
SharpLudus revisited: from ad hoc and monolithic digital 
game DSLs to effectively customized DSM approaches

Andre W. B. Furtado, Andre L. M. Santos, Geber L. Ramalho 
Center of Informatics - Federal University of Pernambuco 

Av. Professor Luís Freire, s/n, Cidade Universitária, 
CEP 50740-540, Recife/PE/Brazil 

+55 (81) 2126-8430 

{awbf, alms, glr}@cin.ufpe.br

 
ABSTRACT 

This paper describes our experience in improving an ad hoc 

approach for creating domain-specific languages targeted at 

digital games, replacing it by a customization of more structured 

approaches in the domain-specific modeling literature. We give 

special focus on the benefits of partitioning the target game 

domain into prioritized sub-domains, as well as on promoting 

game engines to domain frameworks that can be more seamlessly 

consumed by generated code. A case study for the arcade games 

domain is also presented for illustration and evaluation purposes. 

Categories and Subject Descriptors 

D.1.7 [Programming Techniques]: Visual Programming. 

D.2.2 [Software Engineering]: Design Tools and Techniques – 

Computer-aided software engineering (CASE), Software 

libraries. 

General Terms 

Design, Standardization, Languages. 

Keywords 

Digital games, domain-specific languages (DSLs), visual 

modeling, software product lines (SPLs), software factories. 

1. INTRODUCTION 
Similarly to many other domains in software development, 

digital games development is a peculiar domain to which 

software reuse processes and techniques, including software 

product lines (SPLs), domain-specific modeling (DSM), domain-

specific languages (DSLs) and generators cannot be applied as is 

[1]. The challenges of such a domain include the specific 

engineering complexities of game development [2], the 

traditional ad hoc, low-level development techniques historically 

employed in the domain [3], the highly interlaced integration of 

game components [4] and other specific hindering factors for the 

domain engineering and automation of the digital games domain 

[1]. 

Back in 2006, we presented one of our first experiments towards 

overcoming such challenges [5]. We explored the state-of-the-art 

in game development (multimedia APIs, visual game creation or 

“click-n-play” tools, and game engines) as well as how DSLs and 

code generators could be built atop game engines to provide 

increased layers of abstraction. Such a discussion is not to be 

repeated in this paper. We then introduced SharpLudus, an ad 

hoc “game factory” aimed at automating the generation of 

adventure games by the use of a DSL called SharpLudus Game 

Modeling Language (SLGML). SharpLudus and SLGML 

revealed valuable insights in the application of DSM to game 

development. Although they were not aimed at describing a more 

comprehensive process for performing domain-specific game 

development, they worked as a “spike solution1” towards one. 

In this paper, we share the outcomes of evolving the ad hoc 

SharpLudus approach into a more refined DSM process, entitled 

Domain-Specific Game Development [6], which is a 

customization of state-of-the-art DSM approaches in the area by 

Greenfield & Short [7], Kelly & Tolvanen [8], and Almeida [9]. 

We do not attempt to present a new approach to DSM, but focus 

on revisiting the original SharpLudus work in the light of the 

customized approach. We evaluate SharpLudus in retrospection 

to identify which of the original guidelines are still valid as 

proposed and which were improved in order to increase their 

efficiency and/or applicability.  

The remainder of this paper is organized as follows. Section 2 

provides context on the Domain-Specific Game Development 

approach, so that Section 3 can then contrast it with the original 

SharpLudus project. Section 4 explores how we conceived the 

languages of the ArcadEx game SPL, which instantiates the 

approach to the arcade games domain. Finally, Section 5 briefly 

concludes about the presented work. 

2. DOMAIN-SPECIFIC GAME 

DEVELOPMENT 
Our customized approach for developing game SPLs, entitled 

Domain-Specific Game Development (DSGD) [6], is an iterative 

process ultimately focused on the creation of core domain assets, 

such as DSLs and generators, to automate prioritized sub-

domains of digital games. In a combination of top-down and 

bottom-up approaches, we call our process “edge-center”, in 

which the problem domain (vision, scope, features, sub-domains 

prioritization, etc.) is elaborated in alternations with the solution 

domain (source code, reference architectures, components, etc.). 

