Bottom Up Creation of a DSL Using Templates and JSON

Claude Petitpierre

EPFL

Station 14, 1015 Lausanne, Switzerland
claude.petitpierre@epfl.ch

ABSTRACT

This paper proposes a concept and a workbench that allow
developers to devise various kinds of applications with the
help of templates. The workbench supports the development
from the creation of the templates up to the (automatic)
generation of a DSL (Domain Specific Language), providing
developers with a bottom up support that mirrors the top
down MDE (Model Driven Engineering) attempt to bolster
application development.

Unlike usual RAD (Rapid Application Development) tools
or wizards embedded in IDEs, the tool we propose is generic
and independent of any platform (but of the IDE). By con-
ception, it automatically takes into account the modifica-
tions and the new components into the subsequent phases
of the development. These components are instantiated un-
der the control of a specification structure (JSON objects,
Javascript Standard Object Notation) from which the DSL
and the corresponding compiler can be generated. The DSL
can be used to extend the application, as well as to develop
other applications that require similar presentations and op-
erations.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE)

General Terms
Design|vspace-1mm

Keywords
Templates, JSON, DSL

1. INTRODUCTION

This paper proposes a concept and a workbench [1] that al-
low developers to devise applications with the help of tem-
plates linked to JSON (Javascript Standard Object Notation
[2]). It spans the development of applications from the cre-
ation of the templates up to the automatic generation of a
DSL (Domain Specific Language [3]).

Broadly said, software design is performed under two um-
brellas: the planned and the evolutionary designs. The first
category is mainly built around UML [3, 4], which provides
software engineers with graphical notations to describe ap-
plication designs, and tools to automatically derive imple-
mentations or at least skeletons thereof. These approaches
are very complex and can only be envisaged to create gen-
erators that are heavily reused.

Evolutionary designs rely on the XP (extreme programming)
or agile development concepts [5]. The latter provides rules
to organize the development of an application, promoting in-
cremental development with short term planning, frequent
testing and refactoring to maintain the coherence of the ap-
plication. This approach is very successful, but it does not
provide specific development tools nor modeling support and
lets developers on their own to produce the repetitive parts
of an application.

In industry, engineers use mainly RAD (Rapid Application
Development) tools[12] or wizards (command sequencers)[13]
available in most IDEs (Integrated Development Environ-
ment) that guide them through the creation of the compo-
nents of their applications, such as the folder hierarchy, the
GUlIs, the HTML pages, the database tables and the in-
terfaces to these tables, as well as the data objects used to
transfer the data handled by the users from/to the database.
They also frequently start from a tutorial, extract the parts
they can reuse and build their application around that ker-
nel. The rest of the application is often done by cut-pasting
the previous components and adapting them to fit the new
tasks, a boring, error-prone and maintenance ill-suited phase.

According to our approach, the developer of an application
first creates the simplest prototype that is pertinent in the
frame of the whole application: typically, a single page that
contains a single field to enter a string in a database table,
which can be done with the help of one of the aforementioned
techniques. From this skeleton, the developer then selects
components containing parts that can be repeated (an entry
field) or that could themselves be repeated (a page) and con-
verts these elementary components into a set of templates
and a description structure. Of course, this phase can be
skipped if ancient templates are available.

In addition to the templates and the parameters, we have
defined a list that describes which files must be created from
which templates, in such a way that the whole application
can be completely reconstructed at any time, using the latest
templates.

Our tool has provision to support the edition and the man-
agement of the templates and the file description. When
the application grows and gets more stable, the workbench
can be used to generate a compiler for a DSL, automati-
cally derived from the specification object. From then on,
the parameters of the application can be entered through
this DSL, which verifies that the subsequent specifications

conform to the development underway when the DSL was
generated.

Note that this approach is not limited to Web application.
We have used it to generate GUIs, tutorials and even the
aforementioned compiler.

