
Design Patterns for Metamodels
Hyun Cho and Jeff Gray

University of Alabama
Department of Computer Science

Box 870290
Tuscaloosa, AL, 35216

hcho7@ua.edu, gray@cs.ua.edu

ABSTRACT

A metamodel is used to define the abstract syntax (i.e., entities,

attributes, and relations) of a Domain-Specific Modeling

Language (DSML). In addition, a metamodel also defines

constraints and static semantics that provide additional

information about the modeling language beyond the abstract

syntax. In many cases, the specification of a new metamodel is

highly dependent on the designer’s background and experiences.

Thus, metamodel designs often differ from designer to designer,

even for recurring design problems (i.e., there is more than one

way to specify a modeling language with a metamodel). The

quality of a metamodel design may also vary according to the

designer’s domain knowledge and modeling language expertise.

To provide consistent solutions for recurring metamodel design

issues, design patterns applied to metamodels may offer key

insights, especially to new language designers who have less

experience. In this paper, we motivate the need for design patterns

for metamodels and provide a few examples of the concept.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features

General Terms

Design, Languages.

Keywords

Metamodel, Design Pattern, Visual Modeling, Domain-Specific

Modeling Languages.

1. INTRODUCTION
A language is generally developed by designing and

implementing three language elements: concrete syntax, abstract

syntax, and semantics. When developing Domain-Specific

Modeling Languages (DSMLs), especially visual modeling

languages, the concrete syntax corresponds to modeling elements

that symbolize the concepts of the domain, and abstract syntax is

defined as the inter-relationships of modeling concepts as defined

within the metamodel. Semantics, which govern structural and

behavioral properties of DSMLs, are also often associated with a

metamodel. Thus, to develop a quality DSML, language designers

are required to have deep understanding of both a target domain

and language development expertise.

General-Purpose Modeling Languages (GPMLs) are designed to

model a wide range of domains, such as business process

modeling and manufacturing, in addition to software design.

Generally, GPMLs like the UML consist of a large set of

language constructs to be used in many contexts, with the

understanding that not all of the provided modeling concepts are

needed for each domain. However, DSMLs are designed and

implemented to be used for a specific domain. Because DSMLs

can offer several benefits due to their conciseness and

expressiveness, many DSMLs have been developed and applied

for various domains.

Despite numerous successful case studies, there are several

challenges that may contribute to the lack of widespread adoption

of DSMLs in industry: (1) domain knowledge and language

development expertise are required when developing DSMLs, but

few experts have such expertise, (2) lack of methods and

guidelines to develop and manage quality DSMLs. In addition,

DSMLs are often developed from scratch because many are

designed and implemented for internal use within a specific

domain, which makes it difficult to publicly share development

artifacts. Due to these issues, DSMLs are sometimes developed

only when they are absolutely necessary.

We believe that one way to resolve these issues is to reuse

previous DSML designs, especially reuse of recurring concepts in

the design of metamodels. Although DSMLs are developed to be

used for a specific domain, some design decisions commonly

occur across modeling language creation, regardless of the

domains of interest. For example, classifiers, which represent

domain notations and their relationships (e.g., association,

aggregation, and inheritance), are typically present in every

DSML.

In this paper, we consider the application of design patterns in

metamodel design. The goals of this paper are (1) identification of

common design problems of DSMLs by analyzing the concrete

syntax of DSML examples, (2) the proposition of metamodel

design patterns based on the results of the concrete syntax

analysis, and (3) metamodel design guidelines.

The paper is organized as follows. Section 2 describes our

approach for identifying metamodel design patterns and then lists

a set of questions that can be used to find other metamodel design

patterns. To identify a set of questions, we analyze commonality

of DSMLs and present a feature model as the result of the

analysis. Based on the analysis, basic metamodel designs are

elicited and elaborated. Section 3 discusses the possible issues to

rationalize our approach and Section 4 concludes with future

work.

2. APPROACH OF METAMODEL DESIGN

PATTERN IDENTIFICATION
Since the notion of patterns in urban design and the architecture

of their construction were introduced into the software

community [2], design patterns [11] have been widely adopted in

both research and the software industry during the past decades.

As design patterns describe mature solutions for particular

software design problems that recur in a given context [7],

software architects and designers can leverage the experience of

master designers. The solution can be structured into either

desirable patterns [11] or undesirable patterns (e.g., “anti-patterns)

[5]. Desirable patterns represent reusable elements at a higher

level of abstraction, and undesirable patterns describe patterns

that protect a design from common and expensive mistakes,

which should be identified and avoided at an early design stage.

As a result, design patterns can help capture domain knowledge

and improve the quality of software products. Design patterns are

applied to a wide range of software development areas, such as

software architecture design [6], user interface design,

information visualization, and business modeling.

In this paper, we consider the notion of design patterns in

metamodel design to capture experience that could be applied

across a broad base of metamodels. To mine design patterns in

metamodels, we took the following steps:

 Context setting: To identify issues of metamodel design, we

reviewed the concrete syntax of several DSMLs and modeled

their commonality and variability. Because complete DSMLs

are challenging to obtain from industrial settings, we include

GPMLs such as UML diagrams, assuming that each diagram

can be tailored for a specific domain. A feature model [14]

was used to summarize our understanding of commonality

and variability in the DSML examples that we analyzed.

