
A Pattern-based Approach to DSL Development

Christian Schäfer
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern, Germany
christian.schaefer@iese.fhg.de

Thomas Kuhn
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

thomas.kuhn@iese.fhg.de

Mario Trapp
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

mario.trapp@iese.fhg.de

Abstract
Tool support for the development of Domain-specific Languages
(DSLs) is continuously increasing. This reduces implementation
effort for DSLs and enables the development of rather complex
languages within reasonable amounts of time. However, the lack
of commonly agreed and applied language engineering processes,
many times turns DSL development into a set of creative activi-
ties, whose outcomes depend on the experience of the developers
involved. Consequently, outcomes of language engineering activ-
ities are unpredictable with respect to their quality, and are often
not maintainable either. We have therefore developed an approach
that transfers the concept of architecture and design patterns from
software engineering to language development. In this paper, we
propose this approach and evaluate its applicability in a case study.

Categories and Subject Descriptors D.2 [Software]: Software
Engineering

General Terms Design, Languages

Keywords Domain-Specific Languages, DSL Development, Lan-
guage Patterns

1. Introduction
Domain-specific Languages (DSLs) enable experts to express do-
main concepts in their problem domain, which is the domain that
they are working in. DSLs are much more specialized and domain-
tailored than general-purpose modeling languages or UML profiles
and provide an intuitive façade to solution domains, which is the
domain that a solution is implemented in. This is imperative in
todays complex environments, where engineers become more and
more specialized. Engineers that are capable of working in complex
problem domains, e.g. hydraulics, are often not capable of trans-
forming their solution efficiently to a solution domain, e.g, the C
program for a 8-Bit microcontoller. This results in error-prone, ex-
pensive, and lengthy development cycles. DSLs address this situa-
tion by providing tailored languages for experts, and by hiding un-
necessary details of solution domains. Code for particular solution
domains is automatically generated through model transformations.
This significantly increases the productivity of domain experts, and
enables portability to other solution domains at the same time.

DSLs are no new topic in computer science. Better availabil-
ity of technology that supports language development nowadays
makes them applicable for a broader scope of applications. There-
fore, the development of DSLs has become economical for smaller
projects as well. Especially the increasing capabilities and con-
figurability of modern systems provide areas for Domain-specific
Languages; a good number of our past DSL projects yielded con-
figuration languages that configured systems, system variants, and
embedded behavior on a high level. However, in the past, research

has focused on the technological aspects of Domain-specific Lan-
guages as well as on their visual presentation. Methodological lan-
guage engineering is still an uncovered spot. This yields quality
problems with respect to the developed languages; a trend that also
hits uncontrolled software development. Existing studies indicate
that about 30% of developed DSLs are too narrow or too broad
to be useful, or that about 40% of all developed languages do not
reflect the processes that they will be applied in (cf. [8])

We therefore developed a DSL development approach that
transfers well-proven concepts of software engineering to language
development. In particular, we use the concept of design patterns
and traceability to improve language development. Design patterns
capture language development best practices by conserving proven
solutions and documenting their proper application. Traceability
ensures that important decisions are documented and links parts
of the language to the requirements that they originate from. Both
do not only increase language quality, but also enable developers
to better understand DSL metamodels, which both enables quality
control activities and maintenance activities. Based on a real-world
example, we show how our methodology supports language devel-
opers in creating high-quality languages.

The remainder of this paper is structured as follows: Section 2
surveys related work and provides a brief overview of existing tool
chains for language implementation. Section 3 describes the funda-
mental principles of pattern-based DSL development and traceabil-
ity. Section 4 illustrates our approach in the context of a real-world
example. Section 5 draws conclusions and lays out future work.

2. Related Work
Even though engineering approaches to language development
have not been heavily addressed by recent research activities, there
exists a body of knowledge that needs to be discussed:

The authors of [8] discuss worst practices for DSL development
that language developers should avoid. The study was based on
several real-world DSL development projects; the mentioned bad
practices were applied within these projects with a specific prob-
ability. Even though most of these projects were related to the
DSL tool MetaEdit+, most of the discussed bad practices are tool-
independent and do lower the quality and acceptance of DSLs cre-
ated with them. Therefore, during the development of our DSL de-
velopment approach, we put special emphasis on the construction-
related worst practices listed in [8], and included means to avoid
them. The findings of [8] are substantiated by the findings pub-
lished in [16] and [7], which especially confirm the importance of
language focus, role-specific requirements, and the need to avoid
over-complete and overloaded languages.

