
with the description of the Carrier actor life cycle (see Fig-
ure [5)).

Guard conditions are boolean expressions which are evalu-
ated dynamically according to actor variables, events and
time conditions. A tailored script language is used for the
definition of entry and exit actions. Notice that there are no
actions on transitions and no possibility to send events on
transitions.

Lifecycle diagrams enable to avoid useless in-then-else in-
structions in the implementation models. Event filters ease
the modeling of sender actors because they do not have to
worry if receivers are dynamically able to execute the event.

The execution model of the life cycle diagram is based on a
Run To Completion (RTC) algorithm. At each stage of the
simulation, all executable transitions are carried out until
the life cycle reaches a stable state with no executable tran-
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Figure 6: Simplified lifecycle metamodel
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Figure 7: Carrier lifecycle model

sition. We have implemented static validation rules that
check that a life cycle is syntactically correct and does not
have too many states or transitions. However no complex
dynamic validation such as detection of concurrent transi-
tions or possible infinite loops is implemented. We believe
that a life cycle diagram should be simple in order to be
rapidly understood by all users and to avoid the need for
such complex validation.

The second step for defining an actor’s behavior is to specify
events creation with one or several behavioral models. We
chose to adopt a simplified version of the UML activity di-
agram to represent these behavioral models. The level of
modeling is extremely important. It must be as detailed as
possible while remaining sufficiently abstract to be rapidly
understandable by users from different domains of expertise.
Consequently, only a few constructions are available in the
activity diagrams : send events, call implementation models,
add debugging traces, define branch conditions. Activity di-
agrams offer hierarchical levels in the same way as the life
cycle diagrams.

The Figure[8|shows the simplified metamodel of these activ-
ity diagrams. The Figure[J|presents an instance of this meta-
model that describes the StartMoving model of the Carrier
actor introduced in Figure

A send event statement(blue arrows in Figure@ can send an
event either to one actor instance or to all of them. Two kind
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Figure 8: Simplified behavioral metamodel

of filters can be added to this statement: relation filter (the
event will only be sent to all actor instances that are present
in the relation) or group filter (the event will only be sent
to members of a group defined in the scenario). Inheritance
is also useful to send events to a group of similar actors.

The implementation models can be developed with four dif-
ferent languages: C++, Fortran, Matlab (shown as red boxes
in Figure@ or a Python-like script language (shown as green
boxes in Figure E[) The mapping between the actor vari-
ables and the parameters is automatically generated by the
simulation framework.

The debugging traces, shown as orange boxes in the Figure
E[, are functionally tagged (defense, threat) and by levels
(warning, error, trace, validation). As a consequence, users
can decide which kind of traces they needs before executing
a scenario.
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Figure 10: Simplified Scenario Metamodel

3.3 Scenario Models

Once actors models are complete (structural, lifecycle and
behavioral), users can switch to the perspective of the sim-
ulator dedicated to scenarios building. A scenario is a set
of actor instances, execution configurations and communi-
cation channels.

An execution configuration defines the set of variables and
events that need to be collected. Each collector writes its
output in a dedicated file. Several formats are available :
zls, netCDF or HTML. Users can also define observers with
lifecycle diagrams. These observers enable the definition
of complex suites of actions (events reception or boolean
conditions on the instance variables). It then is possible to
use them as a symbolic breakpoint in a scenario.

Communication channels allow two actor instances to ex-
change events. They act as filters as they condition the



exchange of message between two actor instances.

The Figure[I0]shows an extract of the metamodel for scenar-
ios building. The user can create new instances of actors or
duplicate them from his scenario database. One scenario can
have several PeFExecConfig in order to assigned collectors to
a specific task (debugging, tracing, analysing).

The execution engine is coupled with a 3D interface that of-
fers the following services: help for building scenarios (such
as locations of instances or communication channels), moni-
toring facilities for the execution of the simulation and finally
tools for results analysis. Simulation data can be included
in the display (event, position, speed, gradient, bearing, sen-
sor field). The objects shapes are representative of their real
geometry. The display is highly adjustable: viewpoint orien-
tation, zoom on specific areas, object trajectories, cameras
positioning, scenario staging. All this graphical information
is represented with the help of a dedicated metamodel that
we will not present in this paper.

