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ABSTRACT

In this paper, we investigate a way to promote the reuse of
legacy tools (or transformations) in specific contexts (defined
by specific metamodels). More precisely we suggest a model
transformation approach to achieve this purpose.

We first introduce a language based on a metamodel called
Modif in order to specify the differences between two se-
mantically close metamodels. We can generate automati-
cally data migration components from a Modif specification.
They enable to put data complying with the specific context
under the scope of the legacy tool. But more importantly
in the case of a rewriting tool, they enable to put the tool’s
outcome back into the original specific context.

Then we propose a process and a set of helpers based on
Modif to automate the reuse of legacy tools for domain-
specific contexts. To illustrate this approach, we apply it
to the case of simple finite state machines.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Programmer workbench; D.2.13 [Software Engi-
neering|: Reusable Software—Reuse models, Domain engi-
neering

General Terms
Design, Languages

Keywords
DSML, tool support, model transformation, code genera-
tion, reusable tools

1. INTRODUCTION

Making available tool support for Domain Specific Model-
ing Languages (DSML) is a fundamental issue for DSML
designers. The reuse of a legacy component is a basic way
to significantly lower the cost of obtaining the complete tool
support for a DSML [4]. The use of a metamodeling envi-
ronment is highly likely to lower the cost of obtaining these
facilities thanks to its generative abilities. It can produce
domain-specific editors or browers for metamodel instances.
In some cases, it can also offer an environment for domain-
specific rules of code generations [16].

But in spite of these available facilities, a DSML designer
still needs to add domain-specific components either by spec-
ifying them completely, or by coding them directly. In many

Jean-Philippe Babau
LISyC, UBO, UEB
Brest, France
babau@univ-brest.fr

cases, these specific components are already available but
they are designed for wvariants of the metamodel on which
the designer is working. For instance, let us consider, on one
hand, statecharts complying with a specific metamodel ded-
icated to formal analysis, and on the other hand, a legacy
tool designed for UML statecharts edition. We can prop-
erly suppose that they share semantically close constructs.
Thus, it is possible to set links between UML concepts and
specific formal concepts. It is therefore possible to translate
directly UML instances complying with what is expected by
the editor into specific statecharts for formal analysis.

Such kind of transformations can be seen as model migra-
tion tools [17]. We introduced a language called Modif [1]
in order to target easily this kind of transformations. It is
a language dedicated to the specification of differences be-
tween two variants of semantically close metamodels. The
available tool support for this language enables to generate
data migration components.

Thus, Modif can be used to put data under the scope of the
legacy tool a designer aims at reusing. But in the case of
a legacy rewriting tool (i.e. an endogenous transformation),
the designer faces a more challenging problem: how the data
that have been translated and then modified by the rewriting
tool can be translated back into their original context? In
this paper, we present a relational mechanism based upon
Modif to address this problem and thus to promote the reuse
of rewriting tools on different specific domains.

The paper is organized as follows. In the next section, we
introduce in details the background of this work and our
motivations. Then we present and illustrate the proposition
we make to put back the tool’s outcome into its specific
application domain. The related works are discussed in the
following section. To conclude, we present the current and
future developments of this work.

2. BACKGROUND AND MOTIVATION

We introduce here the problem of reuse we address. As the
solutions we investigate are based upon Modif, a large part
of this section is devoted to this language (see [1] for more
details). The last point of this section introduces the specific
problem of rewriting on which we focus in this paper.

2.1 Reuse of existing tools
As depicted in figure 1, a well-attested and rather obvious
way to reuse existing model transformations (legacy tool)



consists in creating a transformation whose target matches
with the metamodel of the input data that are expected by
the tool. The source of the transformation is the specific
context (a metamodel) where the need for the legacy tool
has been identified. The outcome of the tool is supposed to
be what is expected in the specific context. Thus, there is
no need to rewrite the tool for our specific context. It is ob-
tained by transitivity. We call injection the transformation
whose purpose is to put data under the scope of a tool.

I:] metamodel
O instances : :
:> transformation

- compliance

specific |,
context

Figure 1: reuse of a tool by model transformation

2.2 A DSL for injections

From a model driven point of view, injection is a model
transformation. A suitable way to specify such kind of
transformation is to use a specific language like ATL [9],
Kermeta [13] or QVT [15].

The specific context and the input metamodel shown on fig-
ure 1 are supposed to share close concepts. In light of this
finding, we introduced a specific language based on a meta-
model called Modif [1] to quickly generate injections. Modif
enables to focus efficiently on elementary transformations
between two variants of a same metamodel. It is inspired by
some functions of persistent storage (CRUD) from a source
metamodel to produce a target metamodel. Namely, these
functions are update (i.e. rename and change) and dele-
tion. Modif enables to state simple refactoring operations
applied to an input metamodel. To handle Modif, a trans-
lator has been developed in Kermeta. It takes a metamodel
and produces a new metamodel in accordance with a Modif
specification. The instances complying with the first meta-
model can be translated into instances complying with the
new one. To achieve this translation, a specific tool can be
generated from the Modif specification.

