
A Domain Specific Language for Enterprise Grade
Cloud-Mobile Hybrid Applications

Ajith Ranabahu
Kno.e.sis Center

Wright State University
Dayton OH, USA

ajith@knoesis.org

E. Michael Maximilien
IBM Research

San Jose CA, USA
maxim@us.ibm.com

Amit Sheth
Kno.e.sis Center

Wright State University
Dayton OH, USA

amit@knoesis.org
Krishnaprasad
Thirunarayan
Kno.e.sis Center

Wright State University
Dayton OH, USA

tkprasad@knoesis.org

ABSTRACT
Cloud computing has changed the technology landscape by
offering flexible and economical computing resources to the
masses. However, vendor lock-in makes the migration of ap-
plications and data across clouds an expensive proposition.
The lock-in is especially serious when considering the new
technology trend of combining cloud with mobile devices.

In this paper, we present a domain-specific language (DSL)
that is purposely created for generating hybrid applications
spanning across mobile devices as well as computing clouds.
We propose a model-driven development process that makes
use of a DSL to provide sufficient programming abstractions
over both cloud and mobile features. We describe the un-
derlying domain modeling strategy as well as the details of
our language and the tools supporting our approach.

General Terms
Cloud Computing, Domain Specific Language, Cloud-Mobile
hybrid applications, Program generation, Programming ab-
stractions

Keywords
cloud computing, domain specific languages, programming
abstractions

1. INTRODUCTION
The innovative mobile startup company Foursquare1 enables
users to broadcast their location via their mobile devices,
find where their friends are located, as well as interact with
local businesses for incentives to visit their physical loca-
tions. Foursquare currently supports five mobile phone plat-
forms and hosts their back-end services on the Amazon EC2
cloud. Foursquare is an excellent example of a modern tech-
nology company where the technical focus is on both mo-
bile and cloud platforms. It has become common to have
customers interact via mobile devices while the back-end is
hosted on a pay-as-you-go cloud. Using a cloud for back-
end services is a viable solution for young technology busi-

1https://foursquare.com/

nesses since it allows them to avoid significant upfront costs
and enable rapid growth. This is a reflection of the cur-
rent technology landscape where businesses are using mo-
bile platforms for their front-end applications, while using
computing clouds for their back-end services.

Technology companies similar to Foursquare face two im-
portant challenges. The first challenge is managing the de-
velopment of functionally equivalent applications for hetero-
geneous mobile platforms. The second one is maintaining a
portable back-end to mitigate any catastrophic outage, for
instance, being able to fail-over onto multiple clouds, avoid-
ing a single point of failure for the back-end services.

The importance of maintaining a portable back-end was
highlighted during the recent outage of Amazon EC2 2.
This lead to a catastrophic unavailability of the services of-
fered by Foursquare, damaging its reputation. The fact that
Foursquare was not able to restore services during the EC2
outage indicates the extent of their dependence on a single
cloud. Foursquare is just one of many tech-businesses that
was effected by the EC2 outage, further underscoring the
importance of having portability in cloud applications.

Developing portable cloud applications using current state-
of-the-art is a cumbersome process. The primary reason
for this is the heterogeneity across different cloud platforms,
e.g., different APIs, different data models, different query
languages and different supported frameworks. These het-
erogeneities are sometimes deliberately created to retain users
(vendor lock-in) or can arise due to the lack of standards.
This ultimately results in many cloud applications being re-
built from scratch, when the need to port arises.

Given the strong incentive to use clouds in the face of porta-
bility issues, we believe what is needed is a unified modeling,
development, deployment and management of cloud applica-
tions. This paper presents a platform agnostic development
component of the solution to this problem. We focus on

2http://blog.rightscale.com/2011/04/25/amazon-ec2-
outage-summary-and-lessons-learned/

the constrained domain of cloud-mobile hybrid applications.
Cloud-mobile hybrids are applications that have mobile de-
vice based front-ends but use cloud based back-ends for data
storage and processing, such as the Foursquare application.

This paper makes the following contributions:

1. We discuss our modeling strategy for cloud-mobile hy-
brids, based on the Model-View-Controller (MVC) de-
sign pattern.

