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ABSTRACT

A cornerstone in Domain-Specific Modeling is the defini-
tion of modeling languages. A widely used method to for-
malize domain-specific languages is the metamodeling ap-
proach. Fortunately, there are a huge number of metamod-
eling languages. This variety leads to two problems: the
selection of a metamodeling language and the interoperabil-
ity between metamodeling tools. In this paper, we analyze a
set of metamodeling languages (ARIS, Ecore, GME, GOP-
PRR, MS DSL Tools, and MS Visio), define criteria for com-
parison, and compare the selected meta-metamodels. The
comparison forms a foundation for solving the selection and
interoperability problem.

Categories and Subject Descriptors
D.3.3 [PROGRAMMING LANGUAGES]: Language
Constructs and Features

General Terms
Languages
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1. INTRODUCTION

Domain-Specific Modeling (DSM) is a software development
approach that uses models as primary artifacts in the devel-
opment process [8]. Models are an abstraction of a concrete
implementation and are expressed by a domain-specific mod-
eling language. A cornerstone in the development of a DSM
architecture is the definition of languages. In the area of
DSM, the metamodeling approach is a widely used method
to formalize languages with the help of metamodels. Gener-
ally speaking, a metamodel defines the concepts of a mod-
eling language and their relationships as well as constraints
and modeling rules. To define a metamodel, a metamod-
eling language is required that in turn is described by a
meta-metamodel [16].

Fortunately, there are a huge number of metamodeling lan-
guages. However, this variety also implies problems. The
first problem relates to the selection of a metamodeling lan-
guage. For a language designer, the choice of a suitable
metamodeling approach is a challenging task because there
is often a lack of knowledge about the selection criteria
and the offered metamodeling features. The second prob-
lem concerns the model interoperability. The development
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of a complex modeling infrastructure or the replacement of
a metamodeling tool requires the transformation of meta-
models and models between these metamodeling tools. An
example for this problem is the bridging transformation (e.g.
[3,4, 6,9, 10, 11]). The implementation of a bridge requires
knowledge about metamodeling concepts and their possible
mappings. We address these issues by comparing different
meta-metamodels. Particularly, our objective is a compar-
ative analysis of meta-metamodels in order to extract their
basic language features with possible variation.

The paper is structured as follows. In the subsequent sec-
tion, we give an overview of the meta-metamodels included
in the comparison. In Section 3 we describe metamodeling
concepts and compare the selected meta-metamodels. In
Section 4 we evaluate the comparison and in Section 5 we
relate our work to other comparison approaches. Finally, we
conclude in Section 6 with a discussion and describe future
work.

2. META-METAMODELS UNDER STUDY

We focus our comparison on a selected set of metamodel-
ing languages that fulfill the following requirements. The
first requirement refers to the kind of language definition.
We can distinguish two approaches: the lightweight and
heavyweight approach [7]. The lightweight variant adapts
a generic metamodel with domain-specific concepts. An ex-
ample for this approach is the stereotype mechanism from
the Unified Modeling Language [13]. The heavyweight ap-
proach creates a language through the definition of meta-
models which are created from scratch. In this article, we
investigate the heavyweight approach with a three-level hi-
erarchy that consists of models, metamodels and one meta-
metamodel. A further requirement concerns the concrete
syntax. If we distinguish between textual and graphical
modeling languages, we select metamodeling languages that
enable the definition of graphical languages with textual an-
notations. The last requirement is the availability as tool.
Based on these requirements, we choose the following tools
or meta-metamodels, respectively.

ARIS The Architecture of Integrated Information Systems
[15] is an approach to enterprise modeling. The as-
sociated tool supports by default different modeling
notations. Users can adapt already existing languages
and the vendor can create completely new languages.
The ARIS meta-metamodel was analyzed in [10] and
is shown in Figure 1(a).