Our main paper about the approach structure [6] provides 

                                                             

1 According to eXtreme Programming (XP), a spike solution is a 

simplified program created to explore longer-term potential 

solutions. It typically addresses the problem under examination 

and ignores other concerns, being “not good enough to keep” 

but key to carry on experimentations and reduce risks. 



additional information as well as a discussion on related work in 

the digital game and DSM areas, also not to be repeated here. 

As illustrated in Figure 1, by having tasks in the problem domain 

to complement tasks in the solution domain, each spiral cycle 

culminates with the creation, or enhancement, of DSLs, 

generators and eventually other core domain assets for a specific 

game sub-domain. In a subsequent iteration, another sub-domain 

of the target game SPL domain is prioritized and elaborated 

through the same problem and solution domain tasks (the spiral) 

suggested by the approach. 

 

Figure 1. The Domain-Specific Game Development 

edge-center approach [6]. 

DSGD groups its tasks in four logical phases, refined during each 

iteration. The Game Domain Envisioning phase is focused on 

establishing a high-level overview and common understanding of 

the domain to be approached. It avoids the ambiguous and blurry 

universe of game genres by suggesting that a game SPL domain 

should not be solely described by means of a genre name (such as 

“racing games”, “card games” or “fighting games”), but by a 

description of what is expected for core game dimensions, such 

as player (number of players, co-playing modes, score system, 

etc.), flow (levels, screens, rooms, etc.) and entities (types, main 

characters vs. non-playable characters breakdown, properties, 

etc.). Custom core game dimensions, such as the battle system 

for a role-playing game (RPG) domain, are encouraged. 

The Game Domain Analysis phase provides guidelines on which 

game samples to evaluate and how to evaluate them, ending up 

with a set of feature models [10] for the ongoing iteration. It 

builds or improves the domain vocabulary and partitions the 

game SPL domain into more specific sub-domains, for which 

more effective DSLs and generators can be created. Finally, it 

assesses the game domain automation potential by identifying 

sub-domain candidates for automation and prioritizing them. 

The guidelines suggested by DSGD to identify game sub-

domains as automation candidates include using the natural 

categorization of the domain [11] by scanning the feature model 

that resulted from extracting the domain commonality/variability. 

Closely related features are normally good candidates to pertain 

to a same sub-domain, while isolated features also provide good 

hints [12]. Relying on the knowledge of the domain expert 

[13] helps to further break down the characteristics of the game 

samples. Considering core game dimensions and features 

directly derived and elicited from them as sub-domain candidates 

is also recommended, as well as investigating how sample 

implementations and game engines modularize types (classes, 

interfaces, enumerations, etc.). For example, game engine 

modules and sub-modules can provide hints on possible sub-

domain candidates. A final guideline to identify sub-domains for 

automation is to investigate repetition in sample 

implementations [12]. If some piece of design or code 

repeatedly appears in a sample or across samples, even if the 

repetition instances are not exactly the same, it is likely that a 

machine can do some parameterized copying and pasting, and it 

is worth to try to find a sub-domain there. 

In order to prioritize the sub-domain candidates, DSGD suggests 

practitioners to consider: previous automation evidence 

(existing modeling languages and modeling/generation tools for 

the sub-domain); integration (easiness of plugging in new or 

already existing modeling languages and tools into the game 

product line); coverage (whether the sub-domain covers a bigger 

amount of features when compared to other sub-domains, or 

more important features than other sub-domains considering the 

features were prioritized somehow [9]); development 

productivity (how much effort will developers save if the sub-

domain is automated? This can be measured by the expected size 

of the artifact the sub-domain automation is supposed to 

generate, in average, for the developed games); and development 

abstraction (if implemented manually, how complex or error-

prone are the artifacts supposed to be generated by the sub-

domain automation? Examples of artifacts with a high error-

prone and complexity rates are code or configuration files that 

deal with too many literal values and constants or require lots of 

repetition but yet a few customizations that could be missed, 

code that requires application of design patterns and code that 

ensures a non-functional concern such as performance or security 

is satisfied). 

The Application Assets Creation phase customizes the typical 

Domain Design and Domain Implementation activities of 

Domain Engineering [14] to create application core assets for the 

target digital games domain. Mirroring the findings of Kelly & 

Tolvanen [8] on component libraries, such activities build or 

improve a domain-specific game architecture by promoting game 

engines to domain frameworks [15]. In other words, they ensure 

that game engines support the domain variability, framework 

completion (i.e., they can be seamlessly consumed by generated 

code) and extensibility so that the generated games are not 

constrained to the built-in behaviors supported by the game SPL. 