2. We present a DSL based on the MVC modeling, high-
lighting the applicability in the enterprise space.

3. We detail the Web based tools that allow convenient
composition using our DSL.

4. We present a partial objective evaluation, comparing
code statistics of generated applications.

We call our system MobiCloud, signifying its applicability
across the cloud and mobile spaces. The DSL is referred to
as the MobiCloud DSL.

2. THE MOBICLOUD DSL
We now present our language design strategy and the details
of the DSL.

2.1 MVC based DSL Design
The MVC design pattern was first discussed by Trygve Reen-
skaug [6] and later detailed by Steve Burbeck [1], as a user
interface design paradigm for the Smalltalk programming
language. MVC has since been used as the primary design
strategy for a number of application frameworks, Apache
Struts 3 and Ruby on Rails 4 being two recent examples.

In exploring the typical applications being developed as mo-
bile device based front-ends for cloud based applications, we
made the following observations:

• The front-end and the back-end applications are usually
managed as separate projects. These projects depend
on well-defined service interfaces to implement either the
client or the service functions.

• Front-end applications are tied strongly to the back-end
application. Although some level of loose coupling is
possible, updates to the back-end applications would
eventually have to be propagated to the front-end ap-
plications. Such change propagation requires sweeping
changes to the front-end application code, often to multi-
ple front-end applications targeted towards different mo-
bile devices.

• A significant effort is needed to debug the applications
due to their use of remote procedure calls (RPC).

However, regardless of the separation between the back-end
and the front-end through a service layer, the functional
components still maintain their relevance to the MVC de-
sign. For example, the model data structure is present in
both the back-end and the front-end, equivalent in behavior
yet different in implementation. Similarly, the back-end ser-
vice implementations typically act as controllers that filter
the operations on the data storage.

3http://struts.apache.org/
4http://rubyonrails.org/

Thus, we modeled the entire functionality, i.e., the func-
tionality of the front-end mobile application as well as the
back-end cloud application, as a single unit, based on MVC.
The DSL-based representation of this model can be auto-
matically transformed to the required software components
as needed.

Our approach has the following benefits:

• The same model can be used to generate functionally
equivalent, mobile front-end applications, as well as cloud
back-end applications targeting different platforms.

• Many developers are familiar with the MVC design pat-
tern, thus this modeling has a gentler learning curve.

• Modeling complexity is reduced by treating the entire
functionality as a single unit. The complexity, how-
ever, is now transferred down to the DSL transformation
mechanism.

• The high level modeling includes data modeling that
can be used to generate data transformations. Although
such transformation are out of the scope of this paper,
they are important in solving the problem of application
migration across clouds.

Following the MobiCloud approach, application code porta-
bility is achieved by simply regenerating a functionally equiv-
alent application for the target platform. Achieving data
portability is also supplemented by the ability to generate
data transformations. Performing an application migration
(both code and data); however, would require the services of
a middleware layer, such as the IBM Altocumulus research
project [4].

2.2 Details of the DSL
MobiCloud DSL closely resembles the MVC design by pro-
viding constructs for each of the three key components: model,
view, and controller. Each of these constructs act as place
holders to collect details of the respective component. For
example, the model construct captures a unique identifier
for a model and the attributes of the model as key-value
pairs.

We developed the MobiCloud DSL in stages. The first gen-
eration (MobiCloud I) consists of only the basic constructs
and predefined action behavior. The second generation (Mo-
biCloud II) consists of extensions that enable a variety of
additional capabilities such as the use of predefined models,
views, or controllers.

Listing 1 depicts a first generation MobiCloud script for a
simple task manager application, intended to illustrate rela-
tionships between the components as well as the constructs
of the DSL. It includes :

1. A model with four attributes, used to store task de-
tails (lines 4 to 7). This construct expresses the data
structure that is needed to store the required applica-
tion data.

2. A controller with two actions for creating and retrieving
tasks (lines 9 to 12). Given that the data structure of
interest is task (indicated by using the model name in
actions in lines 10 and 11), the controller auto-generates
the operations for creating and retrieving a task data
structure.