Content

The next section presents the problem solved by our ap-
proach and the contributions to its solution. Section 3 in-
troduces the JSON templates and the way we use them.
Section 4 describes the editor we have developed to manage
the templates related to a whole application. Section 5 de-
tails how to reference the files to create. Section 6 explains
the way we can build the DSL (Domain Specific Language)
from the specification object and Section 7 presents some ex-
periments we did with the workbench. Section 8 introduces
some related work.

2. USE OF TEMPLATES

Using a RAD tool, a developer can create the first prototype
of an application in minutes. But what does then her/his
team do for the subsequent 6 months ? Rails motto is “fa-
voring convention over configuration”, a very interesting and
broadly used concept, but in order to avoid ending up to a

. conventional application, it should be possible to escape
the conventions when necessary.

During development, engineers try different possibilities, cre-
ating new skeletons that they then remove to settle to other
solutions, which requires frequent refactoring. Application
stakeholders also want to evaluate several representations of
their applications to find the best ones. On the other hand,
end-users require applications to have homogeneous presen-
tations and behavior, and thus the new components are all
de facto similar to the first one generated. These consider-
ations make the use of templates particularly pertinent.

In order to position our approach, let us look at the following
source:

@Entity public class Customer {
@Id private Long id = null;
public String name;
private transient boolean check = false;
@OneToMany (mappedBy="customer_Id”)
public Long getId() { return id; }
public void setld(Long Id) { this.id = id; }
public String getName() { return name; }
public void setName(String name) {

this.name = name;

public transient boolean isCheck() { return check; }

}

It is a part of a JPA (Java Persistence API) object, which
holds data from a database. It is a typical example, the de-
tails are not important. The name of the class corresponds
to the name of the table from which the data are extracted.
The class defines a single field, name, of type string, as well
as getters/setters to access the data. It also specifies a rela-
tionship from another object via a reverse link, named cus-
tomer_Id. Obviously, the whole source can be reconstructed
from the three symbols customer, customer_Id and name,
knowing that the first one is the name of the table, the sec-
ond one, the name of the reverse link and the third one the

name of the column. One could even, without knowing much
of the language, create a second attribute of type string, or
another data object with a different table name and different
column names. The same set of symbols can then be used to
generate the fields that must appear on the page to present
a set of data or to fill the JPA. One just need a template for
each component and the list of symbols with their purposes.

Template generators are used in the RAD tools and the wiz-
ards and many template libraries (Section 8) are available
independently from these tools, but few offer an easy access
to the specification structure (the list of symbols) and most
require their users to develop their own data structures to
store the specification data.

Moreover, the successive steps performed during the trials
mentioned above are usually not logged and the developer
thus quickly looses track of the successive steps she/he did
to generate the application, which consequently becomes in-
creasingly heterogeneous as the development goes along. A
description of the architecture that is automatically kept
up-to-date is indispensable.

The templates, the specification structure and the descrip-
tion file handled by our plugin are directly managed by the
user. They are not hidden within the libraries. This is im-
portant, as these files provide a high-level model of the ap-
plication, from which the aforementioned architecture can
be derived. Moreover, as they are used to regenerate the
whole application, the model they represent is automatically
always up-to-date.

The commands we use in the templates are close to the
ones defined in the JSON project. They contain no code
or expressions, all the computations are made within the
specification object.

Refactoring can be performed within the templates, which
makes it extremely efficient and easy. Templates are highly
reusable in other projects.

One consequence of the use of templates is that an error
introduced in a template appears in all the components that
use that template. However, this is not a problem, as this
multiplicity makes it easier to find it and it can be fixed by
a single modification.

3. THE WORKBENCH

We mostly use the JSON standard, in other words Javascript
objects, but we had to slightly adapt its syntax to cover some
cases that would have been difficult to handle without these
modifications. One particular aspect had to be taken care of:
the attributes of a JSON object have no ordering. However,
the solution described in the next paragraph respects the
JSON fundamentals.

3.1 Definition of the Templates and the De-
scription Object

An example of the basic template commands available in the
JSON template environment is shown in the left column be-
low. The components of the object displayed on the second
column are referred to by the commands of the template.
The combination of the templates with the specification ob-
ject produces the result shown on the third column.

