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ABSTRACT
Reconfigurable embedded hardware is a staple of many ap-
plications in defense technology and applied engineering.
The integration of various embedded hardware “cores” (i.e.,
the computing units) is complicated by the unintended com-
plexities inherent in the consistent and correct construction
of communication pathways—specified using VHDL. This
paper presents a domain-specific modeling approach to re-
ducing this complexity. The results include demonstration
of the tool, where generated VHDL code with complex data
and processing requirements is simulated.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Very high-level languages; I.6.3 [Simulation and
Modeling]: Applications; I.6.5 [Simulation and Mod-
eling]: Model Development

Keywords
Domain-specific modeling, embedded systems, reconfigurable
computing, code synthesis

1. INTRODUCTION
Today’s competitive world has put a large strain on em-

bedded systems engineers’ design efforts, and time to market
and the “first time right” solution have become one of the
most significant challenges that design teams face today [8].
To help curb this problem, many companies in the domain
of reconfigurable embedded software and hardware rely on
the reuse of VHDL to help expedite their FPGA design pro-
cess. Although code reuse clearly has its advantages, the
reuse of code that has been created and designed using ad
hoc methods is nontrivial.

To make design reuse even harder, many companies are
leaning towards Commercial Off the Shelf (COTS) prod-
ucts that allow users to provide custom code on commercial
hardware. While such an approach saves development dol-
lars when it comes to board design, it makes reuse more
difficult as each COTS design usually has its own custom
interface. The result is the distribution of integration code
throughout a design, and at inconsistent locations based on
ad hoc design methods.

Reconfigurable embedded processors are frequently used
to perform hardware-in-the-loop and other validation schemes
is widespread in industry. This application requires the re-
purposing of existing core engines across various bus archi-
tectures, or different speed and space constraints in order to

validate a design’s function behavior prior to prototype con-
struction. An ad hoc construction of the necessary software
to integrate these engines is frequently carried out through
cloning or similar methods.

This paper mitigates the complex transition between FPGA
boards through domain-specific modeling. The inherent re-
strictions in a DSM solution give developers a platform in
which to utilize the compositional portability of different
hardware (bus) platforms independently of how those bus
platforms are specified in code. This allows the end user to
be able to reuse already existing VHDL engines and cores
developed using in-house or purchased designs, through log-
ical composition directly through the bus interfaces.

The implementation of interface portability is accomplished
through software synthesis from the DSM model. Develop-
ers model the characteristics of the bus to which their engine
core will be attached, including routing the ports on the en-
gine to external FPGA pins, connecting them to be driven by
bus module registers, etc. Once a model is created, a model
interpreter synthesizes the necessary VHDL files, which are
available to any industry-standard tool.

2. BACKGROUND
Although this domain seems likely to have been impacted

by domain-specific modeling, no such impact has occurred
to date. The following literature review and background
provide a foundation for the novelty of the work.

2.1 Reconfigurable Hardware
VHDL is designed to provide a software specification of

an integrated circuit for systems named components. Each
component is comprised of two main sections. The first is a
design entity that creates a list of inputs and outputs (I/O)
that communicate with logic or devices outside the compo-
nent. The second is an architecture entity that describes the
internal operation or organization of that particular compo-
nent. These components can then be structurally connected
to create networks of components that work together to per-
form an overall design objective. The functionality of the
digital circuit is primarily driven by clock events [12], re-
sulting in a time-triggered reactive system behavior.

VHDL offers many advantages to its users. One is that
it can be synthesized from code into gates, or programmed
onto Field Programmable Gate Arrays (FPGAs). Synthesis
is the act of taking a hardware description and turning it
into optimized gate level solution. Due to the complexity
of large FPGAs this is usually accomplished through Com-
puter Aided Design (CAD) tools [11]. FPGAs have become



popular in recent years as they offer a high execution speed
that is generally obtained in hardware, but are very efficient
in incorporating changes as they are reconfigurable like soft-
ware [10].