Ecore Ecore [2] is the meta-metamodel in the Eclipse Mod-
eling Framework. The framework supports the devel-
opment of (Eclipse) applications. Figure 1(b) shows
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GME The Generic Modeling Environment [12] is primarily
a tool for domain-specific modeling in the area of elec-
trical engineering. The definition of languages based (a) ARIS
on the meta-metamodel that is shown in Figure 1(c).
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MS DSL Tools The Microsoft Domain-Specific Language
Tools enables the definition of languages and gener-
ators into Visual Studio. The metamodeling is de-
scribed implicitly in [5]. We give an explicit descrip- ’ Paradigm m Model ﬂ
tion in form of an meta-metamodel that is shown in
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MS Visio Microsoft Visio [1] is an universal modeling and member
data visualization tool. Language definitions are real-
ized by stencils. We analyzed the stencil definition and
extract the meta-metamodel in [11] (see Figure 1(f)).
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3. METAMODELING CONCEPTS

In this section, we present our comparison framework. We
identify first class metamodeling concepts available in each EII
meta-metamodel and abstract these concepts to compari- porid|*
son criteria such as object, relationship, role, port, model,
and attribute. Based on these criteria, we analyze further
concept-specific properties and possible values. Addition-
ally, we investigate concepts for structuring, reusing, and
identification of metamodel elements. Table 1 shows the
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e Arity: The arity specifies the number of object types (f) MS Visio
(or role types) that can be involved in a relationship

type. Possible values are binary or n-ary relationship
types. Figure 1: Overview of Meta-Metamodels




e Multiplicity: The multiplicity defines the number of
objects that can be related to another object in context
of a relationship type. The multiplicity can be defined
with concrete values/intervals (e.g. n, 0..1, 0..n, 1..n).
If the multiplicity is not supported, than the value is
often 0..n by default (n € N).

e Inverse: A binary relationship type can be defined as
inverse of another relationship type. The inverse re-
lationship contains (automatically) the tuples of the
original relationship in opposite order.

e Composition: A composition influences the life cycle
dependency between a container object and the con-
tained objects which are hold in a relationship. Gen-
erally, if the container object is destroyed, every re-
lated /contained object is destroyed as well.

e Dependency: The dependency influences the life cycle
of a relationship type. Generally, a relationship type
may be dependent on an object type or other elements.

e Object-Set: Normally, a relationship type assigns one
object type for each end. This feature enables the
connection of an object type set for each end.

e Role: A relationship type can support a role concept.

Role Type A role type defines how object types participate
in a relationship type. If the meta-metamodel supports a
role concept, then a relationship references an object indi-
rectly over a role. Thus, some features of a relationship type
are transferred to role type.

e Multiplicity: This feature is taken from the relation-
ship type. The multiplicity is defined in the role type
rather than in the relationship type.

e Dependency: This feature is analog to relationship
type. A role type may be dependent on a relationship
type or other elements.

e Object-Set: This feature is also analog to relationship
type. Each role type relates to one object type. This
feature enables the connection of an object type set for
each end.

Port Type A port type defines a set or a class of ports.
A port allows additional semantics or constraints on how
objects can be connected by a relationship.

Model Type A model type is a set or a class of models with
equal properties. A model type groups available metamodel
elements and is instantiable.

Links to Model Types Some meta-metamodels support
links between model types and other metamodel elements.
This concept enables, for instance, the refinement of model
elements or the integration of different model types. The
relationship to submodels is binary.

e Participating elements: Defines the source and target
of the submodel relationship. We identified that the
target is a model type and the source are metamodel
elements such as object, relation, or role type.

e Multiplicity: Defines the number of element instances
connected with a submodel relationship. Possible val-
ues are one-to-one and one-to-many.

Attribute An attribute is a property of a metamodel ele-
ment. At model level an attribute can hold concrete values.

e Data type: A data type defines the co-domain of an
attribute. We can distinguish two kinds of data types:
simple data types and other metamodel elements. (1)
Simple data types are, for instance, integer, string, or
date. (2) If other metamodel elements are possible
values, then this kind of attribute is equal to the rela-
tionship concept.

e Dependency: Attributes are dependent on other ele-
ments in the metamodel. Attributes can directly de-
pend on other types. If an attribute is independent
from other types, then they can be reused in other
metamodeling elements.

e Multiplicity: This feature allows to define multi-value
attributes, if the multiplicity is greater than one.

o Ordered: If the multiplicity is greater than one, the
values can be sorted.

e Unique: If the multiplicity is greater than one and
an attribute is marked as unique, no value may occur
multiple times.

e Default value: Allows the definition of a default value,
if the metamodel element is instanciated.

e Attributable: Specifies the attributable metamodel ele-
ments such as object, relationship, port, role, or model

type.