Template Object Result
class { class
{aaa} aaa : “Employee”, | Employee
{.section bbb} bbb : {
extends {xxx} xxx : “Person” extends Person
{end} 1,

{ {
{.repeated section ccc} | ccc: ["name”, String name;
String {@}; ?initial”, String initial;
{.end} ”surname” String surname;
]

} // end {aaa} } } // end Employee

The symbol class has no particular marks. It is thus copied
without any modification. aaa is placed between braces, it
forms an attribute. Its value is replaced by the value given to
the attribute with the same name in the object. The content
of section bbb is expanded, because its name is available in
the object. The value of its nested attribute, zxx, is given
the value defined in the attribute nested in bbb. The content
of the repeated section ccc is generated a number of times
corresponding to the number of elements contained in the ccc
array. The strings in the array elements have no attribute
name, they are accessed with the @ sign. } //end is just
copied to the resulting text and finally, {aaa} is expanded
into Employee again.

The JSON objects and sub-objects contain attributes with
strings, integers, sub-objects or sub-arrays. The arrays or
sub-arrays contain strings, integers or sub-objects, but no
attributes. The sections and the objects can be nested in
any order and to any depth.

One solution to specify an ordered list of different elements,
is to put them in the elements of an array, with a single
attribute in each element, and use them in the template as
indicated below:

{

{.repeated section rsec} rsec : [{ y
{.section a} x b: { ...} X
{.end} . {

{.section b} y ar { ... }
{.end} 1]
{.end} }

During the first pass in the repeated section, the y is gener-
ated and during the second pass, the z is, which corresponds
to the order defined in the array, not in the repeated section.

3.2 Enrichment of the specification object

A given part of the description object can be used in differ-
ent templates, for example to create the columns of the data
tables of the application, the lists of fields in which the end-
user enters the data, and so on. The few commands available
to specify a template cannot cope with all these situations,
but rather than extending the set of commands, or introduc-

ing computation in the templates we have introduced some
new possibilities of specification of the description object.

By default, our tool provides the following capabilities :

e Automatic insertion of attributes ’

_index: n” in the
array elements where "n” is the rank of the element.

They can be used to number elements.

e Automatic insertion of a capitalized version of attrib-
utes defined in a list (useful to create Java’s getters /
setters or class and variable names).

e Copy of a subtree of the specification object into an-
other attribute (useful to create relationships)

e Execution of predefined or user defined methods to
complete the object

The copy of a subtree into the attribute of another subtree
makes it possible to use the same elements at several levels
of the repeated sections. This sometimes revealed to be
needed, as the alternative would again have required the
introduction of new types of sections.

The predefined or user defined methods are written in Java
and called by reflexion. They are called from attributes that
start with the sign #. They take attributes, arrays or objects
as input and return objects or arrays that are inserted into
an attribute, the name of which simply drops the #. An
example follows:

#xxx : "merge(aaa, options)”,
options : |

{id: ’x”, readwrite},

{id:y”, readonly}

]
4. THE EDITOR

Our experience has shown us that it is very difficult to rec-
ognize what pieces in a template and in the corresponding
object create a given element in the resulting text. We have
thus developed an editor that offers several welcomed fea-
tures to support the developer in this task.

Our editor (Fig. 1) is available as a plugin under Eclipse [1].
The editor highlights the syntax of the three kinds of files:
the templates, the specification object and the description
file (see below). It opens several windows that display the
different files. A click on an element in any file highlights
this element in the clicked window and the elements that
have contributed to the creation of this element or that use
this element in the other windows.

Moreover, a number of helpers are available to insert the
commands both in a template and at the corresponding lo-
cation in the description object.

S. CREATION OF THE FILES AND FOLD-
ERS OF AN APPLICATION

The basic JSON template library has no provision to create
the many files of an application from the same object. Thus,
we have completed our tool to do just that.

— description)5F.fls &3 A1) Part.java [J] Task.java
[Files | Template 1 |
public class Legic |
private 5tring role, roleR; m
Query result; Cut
private Task task = null;
{.repeated section actionsﬂ} Co PY
{.section enterAndFind
private Collection<Task> & Paste w Are
{.end} Select
{.section create} Refresh
private Collection<Task=> t i aylis
{.end} Find/Replace
{.section createRecord} Edit [
private Collection<=Task> t. L rmiter = - JaylLis 1
{.end}
{.end} 1
———) .