Figure 1: Generated components for the Task Manager ap-
plication. The model contributes to two equivalent data
structures while the controller primarily contributes to a
back-end service wrapper. The view mainly contributes to
the mobile front-end portion, creating the UI

3. Two views with basic user interfaces to add and retrieve
tasks (lines 14 to 19). The views also assume, based on
the referred action and the model, the appropriate UI
rendering. For example, the create view includes text
boxes (or equivalent UI component in the target plat-
form) for string attributes.

Listing 1: The DSL script for the task manager applica-
tion in MobiCloud. Extra line breaks have been inserted for
formatting.

1 recipe (: t o d o l i s t) do
2 metadata ({ : id => ’ task−manager ’ })
3 # models
4 model (: task , { : name=>: s t r i ng ,
5 : d e s c r i p t i o n => : s t r i ng ,
6 : time => : date ,
7 : l o c a t i o n => : s t r i n g })
8 #con t r o l l e r s
9 controller (: ta skhand le r) do

10 action : c r eate , : task
11 action : r e t r i e v e , : task
12 end
13 # views
14 view : add task , { :models =>[: task] ,
15 : controller => : taskhandler ,
16 : action => : c r e a t e }
17 view : show tasks , { :models =>[: task] ,
18 : controller => : taskhandler ,
19 : action => : r e t r i e v e }
20end

The current MobiCloud tools (Section 5) are capable of pro-
ducing Android and Blackberry applications as front-ends
and Google App Engine (GAE) and Amazon EC2 applica-
tions as back-ends. The generated applications are read-
ily deployable, either using the MobiCloud tools or using
the respective cloud or mobile development kits (SDK). For
brevity, we conclude our description of MobiCloud I here
and direct the readers to Manjunatha et. al. [3] for details.
In the next section, we discuss the new extension capability
of the second generation MobiCloud DSL.

3. EXTENSIONS
The second generation MobiCloud (MobiCloud II) added
an extension capability to allow predefined models, views,
or controllers to be available to the language, simply by
requiring the extension in a script.

Listing 2 shows a partial code fragment from the second gen-
eration MobiCloud, exemplifying the use of an extension. In
general, an extension adds specific capabilities to the gen-
erator. For the illustrated URL extension, the generators
receive the ability to generate controller code to fetch con-
tents of a URL, and optionally, assign values from the output
to a specified model. Fetching the contents of a URL is a
capability present in all cloud platforms but each platform
carries its own quirk; for example, GAE requires the use of
the Google URL fetch library to access external URLs while
EC2 has no such restriction.

Listing 2: Using the URL fetch extension in MobiCloud.
Extra line breaks have been inserted for formatting.

1# Generic HTTP f e t c h e r
2# exemp l i f i e d us ing Yahoos network time f e t c h e r
3 recipe : h t t p f e t ch do
4 # Enabl ing gener i c h t t p ex tens ion
5 ex t en s i on s [’ http ’]
6 # metadata
7 metadata ({ : id => ”h t tp f e t ch e r ”})
8 # models
9 model : t ime value , { : t s => : i n t }

10 #con t r o l l e r s
11 controller : time manager do
12 action : f e t ch t ime , : t ime value ,
13 { : type=>’http ’ ,
14 : u r l => ’ http :// deve loper . yahooapis . com/xx ’ ,
15 : params => { : appid => ’ xxx ’} ,
16 : return mapping =>
17 { : t s=> ’/ Result /Timestamp ’}}
18 end
19 # views
20 view : view time , { :model =>: t ime value ,
21 : controller => : time manager ,
22 : action => : f e t ch t ime }
23end

3.1 Integrating Extensions
Extensions are integrated to the generators via predefined
hooks. The most common method of integration is to glob-
ally augment the semantic object model of the parsed DSL
by inserting predefined models or views during the post
model creation hook. For generation tasks that require spe-
cific code to be inserted, such as for controllers, targeted ex-
tension hooks are used. These are platform specific, i.e.,they
are required to follow the specific code guidelines for the re-
spective platform. For example, the URL Fetch extension
illustrated in the example modifies the controller templates
in both GAE and EC2 to insert customized versions of a
URL data extraction function. Extensions can also insert
extra libraries to the respective projects. This extension
mechanism is illustrated in Figure 2.