The work presented by [10] lists DSL development approaches
and compares them with each other. The authors structure DSL de-
velopment into different phases and identify various patterns for

1 2011/10/5

mailto:christian.schaefer@iese.fhg.de
mailto:thomas.kuhn@iese.fhg.de
mailto:mario.trapp@iese.fhg.de


each of these phases. Moreover, they provide qualified decision
guidelines for language developers. In the work published in [15],
approaches for the design and implementation of DSLs are ana-
lyzed and again recurring patterns are derived. However, in both
publications the identified patterns are on a much higher abstrac-
tion level than the patterns that we have defined. They are there-
fore rather meant for categorizing different DSL development ap-
proaches.

In [4], the authors present an approach for a pattern specification
language that is capable of specifying patterns for MOF-compliant
metamodels. They also demonstrate how to derive a pattern detec-
tion algorithm from a given pattern specification, which is helpful
for specifying and detecting anti-patterns such as the ones main-
tained in [3].

The authors of [9] present an approach for metamodel compo-
sition that is also applied to create UML-based Domain-specific
Languages. Similar to our approach, several specialized composi-
tion operators are defined to support metamodel composition. The
work presented in [5] proposes an approach based on language tem-
plates, which is similar to our pattern-based DSL construction ap-
proach. Here, a novel metamodel composition method called tem-
plate instantiation is applied by the authors. In [13], the authors
provide a methodology and a framework for defining the semantics
of a DSML using a compositional approach. The authors define
the notion of domain concepts, which attach semantic information
to metamodels, and then show how these domain concepts may be
combined to build a new DSL. In [14], this work is extended to also
take the concrete syntax into account.

The work presented in [14] also describes an approach for DSL
development, which is focused more on a formal backend than on
guiding developers towards creating high-quality languages. This
approach might be used as a technical foundation to which the
concepts described in this work can be applied.

We therefore conclude that DSL concepts are developed by
experts in creative processes whose outcomes depend on skills
and experience. Results are hardly predictable and not repeatable.
Even worse, known bad practices are applied in numerous ongoing
language development processes due to inexperienced language
developers and missing guidelines.

In addition to methodological approaches, tool support plays
an important role in language development. In the following, we
therefore provide a brief overview of various tools for DSL devel-
opment.

Within the Eclipse platform, there exist a couple of plugins
that support DSL development: The Eclipse Modeling Framework
(EMF), for example, allows for easily defining domain-specific
metamodels and basic infrastructure. Using the Graphical Model-
ing Framework (GMF), one can easily define graphical editors on
top of the EMF model. For textual DSLs, the Xtext Framework
provides means for creating the language syntax and sophisticated
text editors. Other DSL-related plugins can be found in the Eclipse
Modeling Project (EMP) [6].

MetaEdit+ is a commercial tool for building and using domain-
specific modeling solutions [11]. The focus of MetaEdit+ is on the
development of graphical, graph-based DSLs with optional code
generation. It comes with its own proprietary metamodeling lan-
guage for the definition of a DSL abstract syntax. A key distinctive
feature is the symbol editor for the development of a concrete lan-
guage syntax, which lets one easily draw DSL elements.

MagicDraw is a commercial UML modeling tool [12], which
provides further capabilities for creating DSLs through its built-
in DSL customization engine. In contrast to the aforementioned
tools, rather than using plain metamodeling, the user builds a DSL
on top of the UML using UML profiles. With the provided DSL
engine, UML properties can be hidden, own symbols can be used,

and new diagram types can be defined. As the underlying model is
still a UML model, it can be exported to and processed by any other
UML-related tool.