2.2 Automated Firmware Generation
As is the case in traditional software, VHDL coders do

not design for reuse. In [3] the authors discuss the diffi-
culty in reusing code that hasn’t been developed with reuse
in mind. While reuse offers higher productivity of SOC,
reusability for the current design and reusability by others
are quite different. Better reuse is achieved when designers
can reuse a logic block on a project that is completely unre-
lated. The authors of [3] point out that design reuse can be
streamlined when happen when several rules are obeyed by
all developers (including parameterizing the code, providing
standalone scripts to synthesize it, etc.). However, the in-
tegration of code from various authors makes it difficult to
assume those authors obeyed these rules; on the contrary, it
seems that treating the component as a logic block makes
more sense.

In the 1990s, auto-generated VHDL became the focal point
of many research projects. The end goal of all of these
projects was to have a piece of VHDL that could be gen-
erated, in order to be used from system to system. In [6]
the contribution is to take a timing diagram and turn it into
a usable piece of VHDL. Timing diagrams were the perfect
candidate in this paper, because they already provided a
method of exclusively defining the time and data domains.
However, the main problem and set back with this imple-
mentation is that it is extremely difficult to specify event-
based behaviors, even from an internal module. Such a lim-
itation can be likened to the need to generate software from
only a finite set of sequence diagrams. Also, it is not possi-
ble to determine functionality such as addition, subtracting,
shifting, etc., that is not defined in the main timing diagram.

In [5] the goal is to exploit the commonality of the de-
sign functionality found in most microprocessors, by creat-
ing VHDL by a dedicated description language—essentially,
a DSL. The authors created their own high level language
that would fully describe the microprocessor interface of a
particular design that they then would parse using YACC.
Another synthesizer then generates the final VHDL. In the
DSL, the users would define components and registers in
the design and then associate them with classes such as
“Read/Write” or “Write Only.” Users can also associate a
specific functionality with each register. Analysis showed
that this code generation tool expedites development time,
reduces error, has quick modification and regeneration abil-
ity, and easy generation of large libraries of VHDL code.
This differs from the contribution of this paper in that the
microprocessor interface (rather than an FPGA core) is the
primary focus of that work.

Other papers take consider graphical approaches to trans-
form a specification into VHDL. In [1] the authors model
VHDL at a hierarchical level that consists of a tree of in-
stances that are properly connected with applicable con-
straints. Using these specifications along with a class hi-
erarchy, a final instance tree is created. The final instance
tree is the last of the diagrams that are created using this
synthesis process. The drawback to this approach is that
there are no formal specifications that are used to create
the VHDL output. While the authors found that this led

to speedy code generation, this can be a drawback to some
users because informal specification of behavior.

Recently there has been significant focus on intellectual
property (IP) core generation. These cores can be provided
by FPGA venders such as Altera or Xilinx or purchased from
other third party vendors. These IP cores are self contained
modules that perform a specific function. One of the rea-
sons that IP cores have gained such popularity is that they
greatly reduce design time and for most cases have been
thoroughly tested and integrated. In [7] the work focuses
on these IP cores and turning them into C function calls
that can also be run-time configurable on FPGAs. Results
show this tool has reasonable execution overhead as well
as reasonable execution time. While this is a good start
to the automation process, C level programming that syn-
thesizes into HDLs can be very inefficient and problematic.
Although the result turns IP cores into function calls, this
does not take any of the burdens off of the user to interface
the core with a bus module or other code that is part of the
high-level design.

Nearly two decades after automated firmware generation
research began, the approaches haven’t caught on because
a “one size fits all” approach does not work. It is extremely
difficult to create a tool that will do everything that the
VHDL language will do but better and more efficient—this
validates the approach taken in this paper, to attack a spe-
cific domain that is consistently used by practitioners.

2.3 Wrapper Design
VHDL wrappers have been implemented in the past, but

most have avoided a domain-specific approach. In [2], the
authors use Java to create a test tool that will help expedite
testing of deeply embedded logic cores located on a system
on a chip (SoC). Each test has a test pattern source and a
sink that generates and stores responses from the core along
with a mechanism for transporting the necessary data to
the source and from the sync. It also comes with a core test
wrapper that allows the user to select between inputs and
outputs of the core for visibility purposes.