Inheritance Inheritance is a special relationship between
metamodeling elements. In context of metamodeling, inher-
itance allows to reuse attributes, constraints, or behavior of
an (super) element.

e Participating elements: Defines the metamodel ele-
ments which can participate in an inheritance. These
elements can be object, relation, role, or model types.

e Single vs. multiple inheritance: A meta-metamodel
can support single inheritance, that is, a (sub)element
inherits from one (super)element. If multiple inheri-
tance is available, then a (sub)element can inherit from
several (super)elements.

Grouping This concept allows to structure metamodel el-
ements in defined parts or modules.

Identification Generally, all metamodel elements have an
identifier. This can be a name or number. The scope of iden-
tifiers can differ. Some meta-metamodels support multiple
identifiers.

Constraint Language Constraints allow the additional
definition of conditions for metamodel elements which have
to be fulfilled during or after modeling.



Table 1: Comparison of Meta-Metamodels ((y)es = supported, (n)o = unsupported, — = impossible)
ARIS Ecore GOPPRR GME MS DSL Tools MS Visio
First Class
Concepts
Object  ObjDef, ObjOcc EClass Object Atom, Model, Set Domain Class Master
Relationship CxnDef, CxnOcc  EReference Relation, Connection, (Set Domain Master
(Collection) Membership, Relationship
Reference)
Role n n Role Connection Role Domain Role n
Port n n Port Reference Port n n
Model Model n Graph Model n n
Attribute Attribute EAttribute Property Attribute Domain Property
Property
Relationship
Arity binary binary n-ary binary binary binary
Multiplicity default (0..n) y - - - default (0..n)
Inverse n y n n n n
Composition n y n y y n
Dependency Method EClass Project Paradigm Domain Class Stencil
Object-Set y n - - - n
Role
Multiplicity - - y y y -
Dependency - - Project Connection Domain -
Relationship
Object-Set - - y n n -
Attribut
Dependency Method EClass Project Paradigm Domain Class, Master
Domain
Relationship
Multiplicity single-value multi-value  multi-value single-value single-value multi-value
Unique - y y - - n
Ordered - y n - - y
Default value n y y y y y
Attributable
Object y y y y y y
Relationship y n vy y y y
Role - - y n n -
Port - - y n - -
Model y - y y -
Data type
Simple y y y y y y
Metamodel n n y n n n
element
Inheritance
Single/Multiple n multiple single multiple single n
Inheritable
Object - y y y y n
Relationship - n y y n n
Role - - y n n -
Port - — y n - -
Model - - y y —
Links to y - y y - -
Models
Grouping Method, Model EPackage Project, Folder, Paradigm Language, Stencil
Graph Namespace
Constraint n OCL proprietary OCL dialect programming n
Language language




Table 2: Supported Relationship Patterns
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= 2 g
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=& 3T =2 =
Reference-Relation (a) X X X
Binary Object-Relation (b) x x x x (x)
Set-Relation (d) X x
Role-Relation (e) X X X
N-ary Object-Relation (c) X

4. EVALUATION

Based on the comparison, we evaluate some results from Ta-
ble 1. The first aspect refers to metamodeling concepts avail-
able as first class elements. Object type, relationship type
and attribute are the fundamental metamodeling concepts
because each meta-metamodel supports these concepts. This
observation is consistent with the statement from Kelly and
Tolvanen [8]. Additionally, the half of all meta-metamodels
supports the concepts model type and role type. Model type
allows the implementation of a view concept and role type
enables the realization of complex relationships. In depen-
dency of the supported first class modeling concepts, we can
deduce the following order of meta-metamodels': GOPPRR
= GME > MS DSL Tools > ARIS > Ecore = Visio.

The second aspect focuses on the definition of relationships.
We identified five kinds of relationships which are shown in
Figure 2. (a) The reference-relationship can be interpreted
as a simple reference or pointer between object types. This
relationship is binary, depends on an object type, and is not
attributable. (b) In contrast to the reference-relationship,
the binary object-relationship can be considered as a “stand-
alone” modeling concept because the life cycle is often inde-
pendent from an object type. Furthermore, this relationship
is binary and attributable. (c) The n-ary object-relationship
is analogous to the binary object-relation with the differ-
ence that this relation allows to reference more than two
object types. (d) Based on the object-relationship, the set-
relationship allows to connect a set of object types for each
relation end. The interpretation of this relation is the Carte-
sian product between both object type sets. (e) The role-
relationship uses an explicit role concept that is often at-
tributable. An assignment of the different relationships to
the meta-metamodels is shown in Table 2. If we count the
number of supported relationship patterns and assume the
order of relationships suggested in the left column in Table 2,
we can derive the following ranking': GOPPRR > GME >
DSL Tools > ARIS > Ecore > Visio.