3. DSL Development
Our approach applies traceability and language patterns to support
controlled language development. Language patterns ensure that
proven and good solutions are used to create the DSL metamodel.
Traceability from requirements to pattern application ensures that
all language requirements are reflected in the DSL metamodel. It
indicates whether all requirements are addressed, and that no super-
fluous language elements have been added to the DSL. Traceability
also makes pattern application and therefore decisions regarding
the metamodel explicit. While both approaches do not guarantee
quality languages alone, they support language developers in creat-
ing well-formed, focused, and maintainable languages.

3.1 Requirements and Traceability
Formalization of language requirements and traceability support is
realized through a model similar to use-case models of UML2. The
model captures activities that describe overall tasks of the DSL.
Each task is substructured into activities that are performed by per-
sons, which are abstracted through roles. Roles define persons with
common knowledge and duties regarding the DSL, the problem
domain, or the solution domain. Each task uses a certain set of
language elements that are found during elicitation meetings and
potentially updated during language development. An example of
such a requirements model is shown in Figure 4. Language patterns
are then applied to create a DSL out of these language elements,
e.g. by defining connections, containments and other modeling ap-
proaches. Each language pattern is traceable to a set of language
elements and tasks from the requirements model (cf. Figure 5).
This enables tracing of decisions regarding DSL development to
concrete requirements and prevents superfluous concepts.

3.2 Language Patterns
In software engineering, patterns are reusable entities that conserve
proven concepts. They need to be adapted and integrated into new
contexts, and therefore require more effort than integration of pre-
existing components. However, they also provide more flexibility.
This fits perfectly to DSL development, because these languages
need to be closely tailored to problem domains and domain ex-
perts. A pattern supporting development of data flow languages
could conserve domain independent aspects of data flow, and still
be adapted to concrete language needs. Language patterns therefore
always need to be applied to a context, which consists of selecting
one pattern out of a pattern pool, adapting it to the given context,
and integrating it into an existing environment (e.g., an existing
metamodel).

Each pattern has to provide particular information that support
their application. This includes, e.g., their name, the problem to
be solved, the provided solution, and the rationale behind the pat-
tern. Each pattern also has to provide context information defining
the contexts a particular pattern may be embedded into. In order to
provide the necessary information in a structured way, there exist
a couple of different notation styles [2], where each style basically
contains the same information, but puts emphasis on different as-
pects of a pattern. For the language patterns, we choose and adapt
the form described by J. Coplien:

∙ Name: A unique and descriptive name of the language pattern.
∙ Problem: A description of the design challenge. This may be

described, e.g., in the form of typical application scenarios.

2 2011/10/5



∙ Context: The context that the pattern is embedded into and the
prerequisites that have to be met for being applicable.

∙ Forces: The fundamental principles that clarify and help in
understanding the structure of the problem, also pointing out
design trade-offs between different solutions.

∙ Solution: A description on how to solve the given problem. This
typically contains a description of an excerpt of the language’s
resulting metamodel.

∙ Rationale: A detailed explanation for the provided solution and
why it solves the issues of the problem.

∙ Related Patterns: Names of related patterns that provide solu-
tions for the same or similar problems.

As an example we define the pattern “Unnavigable Nodes and
Links” (cf. Figure 1), which provides a solution for the very com-
mon situation where two elements have to be connected by a re-
lation element. The pattern provides the necessary information in
the form described above. In particular, the solution section shows
how to apply the pattern for deriving the respective part of a lan-
guage’s metamodel. Thus language patterns support the creation of
DSL metamodels by taking an input metamodel and transforming
it into an output metamodel. The language metamodel is created by
a series of these transformations.

For the solution section of the pattern, we use our own formal-
ism to describe how to proceed from a given source metamodel (the
context of the pattern) and transform this into a new output meta-
model with modified or possibly newly created metaclasses. This
is done in two steps: First, an intermediate metamodel that consists
of metaclasses for language concepts and language elements is cre-
ated. Second, to obtain the final metamodel, the intermediate meta-
model is stripped of language concepts to only contain metaclasses
for language elements. In our example, the language pattern defines
the concepts of Nodes and Links as two separate Entities, where En-
tity is a context concept already defined in the source metamodel.
Each Link defines two associations to one or two Node elements:
One association is named from, the second association is named
to. In general, language concepts represent abstract concepts that
are introduced by the pattern. For example, they describe how a re-
lation, a substructure, or a complete condition monitoring system
is modeled without defining the concrete elements. The concrete
language elements (like, e.g., Wire and Sensor), which are specific
to the DSL under development, are then introduced as metaclasses
and specialize these concepts. The separation of a metamodel into
concepts and language elements supports the definition of pattern
contexts that document to which language elements a pattern is to
be applied, and which language elements will be changed by the
pattern.