Likewise, this phase also guides the integration of reusable game 

components (such as an on-screen keyboard or a heads-up 

display) into the domain-specific game architecture. 

Finally, the Development Assets Creation phase enables the 

design and implementation of DSLs, generators, automated 

guidance and other development core assets, integrating them to 

the game SPL. They characterize the variability level for each 

prioritized sub-domain (ranging from routine configuration to 

creative construction [16]), design or improve DSLs for it 

(including their abstract and concrete syntaxes as well as cross-

language integration), design and implement generators and the 

development environment (IDE) integration. 



3. SHARPLUDUS REVISITED 
Thinking in retrospect, many lessons were learned in the journey 

from the original SharpLudus project [5] to the current Domain-

Specific Game Development approach [6]. Describing those is 

the main goal of this subsection. 

From one hand, the original assumption that DSLs are 

underexplored in the context of the digital games development 

domain still holds true. In the lack of better metrics, case studies 

developed with SharpLudus reported the generation of dozens of 

classes and thousands of source lines of code in a couple of hours 

of development. The DSGD approach results are also 

encouraging, reporting a four to five times faster development 

than approaches employing only game engines. Likewise, 

although click-n-play tools still occupy their niche by enabling 

non-programmers to quickly assemble game functionalities via a 

drag-and-drop user experience, visual development and modeling 

environments targeted at actual game programmers and the game 

industry in general are still not mainstream. We can find some 

level of domain-specific development in game engines, because 

they evolved from APIs into a more comprehensive toolset 

encompassing script languages, such as UnrealScript. However, 

such languages are still at a fairly low programming level, raising 

concerns as to the level of abstraction they offer [17]. 

On the other hand, the original SharpLudus project and the 

current DSGD approach diverge in some relevant points. 

Obviously, the main difference is that while SharpLudus was an 

ad hoc instance of a game SPL, DSGD defines guidelines for the 

creation of game SPLs, being a more comprehensive and mature 

approach whose foundations were tightly built from Domain 

Engineering [14] and other software reuse and abstraction 

concepts, such as SPLs and DSM [7, 8, 9]. 

Already concerned with the problems entailed by the ambiguity 

of game genres, SharpLudus suggested that the target game 

domain had to be described by means of a “product line 

definition”. DSGD evolved the concept by requiring the game 

SPL to be described by means of the expectations implied by 

core game dimensions, which are not overly generic or specific to 

a game domain. Nonetheless, a more important difference is how 

such assets are used once created. While the product line 

definition (together with the domain vocabulary) was used by 

SharpLudus as a direct input to DSL design, in DSGD the core 

game dimension expectations, together with other assets such as 

the identified non-emotional requirements for the domain, end up 

as input for the creation of feature models [10]. Such 

intermediate step makes the identification of the commonality 

and variability of the domain much more evident, and is key to 

identify and prioritize sub-domains, leading to more expressive 

and effective DSLs and generators. In fact, SharpLudus lacked a 

more structured Domain Analysis phase in which guidelines are 

provided for the selection and analysis of domain samples, as 

suggested by Greenfield & Short [7] and Almeida [9]. 

Probably one of the most notable evolutions from SharpLudus to 

DSGD is the sub-domain breakdown employed by the latter. 

Although the SharpLudus Game Modeling Language (SLGML) 

is a domain-specific language, thinking in retrospection we 

concluded it is not atomic enough. It encompasses too many 

concepts that, despite of being related, could have been explored 

by SPLs in a much more effective way if separated. In short, 

SharpLudus lacks more specific, atomic yet integrated languages. 

For instance, SLGML encompasses the concepts of audio, 

entities, events and game flow altogether. Having all of them in 

the same modeling diagram would provide a confusing user 

experience. As a result, the core of SLGML’s concrete syntax 

focused on only one of such concepts: game flow (Figure 2). In 

other words, the modeling part covered only a subset of the 

application. The management of other concepts such as entities 

and events was performed in normal lists and dialogs (Figure 3), 

launched as custom property editors assigned to the properties of 

the domain’s root concept (the “adventure game”). 

 

Figure 2. SLGML: modeling focus was on the game flow. 
 

 

Figure 3. SLGML: concepts such as Entities and Events were 

managed through lists and dialogs 

We believe this approach is not optimal for at least three reasons. 