Turning from testing to time to market, [13] looks at the
design time and overall cost of developing embedded systems
that are cheap, rich in features, and have a short time to
market through high level codesign tools. Simulink was used
as the high level design tool to get an original model which
will then be used to synthesize into VHDL code through
their own tool called CodeSimulink. The synchronous data
flow feature is used in Simulink to let that tool understand
the correct execution order per data dependencies. The tool
can generate both VHDL firmware and C-code for software.
A key limitation when compared to the approach in this
paper is the lack of integration of various cores from a high-
level specification.

Finally, in [4] a technique is outlined to automate the pro-
cess of generating HDL descriptions between mismatched IP
protocols. The authors were able to use their tool to cre-
ate many bridges and wrappers to function inside a SOC,
and to exploit the fact that many SOC use complex proto-
cols in which to compete with one another. It is important
to note that one problem the authors faced was a lack of
internal and external standard bus architecture. For their
algorithms to work, the end user must provide a finite state
machine (FSM) of the protocol descriptions and the map-
ping between the protocols for the data buses. The FSM is



intended to help the tool capture all the correct interfaces
between the two protocols. The approach addresses issues of
data width mismatch, data type mismatches, pipelined oper-
ations, complex branching, and different clock speeds. How-
ever, that work is a more domain-independent approach, and
thus the integration specification requires significant steps
that are consistently the same in the domain approached in
this work.

3. THE PROBLEM: RAPID INTEGRATION,
POTENTIALLY COMPLEX SIGNALS

The reuse of VHDL core modules is common in practice,
but largely through ad hoc methods. The problem, there-
fore, is to reduce the amount of specification needed to reuse
VHDL core modules, without sacrificing the necessary con-
figurability options. Additional details of the domain are
provided in this section in order to demonstrate the depth
of the problem.

3.1 Domain-Specific Concepts
In many designs of this domain, a generic template may be

used to abstract the various design axes. The simple design
includes an engine core and a bus module, and a data FIFO
(first-in, first-out) buffer.

Consider an example where an engineer would like to use a
proprietary component (e.g., the Xilinx CoreGen) and hook
it directly up to the bus. A high level block diagram of this
design can be seen in Figure 1. The figure has three main
modules.

3.1.1 Bus Module
This module will be responsible for containing all the data

registers that will be used in the bus module. It will also
be responsible for sustaining all data bus activities. It is
important to note that this tool will only create a slave bus
interface.

3.1.2 Engine Module
This design also contains an engine module that is an

8b10b encoder. Code for this encoder already exists and
was obtained using the CoreGen Wizard in the Xilinx ISE
tool.

3.1.3 Top Module
Last, this design also contains a top module. This contains

all the lower level components of the design (i.e., the engine
module and bus module) as well as all the high level ports
that will be external to the FPGA.

3.1.4 Execution Semantics
For this example, a data bus timing diagram was gener-

ated. This timing diagram can be referenced in Figure 2.
This is a simple example of a synchronous data bus. This
bus contains a clock that all the other control and status
signals are synchronized to. This particular bus has a start
signal that is exactly one clock cycle pulse that will kick off
an active bus cycle. This bus has a combined read/write se-
lect line. The bus master will designate a write cycle when
this line is low and a read cycle when this line is high. This
bus has separate data and address buses. The bus master
will be responsible for placing the desired address on the
data bus during an active cycle for the slave to reference.

The data bus is bidirectional, but the slave will only place
data back onto the bus during a read cycle. The last signal
will be a status signal back to the master signaling that the
bus cycle been completed. If this a read cycle, the requested
data will be placed on the bus at this time.

3.2 Scope of Cores and I/O Constraints
This tool is designed to take an existing core module and

attach it quickly to a new bus module. The Xilinx CoreGen
8b10b Encoder was selected for the case study; this mod-
ule takes an 8 bit unencoded value and changes it into an
encoded 10 bit value. However, in order to generically ad-
dress the problem in this work, generically compatible cores
should be able to be reused.

Thus, the solution should consider synchronous engine
modules driven by a clock external to the FPGA. Such cores
should be configured to take various inputs and outputs (in
the form of either data signals/buses, control signals, etc.).