I "Result 1 | Composed | Complete Main |

h

_index @ "1";

relationships_length : 2 @

b
_index : "2",
dataTables_length @ 3

b,

actions : [{
enterAndFind,
inputVar : "customerName”,
InputVar : "CustomerName",
#insert : "dataTables[customer]”,
preconditionMemory : "task.customerName==null",
preconditionSQL : "customerName IS NULL",
precondition]PA : "customerName S NULL", b i

Figure 1: Snapshot of the editor’s windows

5.1 Specification file

The descriptor file that describes which file is generated from
which template looks like the following text, borrowed from
one of our prototypes.

output directory ”..” // relative to this file’s folder

foreach dataTable
expand "data/Customer.java”
to 7src/data/"+1d+".java”

for whole
expand ”data/Task.java”
to 7src/data/Task.java”

All the templates, the object and the descriptor file must
be located in the same folder. If we store this folder in
an Eclipse project, the output directory with the relative
address that appears on the first line above is simply the
surrounding project.

The foreach command must point to an array. Each ar-
ray element is then used to create a separate file, the name
of which may include some field borrowed from the array
element. The template that must be used in combination
with this object is specified by the name placed beside the
expand keyword.

The for command is used to create a single file from the
whole object (in this case). In this file, the dataTable refer-
enced in the previous command can be used in its entirety in
a repeated section to create a list of references to the other
components (for example to create the database).

6. CREATING A DSL

The compiler generated by our tool only accepts sources that
correspond to valid description objects. The compiler recre-
ates the corresponding object and the workbench expands it
to generate the application as usual. The corresponding lan-
guage can be used to describe any application built with the
same components as the ones found in the application under

development, it is thus a DSL. In order to provide the de-
veloper with some form of documentation for the generated
DSL (nobody has ever seen the generated DSL beforehand!)
the tool also creates the source that should be compiled to
recreate the current application. This source is close enough
to the object for the developer to understand it.

Table 1 shows an example of a description object with the
corresponding generated and optimized sources. This exam-
ple has been used to implement an application for different
platforms. It describes the data table shown in Paragraph 2.
To save space, only one table is represented here, but the real
application has several tables and a list of actions that can
be performed by the end-user.

The first column shows the description object used by the
templates. This object is assumed to be an object written
by the developer during the first phases of the development.
The table descriptions must be stored in an array (dataT-
able), because they must correspond to a repeated section.
The #insert command passes the general application pa-
rameters into the right level of the template. The attributes
are stored in an array specifying the column names and types
in the format presented at Paragraph 3.1.

The source in the center column, automatically generated,
uses the syntax dataTable name {. . .}, which remembers
the syntax of a Java class. The table identifier will be used
for the filename in which the table code will be stored. The
developer is not constrained by the array and she/he can
interleave the blocks with other blocks, group elements as
she/he please to clarify the source code.

The third column shows the kinds of optimizations that can
be made (manually) to make the language more friendly.
Such optimizations are very easy to implement in the JavaCC
file. We only had to modify the syntax part, not the Java
statements, in such a way that after the modifications, the
compiler continues to generate the same object as in the first
version. Of course, this adaptation requires some knowledge
of JavaCC, but it is performed only when the development
team grows, other similar applications must be developed or
the project becomes an asset of the company.