As stated above, we defined a new formalism for the description
of the language pattern’s solution. The basic elements of this for-
malism are depicted in Figure 2, which are the name of the pattern,
context concepts, language element concepts (either Singleton or
Multiton), and various different types of relations (Generalization,
Association, Aggregation).

3.3 DSL Meta Models
Formally, a metamodel M = (sname, C,RGen, RAss, RAgg) is
defined as a five-tuple. The property sname contains a primitive
value describing the name of the metamodel. C is a set with all
metaclasses of the metamodel. A metaclass c ∈ C is defined as a
two-tuple (sname, A) consisting of the class name and a set of at-
tributes A. Attributes a = (sname, T, nmin, nmax) ∈ A consist of
a name, a primitive type T ∈ {String, Integer,Bool, F loat},
and of a minimum and maximum multiplicity nmin and nmax.
Here, a value of−1 represents unlimited multiplicity. RGen, RAss,

Pattern name:
Unnavigable Nodes and Links

Problem:
Language entities need to be connectable.

Context:
Language entities have already been created, but are still de-
coupled.

Forces:
Many (graphical) Domain-specific Languages built up on inter-
connected nodes, with nodes and links being the most general
abstraction level.
Navigability between nodes is not an issue, i.e., nodes themselves
do not need to know about connected nodes.

Solution:
Existing language entities are specialized into nodes and links.
Links reference their source and destination node. Nodes have
no references to links.

«ContextConcept»
 : Entity

«LanguagePattern»
Unnavigable Nodes and Links

«Multiton»
Link

«Multiton»
Node to

from

Rationale:
Specialization of entities into links and nodes clarifies their roles
in the language, which can also give hints regarding preferable
entity presentations (e.g., circles for nodes and lines for links).
Nodes do not need to know about how they are connected. It is
sufficient to store this information only within the links.

Related Patterns:
Navigable Nodes and Links

Figure 1. Pattern “Unnavigable Nodes and Links”

«LanguagePattern»
Name

«Singleton»
Structure«ContextConcept»

 : Entity

«Multiton»
Entity

Figure 2. Elements of Language Patterns

and RAgg represent generalization, association, and aggregation re-
lations. Generalizations r ∈ RGen : (C × C) are represented by a
pair of metaclasses. A particular generalization r = (c1, c2) there-
fore links metaclass c1 to metaclass c2. The first metaclass is the
specialized element, the second element is the general element. As-
sociations r = (sname, nmin, nmax, c1, c2) ∈ RAss additionally
define three primitive values containing the name of the associa-
tion, and its minimum and maximum multiplicities. Aggregations
r = (sname, nmin, nmax, c1, c2) ∈ RAgg are defined in a similar
manner.

Metaclasses are abstract language elements. Concrete language
elements, which are the elements that language users interact with,
additionally contain presentations. Thus, a concrete language ele-
ment p = (c, pr) is a relation that links a metaclass c to a presen-
tation pr. The set P contains all concrete language elements of a

3 2011/10/5



DSL. A view Vn is a set of concrete language elements that belong
together. Views thus present parts of the information that is stored
in a model of the DSL in a way that supports one domain-specific
activity. A DSL usually contains several views Vn, which address
different activities and the needs of different roles. The views to-
gether with the concrete language elements form the concrete syn-
tax of the DSL. All views Vn of a DSL are collected in the set
V . Transformation rules for one solution domain t ∈ Tn repre-
sent transformations from the problem domain of a DSL into one
solution domain. A language may support multiple sets of trans-
formations Tn for several solution domains. The set T = {Tn}
contains all transformation sets of a DSL for all solution domains.
A Domain-specific Language LDSL = (M,P, V, T ) is therefore
defined as a tuple consisting of a metamodel, presentations of lan-
guage elements, views, and transformations. In this paper, we will
focus on the construction of the metamodel with the help of our
language patterns.