Notably, the solution should permit multi-input, multi-
output models, as many core modules have more than one
output signal or bus. Outputs are (in the domain) con-
nected to the top module, and may be data signals, status
bits/signals, etc.

4. APPROACH AND IMPLEMENTATION
The domain-specific modeling approach is implemented

through the use of the Generic Modeling Environment (GME).
In this tool, a domain-specific language named autoVHDL
is modeled through a metamodel. That domain-specific lan-
guage is then mapped to guarantee the necessary execution
semantics through a model interpreter that synthesizes the
necessary VHDL code to integrate the FPGA core to the
various components of the design.

4.1 Metamodel
An abridged metamodel for the autoVHDL domain-specific

language is given in Figure 3. At the top level there are three
models that exist within the basic paradigm. These models
are FIFO, BusModule, and Core. Each model possesses its
own atoms and attributes that can be used to fully describe
the individual models. However, it is first important to un-
derstand these models from a high level. The BusModule

model is used to create a model of a bus. This model should
be instantiated when a user wants to define the interworking
of a data bus. The modeling environment will use the model
to determine exactly how the bus should interact with the
outside world. Users will be able to define specific signals,
widths of buses, and key elements of the bus cycle.

Another model that is available for instantiation is the
FIFO. This FIFO instantiation simply lets the environment
know that the user has a FIFO that he or she will be using
in the final design and does not create VHDL for a FIFO.
Rather, it just instructs the model how the FIFO will be
utilized inside the overall design. Lastly, the metamodel
includes a model of the core engine. Just like the FIFO, the
core engine module does not create a VHDL file for engine
functionality. It too will just define to the tool how the
engine interacts with other design elements. Using this three
elements, a full system can modeled within GME. While
there is room for expansion, the current design will only
support one core engine and one bus module.

Due to space constraints, a full summary of all contained
objects inside these three key models is not possible. A full
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Figure 3: autoVHDL language metamodel (abridged
for brevity).

description of all available blocks and types is available to
the interested reader in a full version of this paper, found in
the lead author’s thesis [9].

The types of the contained objects correspond to the domain-
specific attributes of a bus timing diagram. For example,
clock, start, read, write, and read/write bus signals (among
many others) are found in the domain, but not all signal
types are found in each bus. The benefit of the domain-
specific approach in enumerating these types is that the user
has a concise specification of the bus, and can compare this
specification (in a single location) to the example timing
diagram—which usually drives the specification of the inte-
gration models when the various VHDL core wrappers are
written by hand.

4.2 Modeling Language Semantics
Model based program synthesis is performed on a com-

pleted model. The implementation utilized the various tech-
nologies available with the GME tool. The synthesis code
utilizes the Visitor design pattern to traverse the models and
atoms defined by the modeler. The traversal first collects all
the bus module, FIFO, and core models that the user has de-
fined, and then traverses the contained objects inside those
models. Once this is complete, the specific attributes that
have been set for each model can be extracted and used to
create the three VHDL output files.

4.2.1 Bus module VHDL file
This is a generic bus module that will be used for all bus

module designs as it is designed to use any combination of
bus module atoms. This file defines the characteristics of
the data bus, including the width of the data and address
buses, classification of signals, registration of all incoming
signals (including the best practices of resetting all signals
to a safe state), generating data to the registers, conversion
of data types, etc. While this code is straightforward, its
menial nature lends itself to cloning—and the various prob-
lems associated with that software practice when performing
system integration.

4.2.2 Bus package VHDL file
In order for the bus module to work properly, the bus



Slice Logic Utilization Used Available Utilization

Number of Slice Registers 1,296 19,200 6%
Number used as Flip Flops 1,294
Number used as Latches 2

Number of Slice LUTs 478 19,200 2%
Number used as logic 478 19,200 2%
Number using O6 output only 446
Number using O6 and O6 32

Slice Logic Distribution

Number of Occupied Slices 423 4,800 8%

Num. of LUT FF pairs used 1,347
Number with an unused FF 51 1,347 3%
Number with an unused LUT 869 1,347 64%
Num. fully used LUT-FF pairs 427 1,347 31%
Number of unique control sets 68

IO Utilization

Number of bonded IOBs 27 220 12%

Specific Feature Utilization

Number of BUFG/BUFGCTRLs 2 32 6%
Number used as BUFGs 2

Table 1: Device Utilization Summary for design in
Figure 1.

package is required. The bus package defines the specifics of
the bus module. It tells the bus module which atoms were
used or not used in the model so that proper bus function
can be replicated. This file defines assumed polarities of
the read and write signals, whether or not address and data
buses are shared, etc.