4. ENTERPRISE INTEGRATION
An important addition, possible via the extensions mech-
anism, is enterprise integration. One such featured exten-
sion is the Salesforce extension that allows one to integrate
Salesforce.com data, such as a contact list. Salesforce 5 is a
popular enterprise application platform to create business
applications and provides many support services such as
authentication, scaling etc. Salesforce integration requires
a significant learning and debugging effort, especially the
OAuth 6 based authentication mandated by Salesforce for
5http://www.salesforce.com/
6http://oauth.net/

Listing 3: A Salesforce contact extraction application written using the MobiCloud DSL. The salesforce extension adds extra
actions as well as predefined models. Extra line breaks have been inserted for formatting

1# Sa l e s f o r c e contac t l i s t manager
2 recipe : s f o r c e c o n t a c t s do
3 # sa l e s f o r c e ex tens ion
4 ex t en s i on s [’ s a l e s f o r c e ’]
5 # metadata
6 # Adding the s a l e s f o r c e ex tens ion
7 metadata ({ : id => ” s a l e s f o r c e c o n t a c t s ” ,
8 # mandatory va lue s from the remote app l i c a t i on
9 : s a l e s f o r c e c l i e n t i d => ’ xxxxxxx ’ ,

10 : s a l e s f o r c e c l i e n t s e c r e t => ’2788412111461228187 ’ ,
11 : s a l e s f o r c e s e r v e r r o o t => ’ na3 ’ })
12 # models
13 model : s a l e s f o r c e c o n t a c t # sa l e s f o r c e contac t ob j ec t , a t t r i b u t e s prede f ined by the ex tens ion
14 #con t r o l l e r s
15 controller : contact manager do
16 # fe t c h & d i s p l a y con tac t s from s a l e s f o r c e
17 action : f e tch , : s a l e s f o r c e c o n t a c t , { : type => ’ s a l e s f o r c e ’}
18 end
19 # views
20 view : v i ew contacts , { :model =>: s a l e s f o r c e c o n t a c t , : controller => : contact manager ,
21 : action => : f e t ch }
22end

Figure 2: Extension processing happens by augmenting the
parsed model globally or locally, and/or modifying specific
code segments in the templates

selected content. Using the MobiCloud Salesforce exten-
sion saves significant time and effort in developing integrated
applications by shielding developers from the intricacies of
the OAuth mechanism. The extension adds the necessary
libraries and user interfaces for authentication with Sales-
force, augmenting the base controllers and views, as well as
predefined data structures needed to extract Salesforce data.

Listing 3 illustrates the DSL code for an application that
displays a Salesforce contact list on a mobile device. The
following extra components are generated when this DSL is
used with the code generators.

• All required data structures to represent a Salesforce
contact. In this case, data structures for an organization
and a contact are generated. The attributes for these
data structures are defined by following the Salesforce
service descriptions.

• The views for the corresponding Salesforce models.

• A view that acts as the front-end for the OAuth based
authentication. When users try to perform actions that
need authentication, they are automatically redirected
to this authentication view.

• A controller component (a servlet in the case of a Java
Web application) that handles the authentication. This

controller caches the credential data following the OAuth
protocol. It also acts as the callback endpoint for the
OAuth handler.

• The necessary data storage provisions for the models as
well as the credential caches.

Some extensions under development will add support for
custom data type inclusions, UI customization and integra-
tion of popular services such as Google Maps 7, etc.

5. ONLINE TOOLS
Although the DSL itself is simple and concise, an MVC de-
sign becomes much more palatable when done graphically.
Such graphical design also alleviates a significant portion of
the language learning curve. Thus, we created two Web-
based applications to compose and store MobiCloud appli-
cations.

5.1 MobiCloud Composer
The composer is a graphical tool that can be used to gen-
erate MobiCloud code using graphical components. Figure
3(a) illustrates the Web based user interface of the com-
poser. Graphical icons representing model, view, and con-
troller constructs can be dragged on to a canvas and con-
nected to create the required configuration. The code is
created on the fly and displayed below in the code window.