3.4 Pattern Application
The overall procedure for applying a pattern to a given input meta-
model is described in Figure 3. First of all, all language element
concepts defined within the pattern are added to the metamodel
as abstract metaclasses. For the application of our example pat-
tern from Figure 1, this would mean that the language element
concepts Node and Link are added to the metamodel. In the next
step, all generalization relationships defined within the pattern are
established in the metamodel. With the “Unnavigable Nodes and
Links”-pattern, this leads to adding the generalization relationships
between Node and Entity and between Link and Entity to the meta-
model. In the third step, missing language elements are added. This
depends on the concrete language that has to be developed. For ex-
ample, a DSL for a condition monitoring system needs to model
Sensors and Wires between them, which would thus be added as
metaclasses to the metamodel if they are not already contained. The
fourth step then connects those concrete language elements to the
language element concepts originating from the pattern by creating
generalizations between them. Hence, the language element Sen-
sor would specialize the concept Node and a Wire would specialize
Link. The fifth step is then to simplify the generalization hierarchy
by removing unnecessary generalization relationships. For exam-
ple, a Sensor might be already contained in the metamodel with a
generalization relationship to the language element concept Entity.
As Nodes also specialize Entities, the generalization between Sen-
sor and Entity can be deleted, maintaining only the generalization
to Node. The last step in applying a pattern is to establish all the
associations and aggregations between language elements accord-
ing to the specifications in the pattern. This would, e.g., create an
association named from between the language elements Wire and
Sensor in the metamodel.

It is important to note that the application of a pattern is not
a fully automated process that would require no additional input
from the language developer. In fact, the language developer needs
to think about which elements of the language are supposed to be
affected by the pattern. For example, he needs to choose which lan-
guage elements need to be created, how they specialize the lan-
guage element concepts from the pattern, and how relationships
defined in the pattern are adapted between them. However, by using
the patterns and following the aforementioned process, the impact
of design decisions becomes much more obvious to the language
developer, raising the overall quality of the resulting language sig-
nificantly.

In the following, we formally define the steps that were pre-
sented informally in the previous section, which enables, e.g., bet-
ter tool support for processing and modification of metamodels as
well as for verifying the results of the individual steps. Here, the

1. Add language element concepts as abstract metaclasses to
the metamodel

2. Establish generalization relationships between language ele-
ment concepts from step 1 to already existing language ele-
ment concepts

3. Add missing language elements as metaclasses to the meta-
model

4. Establish generalization relationships between language ele-
ments to the language element concepts introduced in step
2

5. Simplify the inheritance hierarchy by removing superfluous
generalization relationships

6. Establish association and aggregation relationships between
language elements

Figure 3. Pattern Application Algorithm

definitions for metamodels and patterns as described in the previ-
ous section apply.

The application of a pattern P to an input metamodel M starts
by adding P ’s language element concepts to M . The result is again
a metamodel. This is described by the function

faddConcept(P,M):=(sname,C∪LP∪LS ,RGen,RAss,RAgg)

which adds the sets of language element concepts LP and LS

defined in P to the set of metaclasses C defined in M , which is
possible since language element concepts themselves are abstract
metaclasses. In the following, we write C′ for this new set of
metaclasses. The other parts of M remain unchanged.

In the next step, the generalization relationships of P are added
to M , which is performed by the function

faddPatternGens(P,M):=(sname,C
′,RGen∪RPGen,RAss,RAgg)

This is only valid if the set of context elements defined in P is
also part of the set of metaclasses defined in M , thus if K ∈ C
holds true. If this is not the case, the application of the pattern to
M is not allowed, which can be checked as a prerequisite prior to
its application. The union of RGen and RPGen is written as R′

Gen.
In the next step, possibly missing language elements are added

to the set of metaclasses in M . These elements come from the
requirements of the DSL and will fill in the roles envisioned by
the language element concepts of the pattern. Of course, M might
already contain the necessary language elements, in which case no
further elements need to be added.