First, custom dialogs and lists built from standard UI controls do 

not typically provide the desired level of abstraction for a specific 

domain. In such an approach, the concrete syntax of the domain 

concepts gets mixed with concepts of the user interface API 

domain, such as buttons and list boxes. Likewise, in such an 

approach game developers and designers are more likely to deal 

with instances of the concepts in isolation, as Figure 3 shows: the 

entities of the game are described one by one in the list box, but 

interesting relationships between them, such as whether anything 

happens if they collide, are not described. 

Second, although the aforementioned problems can be mitigated 

by the creation of custom, refined UI controls, such a workaround 

may require a considerable amount of effort. In fact, the 

excessive creation of custom UI controls for modeling purposes 



seems to be a duplicated effort, considering that this is the same 

role of language workbenches (toolset through which DSLs and 

generators can be effectively implemented). 

Finally, having all instances of a concept to be described in the 

same list may decrease the overall cohesion of the models. This 

was observed at least in two opportunities in SharpLudus. All 

animations of a game were defined together in the same list, but 

each set of animations was used only by a specific game entity, 

i.e., the sets had no relation to each other. Hence, it would make 

more sense to have them managed from their respective entity 

instead of together. Likewise, game events were defined in the 

same list, but their triggers actually came from multiple sources 

(entity collision, timers, player input, etc.). Hence, the modeling 

experience could be improved and made more cohesive if each 

event was managed from the source concept that triggers it. 

Learning from this experience, DSGD advocates that the target 

game SPL domain should be broken down into atomic sub-

domains. Examples of such sub-domains are the transition 

between game scenes or screens, entity or screen timers 

responsible for triggering events, the collision relationship 

between game entities and the possible graphical representations 

of heads-up displays. Such sub-domains are too atomic to 

comprehensively define a game by themselves. On the contrary, 

different features of a game fall under such sub-domains. The 

game is the sum of the features distributed in the sub-domains. 

As the target game SPL domain is broken down in sub-domains, 

DSGD’s edge-center spiral focuses on approaching one 

prioritized sub-domain at a time. The sub-domain chosen for a 

given iteration has its feature model detailed, is mapped against 

existing source code from samples, has corresponding modules 

implemented in the domain-specific game architecture to support 

its commonality and variability, and ultimately leads to the 

creation of very specific, atomic DSLs and generators. 

DSGD provides guidance on how to characterize the variability 

for a sub-domain, which will determine the concrete syntax of its 

DSLs. The simplest form of variability is routine configuration, 

in which simpler, tree-like DSLs, such as wizards or feature-

based configuration, are used to select a subset of features when 

configuring a product. On the other end of the variability 

spectrum, creative construction requires complex, graph-like 

DSLs, such as programs and models to be created using textual 

or visual languages [16]. Similarly, techniques for developing 

transformations are more detailed in DSGD, which elaborates 

how template-based code generators can be achieved by 

migrating source code from the reference implementation to 

templates, annotating it with tags and scriptlets that bind the 

code to the DSL. 

As a result of the sub-domain breakdown, some benefits can be 

observed. First, it outputs more expressive DSLs and 

generators, since each is responsible for a well-defined subset of 

the target SPL domain. The most important entities of the target 

SPL domain end up being represented as first-class concepts in 

DSLs, instead of lower-level abstractions based on lists and UI 

controls. Second, it allows an incremental delivery of value. 

DSGD is not an all-or-nothing automation approach. Even if the 

first version of a game SPL automates only one sub-domain, 

delivering a single DSL and generator, game designers and 

developers can already start harvesting the benefits from it. 

Future versions of the SPL can deliver new assets or improve 

already existing ones, automating more sub-domains 

incrementally. Finally, each sub-domain is evaluated for its 

automation potential, providing more confidence to ensure the 

sub-domains with the best return on investment are the ones 

prioritized for automation.  

On the other hand, the sub-domain breakdown may require cross-

DSL integration, which has a lot of challenges on its own. For 

instance, while it is quite straightforward to consume one class 

from another in the source code level, it is not similarly simple to 

make one language access the concepts of another language, as 

well as ensuring their references are always in sync and updated. 

While cross-DSL integration is not a topic approached by 

SharpLudus, DSGD provides some guidance on how that can be 

achieved, exploring the concepts of name-based references, 

model bridges and model buses. 

