
A Domain Specific Language for
Enterprise Grade Cloud-Mobile Hybrid

Applications

Ajith Ranabahu *, Michael Maximilien**, Amit Sheth*, Krishnaprasad Thirunarayan
*Kno.e.sis Center, Wright State University, Dayton OH, USA

**IBM Research, San Jose CA, USA

The MobiCloud II Experience

Outline

• What is MobiCloud
• A quick introduction

• The MobiCloud DSL
• MVC pattern based domain modeling

• Extending the MobiCloud DSL with Enterprise
Features

• Demonstration
• Lessons learnt
• Future Directions and Work In Progress

24th October 2011 2

What is MobiCloud?

• Front-end runs on a mobile device
• Smart phone / tablet etc

• Back-end deployed on a cloud
• Amazon EC2 / Google App Engine

• Both components needed for the full experience

23rd October 2011 3

A Cloud-Mobile Hybrid application generator

Why MobiCloud?

• Cloud-Mobile hybrids are hard to develop
• Many complications

• Current practice is to treat the components as
separate projects
• Increases effort, decreases portability & drives up the cost

• Portability (both front-end and back-end) is
important
• Hard to cater for the large number of platforms

23rd October 2011 4

A better approach is needed to
develop cloud-mobile hybrid

applications, while maintaining
portability

Modeling a Cloud-Mobile Hybrid (CMH)

• A CMH is effectively ‘functionally
Monolithic’
• Except there is a service layer in between!

• A CMH can be modeled as a single
conceptual unit

23rd October 2011 6

The MVC Design Pattern

ModelModel

ViewView ControllerController

23rd October 2011 7

CMH Applications can be nicely
decomposed into the MVC Design

A Simple Example

recipe(:todolist) do
metadata({:id => ‘todoapp’})
model
model(:task,{:time => :date,:location => :string,:description => :string,:name =>

:string})
controller
controller(:todohandler) do

action(:create,:task)
action(:retrieve,:task)

end
view
view(:add_task,{:models =>[:task],:controller => :todohandler,:action => :create})
view(:show_tasks,{:models =>[:task],:controller => :todohandler,:action =>

:retrieve})
end

Models

Controllers

Views

Metadata – details that need to
be attached to the whole

application

Graphical Representation

Generated Application Components

ModelModel

ViewView Controller

Persistent
Storage

UI
RESTful
Service
Client

RESTful Service
Implementation

Server
side

handler

Task Data
Structures

Task Data
Structure

Mobile Device Cloud

Designing Extensions for MobiCloud

• The base language is very limited
• How can we add extra capabilities, keeping the MVC

structure intact?

• Introduce an Extensions mechanism
• Predefined models, views and/or controllers with specific

capabilities
• Insert platform specific code at predefined extension

points

23rd October 2011 12

A Simple Extension – Fetching from a
URL
recipe :http_fetch do

Generic http extension
extensions ['http']

metadata
metadata({:id => "ajithssimpleapp"})

models
model :time_value,{:ts => :int}
#controllers

controller :time_manager do
fetch & display time from yahoo
action :fetch_time,:time_value,{:type=>'http',

:url => 'http://developer.yahooapis.com/…./../getTi me',
:params => {:appid => 'o6fGNQ3V34GxD…… OaFr'},
:return_mapping => {:ts=> '/Result/Timestamp'},
:action_forward => :retrieve}

…

23rd October 2011 13

Enterprise Integration with Extensions

• Integrate secured data sources like Salesforce
with MobiCloud

• Not easy!
• Data security

• Salesforce enforces OAuth
• Dependent data structures

• “User” comes under “Organization”
• Special configurations and required call back endpoints

• https call back endpoint required for OAuth

23rd October 2011 14

Demonstration

Lessons Learnt

• Developers are hesitant to use a top-down
approach unless there is an extreme
improvement in productivity and/or convenience

• Graphical abstractions are important to support
adoption

23rd October 2011 16

Big Picture and Future Directions

• Using DSLs as the primary means to overcome
issues of Cloud application portability

• Fits in with a middleware layer for complete
independence in
• Development
• Deployment
• Management of cloud applications

23rd October 2011 17

Big Picture and Future Directions (Cont)

• More extensions
• Google and other third party API integrations

• Extensions as graphical abstractions
• The graphical mode only supports the base language

• Mixing in other languages for special functions
• UI enhancements

• XAML / CSS ?

23rd October 2011 18

Visit us on the Web at http://mobicloud.knoesis.org

More documentation, videos and details at
http://wiki.knoesis.org/index.php/MobiCloud_Web_UI

Questions

Thank you

Extra : Extension Architecture