In the fourth step, generalization relations between elements
and concepts are added to M , which clarify the roles of language
elements with regard to the pattern’s language concepts. This is
described by the function

faddGens(P,M) := (sname, C
′, R′

Gen ∪G,RAss, RAgg)

where G : C × L is a set of generalization relationships that
specialize language element concepts from the pattern. The union
of R′

Gen and G is written as R′′
Gen. As C might contain language

element concepts from previous patterns, adding generalizations
might lead to illegal cycles in the inheritance hierarchy. In order
to detect such cycles, we do not allow adding any generalization
relation that would allow for an inheritance path in M other than

4 2011/10/5



the ones defined in the set

HR′′
Gen

=
{
(r1, r2, ..., rn) ∣ ri = (ri,1, ri,2) ∈ R′′

Gen,i∈{1,...,n},

∧ ∀j ∈ {1, . . . , n− 1} : rj,2 = rj+1,1

∧ ∀k ∈ {1, . . . , n} : ∀m ∈ {1, . . . , k} : rk,2 ∕= rm,1

}
The fifth step deals with the simplification of the inheritance

hierarchy by removing generalization relationships that add no fur-
ther information. That is, we delete any generalization relationship
r = (r1, r2) from R′′

Gen, for which the predicate

p(r) := ∃ℎ = (ℎ1, ℎ2, . . . , ℎn) ∈ HR′′
Gen

:

n ≥ 2 ∧ ℎ1,1 = r1 ∧ ℎn,2 = r2

holds true, thus leading to the final generalization set R′′′
Gen.

In the final step of the pattern application process, associations
and aggregations are added to the metamodel. So, for an association
relationship rp = (sname, nmin, nmax, x1, x2) ∈ RPAss cor-
responding associations r = (sname, nmin, nmax, c1, c2) where
(c1, x1), (c2, x2) ∈ R′′′

Gen are created and added to the sets RAss.
Accordingly, aggregation relationships are created and added to the
set RAgg . For the new sets, we write R′

Ass and R′
Agg , respectively,

so that in the end, after applying a pattern, the new metamodel is
defined as follows:

M ′ = (sname, C
′, R′′′

Gen, R
′
Ass, R

′
Agg)

With subsequent application of several patterns, the metamodel
will contain a lot of language concepts that may bloat it up and thus
make it more complicated to be understood. Therefore, it makes
sense to strip it of these. So, let X be the set of all language element
concepts in a metamodel M and RX = {(r1, r2) ∈ RGen ∣ r1 ∈
X ∨ r2 ∈ X} be the set of all generalization relationships coming
from or going to a language element concept. Then the function

fstrip(M) := (sname, C ∖ X,RGen ∖ RX , RAss, RAgg)

removes all pattern-related parts in M . However, one should keep
in mind that once this function is executed, application of further
patterns is more difficult, as required context concepts of a pattern
are now missing and first need to be added to the metamodel
manually.

4. Case Study
We applied the proposed pattern-based development approach in
several projects. One of them was the development of a DSL for a
real-world Condition Monitoring System (CMS). This project was
conducted together with a small mechanical engineering company
and therefore shows the applicability of our approach in a real-
world industrial context. The specifics of the developed system are
detailed in [1].

4.1 Requirements Model
Development of DSLs is similar to software development to some
extent: first requirements are elicited, then subsequent development
and quality assurance stages are executed. For DSL development,
we first model each language requirements as shown in Figure 4.
This model defines DSL requirements, language users, and an ini-
tial set of language elements. During language development, this
model is extended; each concrete language element must be traced
to at least one requirement of this model. This ensures absence of
superfluous elements. Language patterns will be traced to language
requirements as well to provide traceability of metamodeling con-
cepts to requirements.