Figure 2 illustrates the use of Modif to produce injections.
Modif is intended to help a designer to map efficiently his
own metamodel to an existing metamodel for which an in-
teresting tool has been designed. If this designer aims at
reusing this tool, we can properly suppose that at least a
subset of his own metamodel has a semantics domain which
is equivalent to the targeted metamodel, and that he does
not have to create new specific data to match the require-
ments of the targeted tool. For instance, if the targeted
tool is a statechart analyzer built upon a metamodel for fi-
nite state machines (FSM), it is rather natural that someone
who needs this tool has his own specific structure for FSM
(e.g. sates as nodes and transitions as edges). It is also
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Figure 2: Generation of transformations with Modif

natural that this specific structure for FSM will contain at
least all that is needed by the tool the designer expects to
reuse. This last point explains why Modif does not involve
creation operations.

2.3 Process and tool support for Modif

Modif enables to create a target metamodel. This can seem
unsuitable for our need to reuse tools built upon legacy
metamodels. Actually, in a typical process involving Modif,
the generated metamodel is used to check the full matching
with a legacy metamodel.

We illustrate this point with the example of a tool built
upon a metamodel of finite state machines (FSM). We want
to apply it on UML statecharts [14].

The first step of the process is the generation of a Modif spec-
ification with default values for the UML metamodel. Many
generators of Modif specifications with various default values
are available [1]. In our example, we need to translate UML
specifications into FSM specifications. The FSM metamodel
is much less expressive than the full UML metamodel. So
we need to delete a significant part of UML to match FSM.
Then we choose to generate a Modif specification that will
delete everything by default.

The second step of the process is the update of this by-default
Modif specification so that we keep only what is relevant for
the FSM metamodel. Then we produce the target meta-
model and we check it fully matches the existing FSM meta-
model.

The last step of the process is the generation of the translator
from UML statecharts into FSM complying by construction
with the right metamodel.

Modif enables to avoid the tedious tasks of deleting what
is not needed, and copying what is needed with elemen-
tary refactoring operations like renaming. Its most original
function is the ability to hide inheritance. References to
hidden super classes are spread over the sub-classes. The
graph-based denotational semantics of Modif on which we
are working formally states its meaning. But all the techni-
cal details of Modif and its semantics issues are out of the
scope of this work and will be discussed in another paper.

2.4 Reusability of tools’ outcome

So far, besides Modif, this way of reusing legacy tools by
model transformation is not very original. But we introduce
now a more challenging issue. In some cases, the tool’s out-



come has to be modified to match with the initial specific
context. This is typically the case when the tool to be reused
is a rewriting tool. Input and output data of such tools both
comply with a same metamodel. For instance, an optimizer
performing constant folding on abstract control flow graphs
could be reused on a given specific procedural language. But
the optimization performed at an abstract level has to be re-
placed in the context of the procedural language.

We call contextualization the transformation whose purpose
is to put back outcome data of a legacy tool into the specific
context (metamodel) where the tool is reused. This trans-
formation is a kind of reverse injection. It raises the problem
of reversibility of transformations.
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Figure 3: Contextualization of a tool’s outcome

Figure 3 depicts an outline of the models and transforma-
tions that are involved in this approach. A rewriting tool
defined on an abstract level can be reused at a concrete level
if we can:

1) put concrete data under the scope of the tool (injection),
2) and translate the tool’s outcome into data complying with
the initial metamodel (contextualization).

As we mentioned before, the subset of CRUD operations
Modif offers does not involve creation for now. Thus, as far
as deletion is not needed, a Modif specification can be easily
inverted without loss. Indeed, in this case, the source and
target metamodels specify the same concepts but they are
named and structured differently.

A tool performing Modif inversions has been developed. Two
transformations can be generated from a Modif specification
and its inverted version. We prove the composition of those
two transformations does produce identity.

Unfortunately, deletion is typically useful in the context of
tools’ reuse. Indeed, the target metamodel is restricted to a
specific use. It is a tool's definition domain. Thus it embeds
less dedicated concepts than the source metamodel. Thus we
need an appropriate solution to maintain as far as possible
the initial context of data that have been injected within
the scope of a rewriting tool. This is the main problem on
which we focus in the rest of this paper.