The advantage of this graphical UI is two fold. First, it
alleviates the need to learn the syntactic details of the lan-
guage. A composition can be made entirely in the graphical
form, without writing any code. Use of graphical expres-
sions makes it easier to visualize the application and hence
results in faster composition. The second is that it facilitates
other convenient additions such as direct deployment and
packaging. The composer provides packaging for selected
mobile platforms and also the direct deployment capability
to clouds. For example, when the Android application is

7http://code.google.com/apis/maps/index.html

(a) MobiCloud composer user interface. The canvas at the center contains drag-
gable widgets that are plumbed together to graphically depict their relationships.
This image illustrates the graphical composition of the task manager application
listed in Listing 1.

(b) The generated application,
running on an Android device.
The image illustrates the auto
generated add task view.

Figure 3: The Composer UI and the generated application running on an Android device

compiled via the composer, it creates an Android package
(APK file) that can be installed in a compatible device.

The composer tools are available online for public use 8.
The current graphical composer is only MobiCloud I capa-
ble. A text based composer is available for MobiCloud II
compositions.

5.2 MobiCloud Catalog
MobiCloud catalog is a storage and catalog solution for Mo-
biCloud scripts. Users can store MobiCloud scripts, either
manually or by exporting directly from the composer. The
composer also has integrated features to search and import
code from a catalog. The users can simply search for publicly
available scripts and import them to the composer, with-
out leaving the composer. A MobiCloud catalog instance is
available for public use 9.

6. EVALUATION
We present the important code metrics of generated appli-
cations to highlight the manual effort that is needed to build
these applications. Table 1 highlights the lines of code in the
DSL vs. the generated applications. These statistics were
obtained using the metrics plugin 10 and the CLOC tool 11.

The code statistics clearly show that there is a significant
reduction in effort by using the DSL. Even for a simple ap-
plication with one model and one controller, the Android
front-end alone requires around 500 lines of Java and XML
code. Similarly, using an extension, such as the salesforce

8http://mobicloud.knoesis.org/
9http://mobicloud-catalog.knoesis.org/

10http://metrics.sourceforge.net/
11http://cloc.sourceforge.net/

extension, adds significant increase in the Java code and
complexity to the back-end.

7. DISCUSSION
The first generation MobiCloud provided evidence of the
benefits of a DSL in the development process. MobiCloud
advocates a model driven development process that us likely
to be preferred over traditional model driven approaches for
the following characteristics:

1. The DSL is simple and no heavy upfront design is re-
quired. This approach meshes well with Agile develop-
ment techniques which value quick iterations over heavy
up front designs.

2. The tool performance is sufficient to do rapid prototyp-
ing. The typical code generation task takes only a few
seconds.

3. The generated code may be used as boilerplate, i.e., de-
velopers can use MobiCloud to simply get rid of the
repetitive programming and focus on the more creative
aspects, such as customizing the UI.

HTML 5 has come up as a strong alternative to cross plat-
form applications. However, HTML 5 still lacks strong plat-
form integration features and is not able to replace the user
experience of a native mobile application. Thus it is safe
to assume that a tool like MobiCloud, with native front-end
generation capabilities, will be relevant, in spite of advanced
Web standards such as HTML 5. MobiCloud can be sim-
ply extended to generate an HTML 5 front-end, if such a
capability is desired.

7.1 The Case of the Smallest Common Subset
During initial public exposures of MobiCloud, many devel-
opers have raised the issue of just supporting the smallest

Script Description DSL
Lines
of Code

Models Views Controllers Target Generated Lines of
Code (Java, JSP
and XML)

Ratio of
DSL to
Generated

Shop Manager

An application to
keep track of jobs
and customers for a
mechanics shop

17 2 4 2

Android 1244 1:73
Blackberry 592 1:35
EC2 628 1:37
GAE 1021 1:60

URL Fetcher

Fetches and displays
timestamp values
from the Yahoo time
Web service

9 1 1 1

Android 486 1:54
Blackberry 100 1:11
EC2 289 1:32
GAE 466 1:52

Salesforce
Contacts

Fetches and displays
the contact list from
a Salesforce account

9 1 1 1

Android 794 1:88
Blackberry - -
EC2 - -
GAE 1377 1:153

Table 1: Selected code metrics of generated applications

common subset of features and thereby limiting the useful-
ness of the DSL. This aspect however, does not limit the
capabilities of the DSL severely in our case (mobile and
cloud) because features not directly present can always be
simulated or approximated in an indirect way during the
customized compilation process. That is, all mobile plat-
forms support features that are deemed essential and the
code generators can include graceful degradation of appli-
cation features when the target platform does not have the
required hardware or software capabilities. Such a strategy
also applies to the cloud platforms that support features
with similar semantics, yet are different syntactically and
structurally.