«Language under Development»
CMS-DSL

«Activity»
Define Behavior of CMS

Connect Data-
Flow Operators 
with Relations

Connect Input 
Ports to Data-Flow 

Operators

Add Data-Flow 
Operator to 

Behavior

«Activity»
Define Structure of CMS

Connect Sensors to 
Input Ports

Add Sensors to 
CMS

Create Input Ports

«Language Element»
FlowOp

«Language Element»
 Inport 

«Language Element»
 Sensor 

«Language Element»
 FlowIn

«Language Element»
 FlowLink 

«Language Element»
Wire 

«Role»
Engineer

«access»

«access»

«access»

«create»

«create»

«create»

«access»

«access»

«create»

«create»

«create»

Figure 4. Use Cases and Language Elements identified in Phase 2

4.2 Metamodel Construction
The existing requirements model already defines concrete language
elements. However, right now, these are unstructured and it is not
yet clear which of them are going to be included in the DSL meta-
model and how. Also, relationships between language elements are
not yet defined and additional auxiliary language elements might
still be missing. These aspects will now be dealt with the construc-
tion of the DSL metamodel.

Metamodel construction starts with an empty metamodel M =
(“CMS”, ∅, ∅, ∅, ∅). The first step now is to add the Entity language
element concept. This can be seen as applying a very simple,
initial pattern that defines no further context elements and only
introduces this most general kind of language element concept.
All language elements that are added to the metamodel at some
point should directly or indirectly specialize this concept. Because
of its simplicity, only steps 1, 3, and 4 of the pattern application
algorithm (cf. Figure 3) have an effect. Hence, after adding the
Entity concept, the already identified language elements are added
and the specialization relationships to it are established. Formally,
the metamodel M is then defined as follows:

M=(“CMS”,{Entity,Sensor,Wire,Inport,F lowIn,F lowOp,F lowLink},

{(Sensor,Entity),(FlowOp,Entity),(FlowIn,Entity),

(Inport,Entity),(Wire,Entity),(FlowLink,Entity)},∅,∅)

The entity pattern includes language elements in the metamodel
of the DSL, but since it is a very generic pattern, it typically does
not support direct realization of any particular requirement other
than the generic presence of language elements. More complex pat-
terns in subsequent steps will be related directly to requirements.
For the CMS, for example, we apply the pattern “Unnavigable
Nodes and Links” next, which was described in subsection 3.2 and
which supports realization of three requirements (cf. Figure 5). The
pattern adds the language concepts Nodes and Links and is ap-
plied to several language elements, transforming them into either
Nodes or Links by adding the respective generalizations. In addi-
tion, association relationships coming from Links are established
between language elements. A graphical representation of the re-
sulting metamodel is depicted in Figure 6. It shows the inheritance

5 2011/10/5



hierarchy between language elements and language concepts and
the association relationships between elements.

«ContextConcept»
 : Entity

«LanguagePattern»
Unnavigable Nodes and Links

«Multiton»
Link

«Multiton»
Node

Connect Sensors to 
Input Ports

Connect Input 
Ports to Data-Flow 

Operators

Connect Data-Flow 
Operators w ith 

Relations

«Language Element»
Sensor

«Language Element»
FlowLink 

«Language Element»
FlowInput

«Language Element»
FlowOp

«Language Element»
Wire

«Language Element»
Inport

to

from

Figure 5. Application of “Unnavigable Nodes and Links”

«Language Element»
FlowInput

«Language Element»
FlowOp

«Language Element»
FlowLink 

«concept»
Link

«concept»
Node

«Language Element»
Wire

«Language Element»
Inport

«Language Element»
Sensor

«concept»
Entity

to
from

from

to

from

to

Figure 6. Metamodel after “Unnavigable Nodes and Links”

Application of other patterns finally yield the complete meta
model. Each step of the meta model construction can be traced
to the application of a pattern that provides a concept, and to
a requirement that requires that concept, as well as the concrete
language elements that were affected by that concept. Figure 7
shows the complete DSL metamodel.