4. DISCUSSION AND PERSPECTIVES

Research into modeling and simulation applied to the design
of complex systems frequently relies on the DEVS formal-
ism |16]. In [8] Kim et al. present such work, but unfortu-
nately they use models mainly as descriptive entities. Re-
garding other application domains, several experience feed-
backs (telecommunications [1], avionics systems [3], software
migration [4]) on the use of model-based approaches in in-
dustrial projects record improvements in productivity and
software quality. Closer in spirit to our work, Kienzle et
al. in |7] described that the use of models to specify the
behavior of non-player characters(NPC) in computer games
such as Tank Wars can have many advantages : appropriate
level of abstraction, correct formalism and visual notation,
enhanced modularization, evolution and reuse.

In this paper we have presented a domain specific modeling
language and its associated tool that are used in an indus-
trial context. At the moment we are in the process of assess-
ing the impact of choosing a DSM approach in term of pro-
ductivity. We plan to compare the model-based simulator
with the previous simulator developed with a more "classic”
approach. This evaluation will be based on several metrics
regarding developments costs, maintenability and accessibil-
ity. However we can already state that the choice of MDE
for our simulator development has been a winning strategy.
For example, three different roles were necessary in the old
simulator: developers, end users and expert users that were
the only ones able to make scenarios due to the complexity
of the tasks involved. With our new simulator and thanks to
the accessibility of the domain specific language, the team is
only composed of developers and end users as all scientists
can now build scenarios by themselves. Furthermore users
can now focus on their domain of expertise and build more
complex models. It is now possible to define and analyse
large parametric case studies (up to 10 000 cases).

This positive experience reinforces our confidence in domain
specific modeling techniques. For this reason we are also
in the process of defining a DSML to simplify the results
analysis of parametric studies.

5. REFERENCES

[1] P. Baker, S. Loh, and F. Weil. Model-driven
engineering in a large industrial context: Motorola
case study. In Model Driven Engineering Languages
and Systems. 2005.

[2] J. Banks, J. Carson, B. L. Nelson, and D. Nicol.
Discrete-Event System Simulation. Prentice Hall, 4
edition, Dec. 2004.

(3] T. Bloomfield. MDA, meta-modelling and model
transformation: Introducing new technology into the
defence industry. In Model Driven Architecture
Foundations and Applications. 2005.

[4] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and
J.-M. Jézéquel. Model-driven engineering for software
migration in a large industrial context. In Model
Driven Engineering Languages and Systems. 2007.

[5] D. Harel. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming,
8(3):231-274, June 1987.

[6] D. Harel and B. Rumpe. Meaningful modeling: what’s
the semantics of "semantics”? Computer, oct. 2004.

[7] J. Kienzle, A. Denault, and H. Vangheluwe.
Model-based design of computer-controlled game
character behavior. In Model Driven Engineering
Languages and Systems. 2007.

[8] J. Kim, C. Choi, and T. Kim. Battle experiments of
naval air defense with discrete event system-based
mission-level modeling and simulations. The Journal
of Defense Modeling and Simulation: Applications,
Methodology, Technology, 8(3):173, 2011.

[9] D. Lugato. Model-driven engineering for
high-performance computing applications. In
International Conference on Modelling and
Simulation, 2008.

[10] P. Mohagheghi and V. Dehlen. Where is the proof? -
a review of experiences from applying MDE in
industry. In Proceedings of the 4th European
conference on Model Driven Architecture: Foundations
and Applications, 2008.

[11] D. Moody. The physics of notations: Toward a
scientific basis for constructing visual notations in
software engineering. IEEE Transactions on Software
Engineering, 35:756-779, November 2009.

[12] D. Nassiet, Y. Livet, M. Palyart, and D. Lugato.
Paprika: Rapid UI development of scientific dataset
editors for high performance computing. In SDL 2011:
Integrating System and Software Modeling, 2011.

[13] Object Management Group. Software Process
Engineering Meta-Model, version 2.0. Technical
report, 2008.

[14] M. Palyart, D. Lugato, I. Ober, and J. Bruel.
Improving scalability and maintenance of software for
high-performance scientific computing by combining
MDE and frameworks. In Model Driven Engineering
Languages and Systems, 2011.

[15] (SISC), Simulation Interoperability Standards
Committee. IEEE Standard for Modeling and
Simulation High Level Architecture (HLA) -
Framework and Rules. Technical report, 2000.

[16] B. Zeigler, H. Praehofer, and T. Kim. Theory of
modeling and simulation: Integrating discrete event
and continuous complex dynamic systems. 2000.



	Introduction
	Simulator Overview
	General Architecture
	Simulation Process
	Execution Model

	Models Presentation
	Structural Models
	Behavioral Models
	Scenario Models

	Discussion and Perspectives
	References