3. KEYS OF DATA RECOVERY

We present now a solution to take into account deletion. We
alm at recovering as far as possible deleted data after the
application of a legacy tool. In this section, we present and
illustrate our proposition.

3.1 Storage and recovery of deleted data

The basic idea of our proposition is quite obvious: if we
want to recover data that have been deleted, we have to back
them up. Hence the first step: injection has to produce two
sets of instances. The first one comes from the execution of
basic refactoring operations stated in the Modif specification
(including deletion). The second one corresponds to the
initial instances annotated with labels. A label plays the
role of a key of relational databases.

These annotated instances comply with a variant of their ini-
tial metamodel. In this variant, an attribute called keyFor-
Modif has been added to each class (which is itself modeled
as an EClass from the Ecore metamodel [3] we use). This
metamodel can be easily generated as also the translator
that adds unique keys on instances.

At this stage, the rewriting tool to reuse is applied on the
first set of instances. Then this set is updated. We find two
kinds of instances in it: instances that already existed before
the tool’s application and that may have been updated (i.e.
new reference or attribute values), and new instances created
by the tool.

Here comes the second step of our proposition. To achieve
the contextualization, we take into account the tool’s out-
come together with the initial instances annotated with keys.
We perform a relational natural join between them. Thus,
instances that already existed are reconnected to instances
that had been deleted. Of course, new instances are not
reconnected to any deleted instances.

This last point is important: it is not possible to define au-
tomatically a by default valid context for instances that have
been created by the legacy tool. Injection and contextualiza-
tion are not intended to produce automatically a complete
specialized prototype from an existing tool. If the rewriting
consists in recreating all instances, then these instances can-
not be automatically connected to any original context. In
this case, either instances that have been backed up are lost,
or specific user code has to be added to the generated contex-
tualization in order to make valid initializations. In all cases,
our proposition improves the efficiency of the development.
Either all the transformations are automatically generated,
or small adaptions are necessary on contextualization. As
for injection, it is fully generated without modification and
the legacy tool it targets can be actually reused.

Figure 4 illustrates the use of Modif with keys. The gen-
erators have been updated to take into account keys, espe-
cially during contextualization.We currently formalize the
joint algorithm to prove that the composition of injection
and contextualization produces identity even with deletion.
For now, we just give here the main stages of this algorithm.
Like in figure 4, we call out the set of instances that have
been processed by the tool. We call data+key the original
instances annotated with keys. The algorithm has 4 stages:
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Figure 4: Contextualization with keys

1. For each instance of out fitted with a key (i.e. that ap-
pears in the original context), we look for the unique
instance of data+key fitted with the same key. At-
tributes that had been marked deleted in the Modif
specification are added in the instances of out.

2. Each instance of data+key whose class had been marked
deleted in the Modif specification is added to out.

3. For each reference of each instance of out we obtain
at this stage, if itself or its source or its target had
been marked deleted in the Modif specification, then it
is added in the instances of out.

4. Keys are removed; the inverted Modif is applied. We
get instances complying with the original context.

3.2 Application on finite state machines
We present here a case study to underline the benefits that
can be reaped of our tools.

Legacy tool on FSM. We defined a flattener tool on hier-
archical finite state machines (FSM). The Ecore metamodel
of input data expected by this tool is shown in figure 5.
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Figure 5: Metamodel of hierarchical FSM

This small metamodel introduces the concepts of state, tran-
sition and event. Hierarchy comes from the ability of a state
to contain other states. This metamodel does not take con-
currency into account. This metamodel is tool oriented.
Only the data that are strictly required for the flattening
are represented.

The flattener we defined on this metamodel produces in-
stances where each state is a simple atomic state (i.e. it does

not contain any other state). The outcome is semantically
equivalent to the input FSM. For each super-sate, all incom-
ing transitions are forwarded to the initial substate, and all
outgoing transitions are duplicated on each substate.

Another FSM metamodel. The flattener plays the role of
a legacy tool we want to reuse on another FSM metamodel.
Figure 6 is a variant of the FSM metamodel on which the
flattener has been designed.
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Figure 6: Metamodel of FSM with actions

For the purpose of our example, we willfully introduced a
very simple variant of the FSM metamodel. It is a simplified
version of UML statecharts, and it has actually been derived
from UML using Modif. It has the advantage of highlighting
the problem we address. Indeed, in this variant, the only
notion of action has been added, and it has to be deleted if
we want to reuse the flattener. But once flattened by a tool
that does not take actions into account, the FSM has to be
rebuilt with actions.

We defined a FSM model complying with the metamodel of
figure 6. It is depicted by figure 7. The state called running
contains substates and then it has to be flattened. Actions
appear associated to transitions and to states. They won’t
be taken into account by the flattener.