Original Object

Generated Source

Optimized Source

{

dataTable : [{
id : ”customer”,
#insert : “application”,
attributes : [{
stringAttribute : {

finder

varName : "name”,

{

dataTable customer {

#insert “application”
attributes {
stringAttribute {
varName "name”
finder

program {
dataTable customer {
finder string "name”;
int "number”;
OneToMany to ”confirmedOrder”

}

} }
A
intAttribute: {
varName : "number”

} }
H; }

relationships : [{
OneToMany : {
to : "confirmedOrder”

} }
H }
} }
}

intAttribute {
varName "number”

relationships {
OneToMany {
to ”confirmedOrder”

}

DSL

The table above defines a customer
with two fields, a string and an integer

A finder will be created for the name

A relationship with another record,
confirmed order, will be built

Table 1: Transformation of an object to two forms of sources

6.1 Generation of the Compiler

The compiler is obtained according to the following consider-
ations. The object that describes an application can actually
be understood as an abstract syntax tree generated by com-
piling a hypothetical source that would represent the appli-
cation. Our tool generates thus both a source that is close to
this object and the corresponding compiler. By compiling
this source, the compiler recreates the original description
object, which can be used to generate the application. This
closed loop does not seem to be productive, but, unlike the
general object editor, the compiler only accepts sources that
contain information pertinent to the application. It is thus
more comfortable to continue the development with the DSL
than with the general editor, and the optimized DSL shown
in Figure 1 can be used by the domain experts.

The compiler is created with (what else?) templates. A
first operation traverses the tree of the object and creates a
flattened representation of its components within an array
of objects. This object is then used in conjunction with
a template to generate the production rules of a JavaCC
source. These rules are naturally recursive, which reinstalls
the original recursion. The same template is used for all
generations, which by the way shows the power of templates.

7. WORKING WITH THE APPROACH

As a test, we have developed four sets of templates corre-
sponding to four environments to create a simple Web ap-
plication introducing customers and parts in a database and
creating the orders of parts made by the customers. The
architecture has been devised to integrate these operations
within a generic workflow. The platforms were :

e Elementary JSP with servlets and SQL
e JSF with JPA

e PHP with SQL

e Ruby on Rail

These four applications can be expanded with the same spec-
ification object. Considering the fact that by changing the
object, other workflow applications may be generated and
that by changing the templates the same application may be
generated for different platforms, we can say that the tem-
plates correspond to the platform specific model and the ob-
ject, to the platform independent model, to refer to MDA’s
terminology.

8. RELATED WORKS

Our industrial experience with WebLang [6] has shown us
that the description of an application by a source code that
allows a whole regeneration at any time, is very efficient.

As already mentioned, our approach is derived from the
JSON templates [2]. Libraries to handle the objects and
to expand the templates are freely available.

The use of templates to build applications has been relied
on for a long time with approaches such as JSP (Java Server
Pages [10]), PHP (the well-known language used to cre-
ate Web pages) or ASP (Active Server Pages [11]). These
tools allow developers to introduce programming statements
(Java, C#, PHP code) into HTML pages to produce the
variable parts of these pages. The information retrieved by
these template-based generators have no standard data rep-
resentation and the interleaving of text and code makes their
templates difficult to read.

XSLT (EXtensible Stylesheet Language Transformations [9,
8]) is particularly well-suited to transform sources written in
XML into different kinds of documents. A control file, called
style sheet and written in XML too, defines what parts of
the source must be extracted and translated to what format.

Note that a JSON object can easily be converted to an XML

source and vice-versa, although some details must be taken
care of: on the contrary of JSON, the XML actions have
internal attributes, but no arrays. A partial treatment of
this aspect has been proposed in Paragraph 3.1.

The Eclipse Modeling Project [3] contains a set of powerful
tools for the development of DSLs. It contains, in particular,
two tools that generate source code from templates: JET
(Java Emitter Templates) and JMerge (Java Merge). JET
is a generic template engine derived from JSP. JMerge can be
used to regenerate sources in which a developer has already
introduced her/his own code. The project also supports the
creation of meta-models via different means, such as XMI,
Java annotations, UML or an XML Schema. These tools
require a huge initial investment and don’t seem to have
had much success yet.

Environments such as Ruby on Rails [12] allow developers
to generate the sets of files and skeletons required to build
an application by executing commands within a command
line interpreter. With such systems, a fast prototype can
quickly be created and shown to a customer. However, as
the generated elements must often be modified they cannot
be easily regenerated. There are few traces of the executed
commands, so that the vision of the architecture gets grad-
ually lost while the development proceeds. The workbench
has not been thought to address other platforms and can
hardly be reused for other purposes.