Some SharpLudus contributions to the development core assets 

area still apply to DSGD, such as the creation of semantic 

validators so that DSL users can catch modeling errors at design 

time. Another contribution that was kept is the guidance for 

game SPL designers to choose a language workbench. 

In the application core assets area, both SharpLudus and DSGD 

advocated for using game engines, a state-of-the-art resource in 

game development, as a central piece of the domain-specific 

game architecture. However, DSGD brings an important 

improvement: promoting the game engine(s) to a domain 

framework which can be seamlessly consumed by generated code 

and therefore is able to move complexity away from code 

generators [15]. This turns out to be extremely important since 

code generators are more difficult to maintain than a framework. 

SharpLudus already had concerns related to making the 

generated games flexible and extensible enough so that the built-

in SPL features could be complemented with custom, developer-

added features as a result of creative processes in the domain. It 

suggested the double-derived design pattern [15] to be employed, 

in which instead of a single class, a pattern of two classes is 

generated for a given domain concept. The base class contains all 

of the generated method definitions as virtual functions; the 

derived class contains no method definitions but is the one that is 

instantiated, which allows the user, in a partial class or similar 

language technique, to override any of the generated functions 

with their own version. DSGD builds on top of this discussion by 

suggesting more variability techniques and extensibility channels 

to the domain framework, such as: aggregation/delegation, 

inheritance, parameterization, overloading, properties, dynamic 

class loading, static libraries, dynamic link libraries, conditional 

compilation, frames, reflection, aspect-oriented programming and 

design patterns [18].  

4. A CASE STUDY FOR ARCADE GAMES 
In order to evaluate DSGD, we instantiated it to a couple of game 

domains, such as isometric adventure games, RPG games and 

mobile touch-based games. The SPL we created for 2D arcade 

games, called ArcadEx, is the most interesting from an 

evaluation perspective, since it is the one in which the approach 

was most comprehensively employed.  

ArcadEx’s expectations for the core game dimensions eliminated 

any ambiguity and blurriness caused by the “arcade” game genre. 



They define ArcadEx as a SPL focused on generating single or 

multiplayer 2-dimensional arcade games for PCs, with short 

levels composed by screens containing entities and walls, quick 

play action (in contrast to more in-depth gameplay or stronger 

storylines), simple, easy to grasp controllers, iconic characters 

and eventually rapidly increasing difficulty. Players control main 

characters and their projectiles that collide with other entities 

such as non-player characters (NPC) or items. Victory condition 

is specified by the game designer as (a set of) game events: 

enemies are defeated, an object is collected, etc. 

Iterations were used for the breakdown and prioritization of sub-

domains. For each sub-domain, we analyzed samples, extracted 

and detailed features (resulting in a feature model of more than 

150 features), inspected and implemented code, and refined a 

domain-specific game architecture. We ultimately came up with 

four DSLs (Figure 4) and code generators, instead of a single 

bloated DSL that lacks conciseness and maintainability. 

In the first iteration, we approached the screen transition sub-

domain, including the different triggers that make an ArcadEx 

game to move from one screen to the other, such as an input 

action or a timer. Following the extensibility guidelines, we 

added support for custom transition events, to be programmed by 

game developers but could still be referenced from the models. 

This resulted in a first version of the ScreenTransitionDSL, 

which was then renamed to GameDefinitionDSL in the second 

iteration after we concluded that such a DSL was the one through 

which developers could also specify the top-level properties of a 

game (such as its window mode, resolution, etc.). In the third 

iteration, we refined the GameDefinitionDSL as a result of 

approaching the screen background sub-domain, allowing game 

developers and designers to assign static background pictures to 

screens instead of manually programming code to render them. In 

the fourth iteration, we explored the background music sub-

domain. Properties such as what music asset to play as 

background music were added to each screen, along with the 

background music behavior such as “start new music”, “keep 

playing the current one”, etc. After these four iterations, game 

developers and designers had a suitable version of the 

GameDefinitionDSL, which allowed them to perform various 

screen flow management tasks in a higher level of abstraction, 

via DSLs and models. Nonetheless, other game features still had 

to be programmed in the low level. 