4.2.3 Top module VHDL file
The final VHDL output files is the top file. This file is

responsible for pulling together the newly created bus mod-
ule, core file, and FIFO files (if applicable). In short, this
file is the integration file that connects all the communica-
tion pathways. The model synthesizer will be responsible
for traversing through the remaining models and their as-
sociated atoms and determining how everything must be
connected together.

5. RESULTS
To validate the code generator, a model representing the

design shown in Figure 1 was created and the three output
VHDL files were generated. As mentioned, 3 VHDL files
were generated, comprised of 649 lines of VHDL code (not
including the sizes of various included libraries). The gen-
erated code was then used by industry standard tools and
hardware for validation. Although the number of generated
lines is not large, the generated code is consistent with best
practices, and avoids errors in cloning (which are prominent
in this domain) that are discovered only after costly loss of
time during simulation and debugging.

Validation was carried out using a Xilinx Virtex 5 device
target. Timing reports from Synplify1 and device utiliza-
tion (using Xilinx’s proprietary FPGA synthesis tools) were
obtained from the generated output. The Synplify perfor-
mance summary indicates the worst slack in the design is
−468ms, and that the design will run at 320.8MHz. The
design summary (indicating device utilization of the design)
is summarized in Table 1.

It is important to note that depending on the selected
device (in this case, a Xilinx Virtex 5), speed will vary as
different parts have different resources. Newer devices will
be able to push the bus module faster than older, slower
parts. Additionally, this design may not fit on small devices
due to the register size. This is addressed in the next section.

1Synplify, a product of Synopsis, performs various optimiza-
tions of a design prior to synthesizing FPGA logic.

Figure 4: Internal components of bus module from
the case study. These atomic types represent the
kinds of signals for firmware integration (screenshot
from the autoVHDL modeling language.)

Finally, these results are valid for the bus module, as the
device utilization for alternative cores will vary based on the
selected core. A simulation of the generated VHDL code can
be seen in Figure 5.

6. CONCLUSION AND FUTURE WORK
The use of reconfigurable embedded processors to per-

form hardware-in-the-loop and other validation schemes is
widespread in industry. This application requires the fre-
quent repurposing of existing core engines across various bus
architectures, or different speed and space constraints in or-
der to validate a design’s function behavior prior to proto-
type construction. The state of the art is unfortunately ad
hoc construction of the necessary software to integrate these
engines, frequently through cloning or similar methods.

This paper summarized the autoVHDL tool, which per-
mits the integration of VHDL core engines through a domain-
specific specification language that permits the structure of
the integrated system to be rapidly given. The tool permits
a variety of engine cores to be integrated based on the char-
acteristics of the communication pathways, and the domain-
specific approach is motivated based on the fixed number
(and type) of communication pathways that are available in
a particular design. The semantics of the tool permit the
generation of VHDL code that serves as a wrapper to the
designated VHDL core.

Future work includes optimization of the structure of the
generated code, independent of the structure of the model.
For instance, at this time a register is generated for every
address space regardless if the design actually uses it. A
given design could fit on smaller devices if the bus module
were able to prune unused address spaces from the gener-
ated code. Additional (domain-specific) enhancements in-
clude default population of model attributes, based on an-
ticipated usage. For example, models could be instantiated
to represent mainstream commercial buses without any user
intervention (e.g., the PCI bus). These kinds of automation
further reduce the possibility of improper specification—a
key to this domain-specific approach.

Finally, the modeling language does not utilize any sophis-
ticated constraints; rather, it prints warning statements to
the console to warn the user that optimal output functional-



Figure 5: Simulation result of generated VHDL code.

ity will not be achieved. It would be beneficial for users who
are just starting to work with the paradigm and/or GME
to have actual errors generated. This would minimize later
frustration with the tool’s output files.
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