«Language Element»
 CM BehaviorElement 

«Language Element»
 CM StructureElement

«Language Element»
 CMStructure 

«Language Element»
 CMBehavior 

«Language Element»
FlowInput

«Language Element»
FlowLink 

«Language Element»
Wire

«Language Element»
FlowOp

«Language Element»
Inport

«Language Element»
Sensor

elements
0..*

elements
0..*

from

from

to

from

to
to

Figure 7. Final Metamodel of the CMS

5. Conclusion
In this article, we have presented a systematic development ap-
proach for Domain-specific Languages. Our approach is built upon
the use of language patterns, which provide proven solutions to
common metamodeling problems. We showed how the language
patterns can be defined and applied in a way that allows an iter-
ative development of high-quality DSL metamodels. Furthermore,
we demonstrated how the patterns support traceability of design de-
cisions regarding the metamodel to their originating requirements.
With the formal foundations for the definition of metamodels, pat-
terns, and their application on metamodels, we laid the ground for
tool supported processing of metamodels. This may assist the lan-
guage developer in applying the patterns and in facilitating their

usage. We successfully applied our approach in several case stud-
ies, one of them being the development of a DSL for Condition
Monitoring Systems. The results we achieved also show that our
approach is ready to be used in real-world industry projects.

In future, we plan to extend our approach to also integrate
patterns for the definition of DSL presentations and semantics.
From providing mechanisms to tightly integrate patterns for these
different DSL facets, we expect to achieve a high speed-up and
quality increase in DSL development. By integrating more and
more patterns we strive for the definition of pattern catalogs or
pattern languages, which may support creation of DSLs in many
different domains.

References
[1] D. Barkowski, T. Kuhn, C. Schäfer, and M. Trapp. Domain-Specific

Modeling as an Enabling Technology for Small and Medium-sized
Enterprises. Proceedings of the 10th Workshop on Domain-Specific
Modeling, pages 13–18, 2010.

[2] J. O. Coplien. Software Patterns. SIGS, 2000.
[3] M. Elaasar, L. C. Briand, and Y. Labiche. Metamodeling

Anti-Patterns, 2010. URL https://sites.google.com/site/
metamodelingantipatterns.

[4] M. Elaasar, L. C. Briand, and Y. Labiche. A Metamodeling Approach
to Pattern Specification and Detection. Technical Report SCE-06-08,
Carleton University, March 2006.

[5] M. Emerson and J. Sztipanovits. Techniques for Metamodel Compo-
sition. Proceedings of the 6th OOPSLA Workshop on Domain-Specific
Modeling, 2006.

[6] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Addison-Wesley, Upper Saddle River, NJ, 2009.
ISBN 978-0-321-53407-1.

[7] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Völkel. Design Guidelines for Domain Specific Languages. Pro-
ceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling,
2009.

[8] S. Kelly and R. Pohjonen. Worst Practices for Domain-Specific
Modeling. IEEE Software, 26(4):22–29, 2009.

[9] A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M. Maroti. On
Metamodel Composition. Proceedings of the 2001 IEEE International
Conference on Control Applications (CCA ’01)., 2001.

[10] M. Mernik, J. Heering, and A. M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37(4):316–
344, 2005.

[11] MetaCase. Domain Specific Modeling with MetaEdit+, 2011. URL
http://www.metacase.com.

[12] No Magic, Inc. MagicDraw UML, 2010. URL http://www.
magicdraw.com.

[13] L. Pedro, V. Amaral, and D. Buchs. Foundations for a Domain Spe-
cific Modeling Language Prototyping Environment: A compositional
approach. Proceedings of the 8th OOPSLA Workshop on Domain-
Specific Modeling, 2008.

[14] L. Pedro, M. Risoldi, D. Buchs, B. Barroca, and V. Amaral. Compos-
ing Visual Syntax for Domain Specific Languages. Proceedings of the
13th International Conference on Human-Computer Interaction. Part
II: Novel Interaction Methods and Techniques, pages 889–898, 2009.

[15] D. Spinellis. Notable Design Patterns for Domain Specific Languages.
Journal of Systems and Software, 56,(1):91–99, 2001. ISSN 0164-
1212.

[16] D. Wile. Lessons learned from real DSL experiments. Science of
Computer Programming, 51(3):265–290, 2004.

6 2011/10/5

https://sites.google.com/site/metamodelingantipatterns
https://sites.google.com/site/metamodelingantipatterns
http://www.metacase.com
http://www.magicdraw.com
http://www.magicdraw.com