/ running \

entry / start
idle exit / stop

go / init

nominal

go/raz
entry / run1

go

nok / runD ok

L degraded )

Figure 7: A simple FSM with actions (in bold)

begin

Injection. To begin with, a Modif specification is generated
for the FSM metamodel involving actions (see figure 6). This
Modif specification contains default values. They state ev-
erything in the metamodel remains unchanged. Then this
Modif specification is updated so that the EClass named Ac-
tion has to be deleted.



From this Modif specification, we generate the target meta-
model (to make sure it fully matches the FSM metamodel
handled by the flattener), and the program corresponding
to injection. Then we apply the generated injection to the
set of instances depicted by figure 7. We obtain 2 FSM.

The first one complies with the FSM metamodel handled
by the flattener: it corresponds to the original FSM except
that all actions have been removed; the outcome model is
the same as figure 7 except all actions including entry and
exit are removed.

The second one complies with the original metamodel an-
notated with keys: each state, transition, event and action
has a new and unique attribute called keyForModif; the out-
come model is the same as figure 7 except that it is enriched
with 21 keys (one for each concept: 5 states, 5 transitions,
5 events, 6 actions).

Flattener. At this stage, the flattener can be applied on
the first generated FSM. We obtain the flat FSM depicted
by figure 8.

running nominal ]

ok

running degraded ]

Figure 8: Flatten FSM without actions

Note that the actions are lacking. The super-state running
disappeared and its incoming and outgoing transitions have
been dispatched over its substates. These substates (nom-
inal and degraded) are renamed according to their former
encompassing state (running nominal and running degraded).

Contextualization. To generate the contextualization, we
first need to invert the initial Modif specification using a
dedicated tool written in ATL. The reverse Modif specifica-
tion we obtain can take into account the original metamodel
annotated with keys. We use it to generate the program cor-
responding to contextualization.

Then we apply it on the flat FSM depicted by figure 8 to-
gether with the original FSM of figure 7 annotated with
keys. We obtain the flat FSM involving actions depicted by
figure 9.

The transitions and the states that already existed in the
original FSM are associated again to their original actions.
The entry action runl is associated to its original state (nom-
inal) which is now running nominal. And because super-state
running is removed, the entry and exit actions that are as-
sociated to it are lost.

go / init

running nominal

entry / run1

—1

nok / runD ok

begin

go/raz

running degraded ]

Figure 9: Contextualized flatten FSM

Lessons from this example. This simple example shows
how we recover data that had been deleted before the ap-
plication of a legacy tool. As for the actions that where
associated to the deleted super-state, they cannot be au-
tomatically recovered. And if the flattener had performed
creations of new instances instead of updating the existing
ones, we would not have recovered any deleted actions.

Moreover, these tools are generic and they do not involve
semantics issues. The instances they produce must (or may)
be completed by other means. In the example, the entry and
exit actions of state running have to be added using dedicated
user code.

This work highlights the difficulties of reusing a legacy tool,
especially when contextualization is needed. The way the
legacy tool is designed impacts its reusability. It is higher for
rewriting tools that give priority to update instead of recre-
ation. In this context, the tools we propose are helpers made
for designers in order lower the cost of rewriting functions
that cannot be automatically reused by generative means.

4. RELATED WORKS

This work is on the border of several related fields: refac-
toring, model versioning, data migration and bidirectional
transformations. It also adresses a well-known problem in
the context of databases called the view-update problem [10]:
under which conditions updates on views can be translated
into updates on the underlying database? The constant
complement translator approach for this problem involves
a similar principle of our complementary set of initial in-
stances annotated with keys. The initial context can be
seen as the database and the tool’s definition domain plays
the role of a view. The tool we aim at reusing corresponds
to the set of updates applied on the view. Our concern
differs on two points. Firstly, some refactoring operations
offered by Modif are out of the scope of the functions used
to build views. For instance, we are working out the ability
to extend an existing metamodel with Modif, and thus to
add data at the instance level. Secondly, we do no make
any assumption about how the legacy tool performs update.
For now, we only consider its effects. These effects cannot be
simply translated into a composition of reversible predefined
updates.

The round-trip transformation we obtain from the composi-
tion of injection and contextualization implements a specific
kind of lense i.e. a bidirectional transformation to propa-
gate updates between connected structures [7, 2]. But main-



taining the consistency of the initial context and the tool’s from the smallest Levenshtein distance between two meta-

definition domain was not our priority concern. We only models. This distance is a metric for the difference between
wanted to transform instances without loss, even in the case two sequences with regard to the basic edition operations
of deletion. Thus our aim is much less ambitious than what that are add, delete and replace. As we mentioned before,
is expected from lenses, like in the context of model version- if there is a need to build bridges between two metamodels,
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