In order to improve the (manual) testability and expedite 

experimentations of the SPL, we then approached the input 

mapping sub-domain, i.e., the mapping of the gamepad 

(controller) buttons to keyboard keys. This allowed games to be 

played with the keyboard, although input events in the models 

were specified by means of gamepad buttons. As a result, the 

InputMappingDSL was created. Subsequent iterations explored 

the entity definition sub-domain, including entity states and 

animations, resulting in the EntityDSL through which the “things 

and beings” of ArcadEx games could be modeled, instead of 

programmed. Many iterations were required to refine this DSL, 

approaching domains such as the declaration of collision 

interest between entities, entity input handlers (single-button, 

8-direction movement, etc.), entity event reactions (create 

entity, destroy entity, switch state, etc.), entity-based timer 

events, and others. Due to the sub-domain prioritization 

guidelines, some of the EntityDSL refinements were alternated 

with the creation and refinement of another DSL, called 

ScreenDSL. Such a DSL is the result of prioritizing sub-domains 

related to screen contents, such as heads-up displays (textual, 

icon or progress bar), the placement of entity instances in a 

screen and screen-based timer events. 

ArcadEx’s DSLs were continuously revisited as the game SPL 

evolved and new sub-domains were approached. For example, 

the GameDefinitionDSL was updated after the scrolling 

backgrounds sub-domain was chosen for automation. Likewise, 

a few more complex concepts required cross-DSL integration, 

churning the DSLs. For instance, we enabled textual heads-up 

displays from the ScreenDSL to reference an entity property 

defined in the EntityDSL, such as the number of remaining hit 

points. 

Evidently, the creation and refinement of the DSLs was not the 

only deliverable of each iteration. Code generators for the DSLs 

were also being developed and refined. In order to move 

complexity away from the multiple generators, incremental 

layers were implemented on top of the FlatRedBall game 

engine2, chosen to be the heart of ArcadEx’s domain-specific 

game architecture. With such layers, FlatRedBall was gradually 

promoted to a domain framework. Any extra plumbing required 

to consume the engine was eliminated by means of adapters. 

Special attention was given to offer easy-to-consume extensibility 

hooks plugged into FlatRedBall for unforeseen game behaviors. 

In summary, the promoted FlatRedBall game engine 

encapsulated all of the commonality of the domain, while still 

supporting the variability expressed by the DSL and extensions. 

Case studies involving the creation of games through the 

ArcadEx SPL brought up some benefits of using the Domain-

Specific Game Development guidelines: we got incremental 

delivery of value via the prioritized sub-domains automation, a 

reduced complexity to consume game engines (promoted to 

domain frameworks) from the generated code and domain-

specific assets tailored to the unique characteristics of the 

envisioned family of games. From an end-user perspective, 

ArcadEx games are developed in one-fifth to one-fourth of the 

time required to develop them using the game engine alone. Such 

results are in line with MDD improvements measured for other 

areas [19]. 

On the other hand, we initially observed that the automated sub-

domains presented reduced levels of flexibility, i.e., the SPL’s 

built-in assets did not comprehensively cover the game domain 

variability. We overcame such a drawback by providing more 

extensibility hooks so that unpredicted behaviors could still be 

programmed by hand and integrated to the models as extensions. 

Many of these extensions were then incorporated to the game 

SPL’s built-in feature set in later iterations.  

Another challenge that we faced with the DSGD approach relates 

to backward compatibility. More than once, refined versions of 

the DSLs broke existing model instances. For such scenarios, we 

suggest that migration tools are developed in order to assist game 

developers and designers to move their models to the new 

versions of the DSLs. Finally, we strongly recommend 

practitioners to move the implementation of helper methods and 

                                                             

2 flatredball.com 



supporting APIs for cross-language integration away from code 

generators, as they are one of the hardest SPL assets to maintain. 

5. CONCLUSIONS 
Combined with the promotion of game engines to domain 

frameworks, the replacement of monolithic game DSLs by a set 

of more atomic DSLs targeted at specific sub-domains is an 

interesting move for game SPLs. It breaks down game 

development tasks into more granular and automatable chunks, 

which can be prioritized and implemented accordingly. We 

believe many of our lessons learned can be employed to domains 

other than game development, although this is out of the scope of 

this paper. 

Although our Domain-Specific Game Development guidelines do 

not constitute a comprehensive Domain Engineering process per 

se [14], the benefits of its systematic approach and the results 

obtained so far make us believe they are a step in the right 

direction for automating more of the game development domain. 

As a result, we hope game SPLs are able to free up valuable time 

that can be allocated in creative, experimentation and prototyping 

tasks responsible for making each game title unique and distinct. 