The last aspect refers to the concepts for structuring, reuse
and modularization in metamodeling. Four out of six meta-
metamodels support inheritance. Meta-metamodels with
inheritance are Ecore, GOPPRR, GME, and DSL Tools.
Inheritance refers primarily on the reuse of attributes and

'z = y: the number of metamodeling concepts in x and y is
equal, x > y: x supports more metamodeling concepts than
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Figure 2: Relationship Patterns (O = Object Type,
R = Relationship Type, Ro = Role Type, —» = Ref-
erence)

modeling constraints. Generally, the four meta-metamodels
enable inheritance between object types. GOPPRR and
GME realize inheritance additionally between elements such
as relationship or model type. ARIS and MS Visio sup-
port no inheritance. Furthermore, all meta-metamodels of-
fer a concept for grouping metamodeling elements. This
can be the model concept or other container elements such
as Project, Folder, Stencil, Language, or EPackage.

S. RELATED WORK

The comparison of meta-metamodels has been the subject
of previous investigations. A relevant contribution to our
work comes from Kelly and Tolvanen [8]. Based on their
experience in the area of metamodeling, the authors pro-
pose basic metamodeling concepts. These concepts are, for
instance, explicit graph type, explicit role concept, n-ary
relationship, or links to subgraphs. However, their compar-
ison of tools (MetaEdit+, MS DSL Tools, Eclipse Modeling
Project, and GME) are more general nature. Furthermore,
in a prior work Tolvanen [17] compares seven metamodel-
ing languages (ASDM, CoCoA, ER, GOPRR, MEL/MDM,
NIAM, OPRR) against criteria such as unique property,
data type of properties, multiplicity, explosion or polymor-
phism. The aim of this comparison was to find a metamod-
eling language that fits to the defined requirements in the
context of method engineering. The difference to our com-
parison is the underlying method. Kelly and Tolvanen [8,
17] use a top-down-approach because they suggest concepts,
that are required for suitable metamodeling. In our work,
we use a bottom-up approach. We investigate a set of meta-
modeling languages and abstract from specific features oc-
curring in different meta-metamodels. The decision in the



abstraction process is influenced by the top-down approach
from Kelly and Tolvanen [8].

Further contribution comes from the transformations be-
tween different meta-metamodels. Basis of a transforma-
tion is the knowledge about the semantic of the different
metamodeling concepts because the transformation should
preserve the semantics. There are the following bridging
transformations: GME and Ecore [3], MS DSL Tools and
Ecore [4], MOF1.4 and Ecore [6], ARIS and Ecore [10],
MetaEdit+ and Ecore [9], and Visio and Ecore [11]. In
relation to our work, the transformation between the meta-
metamodels has a limited focus because each paper com-
pares only two meta-metamodels. Thus, the comparison is
very specific. In our work, we try to abstract from very spe-
cific features in meta-metamodels in order to find an unified
comparison framework.

6. CONCLUSION

In this paper, we compared six meta-metamodels that are
using the heavyweight metamodeling approach and are avail-
able as tools. We analyzed each meta-metamodel and ex-
tracted typical metamodeling features. Based on this extrac-
tion, we defined a comparison framework. The result of this
comparison is shown in Table 1. In general, all investigated
meta-metamodels have the basic elements: object, relation-
ship, and attribute. In particular, we have found differences
in relationships and supported features for structuring and
reuse of metamodel elements.

Regarding the language selection problem in the introduc-
tion, the comparison helps to get an overview of the con-
cepts supported in the respective metamodeling languages.
A suitable indicator for the language selection is the practi-
cal expressiveness. We assume the practical expressiveness
of meta-metamodels is direct proportional to the number of
supported metamodeling concepts. Based on this assump-
tion and the evaluation in Section 4, we conclude that GOP-
PRR and GME are the most powerfully expressive meta-
metamodels and Visio has the least expressive power of all
metamodeling languages. However, other criteria (e.g. us-
age, standardization, or tool features) play a crucial role for
the selection of a certain metamodeling approach. Relat-
ing to the interoperability problem, the comparison enables
the development of abstract transformation rules between
metamodeling concepts. In order to specify such rules, we
need a theoretical/mathematical foundation of the extracted
metamodeling concepts. The theoretical foundation and the
development of possible transformations between these ab-
stract concepts are future work.
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