On Eclipse [13], the generation commands are called from
menus to create the projects with a dedicated hierarchy of
folders. A reduced access to the templates is available, but
there is no edition facilities and new templates cannot be
integrated without modifying the IDE plugins

All the tools available to create Web applications either
don’t give access to the underlying templates, at least not
with a user-friendly environment, or require their user to
cope with very complex data structures (JSP[10], ASP[11],
JET[3]). Our approach is not linked to any particular plat-
form (only to the IDE), it allows the user to display and
handle the templates, the specification data and the file de-
scriptors and offers tools to manage them comfortably. The
creation of a DSL is particularly useful for companies spe-
cialized in some domain who want to structure their team
with software and domain experts.

9. CONCLUSION

We have presented an approach supported by a workbench
that allows developers to create, manage and expand their
own templates. This workbench is available as an Eclipse
plugin [1]. The plugin supports the stepwise development
of templates and a specification object that describes which
template is used to create which file.

This approach draws from a previous project: WebLang [6],
which has been used to develop systems for several com-
panies and for a pedagogical game used by more than one
hundred students. WebLang can specify JEE components
and create a complete application, but the definition of the
templates and a DSL with it is less flexible than with the
new approach.

We have successively used the new method to create several
prototypes for different environments: a GUI started with
Eclipse’s Visual Editor, an application in plain JEE plus
SQL, one with JSF plus JPA, another one with PHP plus
SQL, one with Ruby on Rails, and finally the compiler of
the DSL itself.

Our project follows the de facto industrial practices, and
considers the benefits of the agile approach that recommends
to work on intermediate steps. The availability of the tem-
plates and the objects makes the refactoring (an important
aspect of agile methods) very efficient. The specification
object provides a model of the application, which could be
argued upon, but this assertion is supported by the capacity
of our tool to create a DSL from this object.

A characteristic of our new approach is that it has a very
smooth learning curve and requires only a few new natural
notations. The effort required to use it is progressive and
as the development enlarges its domain span and gets more
complex, a greater involvement of the developer provides
greater returns.

Acknowledgements

The workbench WebLang has been developed by Olivier
Buchwalder and transferred to industry by Jean Bourgeois.
The tools have been integrated into an Eclipse plugin by
Paul-Louis Meylan. The scenarios of the workflow proto-
types were proposed by Alain Wegmann and Biljana Bajic.
I got explanations for XSLT from Christine Vanoirbeek and
the Ruby on Rails version was developed by Nikhil Gupta.

10. REFERENCES

[1] Bottom up to a DSL : http://ltiwww.epfl.ch/EBUD

[2] JSON templates : http://org.json and
http://code.google.com/p/json-template/

[3] R. C. Gronback, “Eclipse modeling project : a
domain-specific language toolkit”, Addison-Wesley,
2009.

[4] S. Cohen, A. Soffer, “Scrutinizing UML and OPM
Modeling Capabilities with Respect to Systems
Engineering”, Proceedings of the 2007 International
Conference on Systems Engineering and Modeling.

[5] S. Ambler, "Agile Modeling”, JohnWiley& Sons, 2002.

[6] O. Buchwalder, C. Petitpierre, “WebLang: A
Language for Modeling and Implementing Web
Applications”, SEKE/06. San Francisco, USA.

[7] JavaCC compiler: http://javacc.java.net

[8] XSLT: http://www.w3.org/TR/xslt

[9] XSLT example:
http://zvon.org/xx1/XSLTutorial /Books/Output /ex-
ample72_ch2.html

[10] Java server pages:
http://www.oracle.com/technetwork/java/javaee/jsp/
index.html

[11] M. MacDonald, A Freeman, “Pro ASP.NET 4 in C#
20107, Apress, 2010.

[12] S. Ruby, D. Thomas, D.H. Hansson, “Agile Web
Development with Rails”, The Pragmatic Bookshelf,
2011.

[13] N. Dai, L. Mandel, A. Ryman, “Eclipse Web Tools
Platform”, Addison-Wesley.