6. REFERENCES 
[1] Furtado, A. W. B.; Santos, A. L. M.; Ramalho, G. L. 

Streamlining domain analysis for digital games product 

lines, Proc. of the 14th Int’l. Conf. on Software product 

lines: going beyond, Springer-Verlag, 2010, pp. 316-330. 

[2] Blow, J. Game Development: Harder Than You Think, 

ACM Queue, vol. 1, no. 10, 2004, pp. 28–37. 

[3] Reyno, E.M.; Cubel, G.A.C. Model-Driven Game 

Development: 2D Platform Game Prototyping, Proc. Game-

On 2008, 9th Int’l Conf. Intelligent Games and Simulation, 

EUROSIS, 2008, pp. 5–7. 

[4] Folmer, E. Component Based Game Development: A 

Solution to Escalating Costs and Expanding Deadlines? 

Proc. 10th Int’l ACM SIGSOFT Symposium Component-

Based Software Engineering, Springer, 2007, pp. 66–73. 

[5] Furtado, A. W. B.; Santos, A. L. M. Using Domain-Specific 

Modeling towards Computer Games Development 

Industrialization, The 6th OOPSLA Workshop on Domain-

Specific Modeling (DSM06), 2006. 

[6] Furtado, A. W. B.; Santos, A. L. M.; Ramalho, G. L.; 

Almeida, E. S. Improving Digital Game Development with 

Software Product Lines. IEEE Software Magazine, vol. 28, 

no. 4, Engineering Fun, 2011. 

[7] Greenfield, J.; Short, K. Software Factories: Assembling 

Applications with Patterns, Models, Frameworks, and 

Tools. Wiley, 2004. 

[8] Kelly, S.; Tolvanen, J.-P. Domain-Specific Modeling: 

Enabling Full Code Generation. Wiley, 2008. 

[9] Almeida, E. S. RiDE: The RiSE Process for Domain 

Engineering, Ph.D. Thesis, Federal University of 

Pernambuco, 2007. 

[10] Kang, K.; Cohe, S.; Hess, J.; Nowak, W.; Peterson, S. 

Feature-oriented domain analysis (FODA) feasibility study. 

Technical Report CMU/SEI-90TR-21, Software Engineering 

Institute, Carnegie Mellon University, 1990. 

[11] Maiden, N.; Sutcliffe, A. A computational mechanism for 

parallel problem decomposition during requirements 

engineering. In: 8th International Workshop on Software 

Specification and Design, Germany, pp. 159–163 (1996). 

[12] Lucrédio, D.; Fortes, R. P. M.; Almeida, E. S.; Meira, S. R. 

L. Performing domain analysis for model-driven software 

reuse. In 10th International Conference on Software Reuse, 

Beijing, China, 2008; 

[13] Lee, K.; Kang, K. C.; Lee, J. “Concepts and guidelines of 

feature modeling for product line software engineering,” in 

7th Intl Conference on Software Reuse (ICSR), Austin, 

Texas, 2002, pp. 62–77; 

[14] Czarnecki, K.; Eisenecker, U. W. Generative Programming: 

Methods, Tools, and Applications. Addison Wesley, 2000. 

[15] Cook, S.; Jones, G.; Kent, S.; Wills, A. C. Domain-Specific 

Development with Visual Studio DSL Tools, Addison-

Wesley Professional, June 2007. 

[16] Czarnecki, K. Overview of generative software 

development, in Int’l Work-shop on Unconventional 

Programming Paradigms, France, Sep 15-17, 2004, ser. 

LNCS, Vol. 3566. Springer, 2005, pp. 326–341. 

[17] Dobbe, J. A. Domain-Specific Language for Computer 

Games, MSc dissertation, Department of Software 

Technology, Delft University of Technology, 2007. 

[18] Anastasopoulos, M.; Gacek, C. Implementing Product Line 

Variabilities, in Symposium on Software Reusability (SSR), 

Toronto, Canada, 2001, pp. 109–117. 

[19] Kelly, S. Domain-Specific Modeling: MDD that Works, 

blog, 17 Mar. 2010; http://bit.ly/g1KyWp. 
 

 
Figure 4. ArcadEx DSLs: (a) GameDefinitionDSL, (b) EntityDSL, (c) ScreenDSL, (d) InputMappingDSL 