8. RELATED WORK
Using DSLs to generate target specific applications is not
new. There have been many efforts that have focused on
different domains, ranging from hardware drivers [8] to Web
applications [5]. Greenfield et al. [2] has provided a method-
ology to incorporate DSLs into the software engineering pro-
cess, implemented in specific sections of the Microsoft Visual
studio development environment. Simonyi et al. [7] has
discussed an abstraction based generative programming ap-
proach for software engineering. Although the application
of a DSL is not explicitly discussed, the principle followed
by Simonyi et al., agrees with the MobiCloud approach.

In the area of mobile application development, there are
many commercial vendors that provide unified development
kits for multiple mobile platforms. Rhomobile 12 is one such
vendor that provides a wide array of capabilities using a
Ruby based platform. Other commercial service providers
such as PhoneGap 13 and Cabana 14 have used HTML5, CSS
and javascript as the foundation of their development plat-
form. Almost all these frameworks depend on the mastery
of an existing programming framework and do not provide
a high-level view of the application similar to MobiCloud.
Google Web Toolkit (GWT) 15 has a conceptual similarity
to MobiCloud, since it treats a Web application as a single
unit during development. However GWT is not intended
for server side portability and only supports HTML driven
front-end portability across multiple browsers.

12http://rhomobile.com/
13http://www.phonegap.com/
14https://www.cabanaapp.com/landing/
15http://code.google.com/webtoolkit/

9. CONCLUSION
Modeling and developing portable cloud-mobile hybrid ap-
plications, is becoming an important requirement for busi-
nesses. Using a well-crafted DSL, we can provide an ac-
ceptable solution, by generating platform-specific applica-
tions with equivalent functionality. The MobiCloud solution
has amply demonstrated that such a system is viable, and
with the additional capabilities provided by the extensions,
it shows promise to provide a comprehensive solution.

10. REFERENCES
[1] S. Burbeck. Applications Programming in Smalltalk-80:

How to Use Model-View-Controller (MVC). Softsmarts,
Inc., 1987.

[2] J. Greenfield and K. Short. Software Factories:
Assembling Applications with Patterns, Models,
Frameworks and Tools. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
OOPSLA ’03, pages 16–27. ACM, 2003.

[3] A. Manjunatha, A. Ranabahu, A. Sheth, and
K. Thirunarayan. Power of Clouds In Your Pocket: An
Efficient Approach for Cloud Mobile Hybrid
Application Development. In 2nd IEEE International
Conference on Cloud Computing Technology and
Science, pages 496–503. IEEE, 2010.

[4] E. Maximilien, A. Ranabahu, R. Engehausen, and
L. Anderson. IBM Altocumulus: A Cross-cloud
Middleware and Platform. In Proceeding of the 24th
ACM SIGPLAN conference companion on Object
oriented programming systems languages and
applications, pages 805–806. ACM, 2009.

[5] M. Nussbaumer, P. Freudenstein, and M. Gaedke.
Towards DSL-based Web Engineering. In Proceedings of
the 15th international conference on World Wide Web,
pages 893–894. ACM, 2006.

[6] T. Reenskaug. The Original MVC Reports. Xerox Palo
Alto Research Laboratory, PARC, 1978.

[7] C. Simonyi, M. Christerson, and S. Clifford. Intentional
Software. ACM SIGPLAN Notices, 41(10):451–464,
2006.

[8] S. Thibault, R. Marlet, and C. Consel. A Domain
Specific Language for Video Device Drivers: from
Design to Implementation. In Proceedings of the
Conference on Domain-Specific Languages on
Conference on Domain-Specific Languages (DSL),
1997, pages 2–2. USENIX Association, 1997.