 Identification of metamodel design problems: Based on the

feature model that was created from the analysis of DSML

concrete syntax, we observed several metamodel design

challenges. To derive the recurring metamodel design idioms,

we focused on the commonalities in the DSML feature

model. These commonalities represent a few of the common

features at the core of metamodeling.

 Metamodel design pattern proposal: Based on the identified

problems from step 2, we searched and analyzed relevant

metamodels and proposed a design pattern for each problem

identified.

2.1 Context Setting
To identify the commonly recurring metamodel design problems,

we examined the concrete syntax of several DSMLs (please see

the Appendix for example domains), with specific focus on

classifiers and relationships. To generalize the concrete syntax of

DSMLs, we assume that most modeling languages commonly use

a Box-and-Line style, even though there is some disagreement in

the community on how to interpret and understand the syntax and

semantics of graphical languages. Typically, Boxes represent the

instances of the domain concepts such as key functionalities or

behaviors, and Lines that connect Boxes describe how the

connected Boxes communicate or are related to each other

syntactically and semantically. The key benefit of using the Box-

and-Line style is its simplicity, and thus, many modeling

languages inherently contain the notion of Box-and-Line even

though they are realized with different concrete syntax. For

example, Petri Nets define four basic symbols (i.e., Places,

Transitions, Directed arcs, and Marks) to model and analyze

reachability, liveness, and boundedness of concurrent discrete

event systems. Places and Transitions, denoted by circles and

rectanglrd (or bars), correspond to Boxes; Directed arcs,

represented by arrows, correspond to Lines.

Based on this observation, prior to identifying metamodel design

patterns, the concrete syntax of DSMLs should be identified and

generalized from model instances. In particular, we paid close

attention to what and how many modeling entities are used in

DSMLs, and what and how the relationships link modeling

elements both syntactically and semantically.

2.2 Identification of Metamodel Design

Problems
Based on the analysis of existing DSMLs, we identified the

commonality among several DSMLs and derived a feature model

as shown in Figure 1.

Figure 1. Feature Model of DSML Concrete Syntax

Four major features (i.e., Classifier, Relationship, Style, and

Boundedness) are defined as mandatory features. There are two

other features (i.e., Containment and Nesting), which describe

characteristics of a classifier, that are defined as optional features.

In addition, Sub features of Type, Orientation, and Boundedness

are defined as an Alternative feature because a relationship can

have only one kind of Type, Orientation, and Boundedness. Based

on the feature model in Figure 1, we derived the following

questions that relate to metamodel design challenges:

 How to design a metamodel if the concrete syntax of the

DSML consists of simple boxes and lines? This question will

examine how to design a metamodel for a very primitive

concrete syntax, which consists of classifiers and association

relationships. Thus, the solution for this problem will be the

base metamodel, and metamodels for complex DSMLs will

be designed by extending this base metamodel.

 How to design or evolve a base metamodel if the concrete

syntax is more complex (e.g., classifiers are linked with

several different types of relationships)? This is generally

required for both GPMLs and DSMLs. For example, in a

UseCase diagram, a use case can be linked with other use

cases that include or extend the relation. This question may

also be important in the design of DSMLs, which heavily

depend on relationships between classifiers to describe

domain knowledge.

 How to represent boundedness of a relationship? Generally,

most DSMLs implicitly enforce that both ends of a

relationship are bounded to classifiers to represent which

classifier drives a behavior and which classifier reacts to the

action. In some cases, one end of the relation can be open. A

DSML for representing chemical structure [3] can be a good

example for this case because some chemical structures have

lone pairs of electrons, which are not involved in chemical

bond formation, as well as bonding pairs.

 How to design a metamodel to represent containment and

nesting? Some DSMLs may contain one or more types. Petri

Nets and Activity Diagrams are examples of languages that

have containment. As mentioned above, Petri Nets are

defined with four modeling elements (i.e., Places,

Transitions, Directed Arcs, and Marks). Places represent the

pre- and post-state of a system by transition, and transition

shows the place where events occurred. Directed arcs show

the direction of a transition. Transitions between places are

determined by the contained number of tokens in a place and

are fired when one or more start places, linked to the same

transition, contain enough tokens to satisfy the firing

condition. Nesting can be a special case of containment and

used to control the level of abstraction by organizing

classifiers hierarchically.

2.3 Metamodel Design Patterns
Based on the questions described in Section 2.2, we propose an

initial set of solutions in this section. The solutions are proposed

by investigating several metamodels, including UML. We use

object-oriented notations, such as those used in class diagrams, to

represent metamodel designs.

2.3.1 Design for Base Metamodel
Extension to a base metamodel is proposed as a candidate solution

for the first question related to metamodel design when the

concrete syntax consists of boxes and lines. Consideration of

metamodel design for the simple box-and-line style DSMLs is

important because this style may be used when requirements of a

DSML are captured at an initial sketch level, which may occur at

the early stage of DSML development. This issue emerges when a

domain needs to be modeled with a very high level of abstraction.

In the Box-and-Line style, boxes are generalized as a set of

Classifiers and lines are mapped to Relationships. As a

Relationship normally links two Classifiers, one for the source

Classifier and the other for the target Classifier, the Classifier and

Relationship are linked with two association relationships, source

and target.

Classifier Relationshipsource

target

1,…,*

1,…,* *

*

Classifier Relationshipsource

target

1,..,*

0,..,* *

*

(a) (b)

Figure 2. Base Metamodel

Multiplicity is assigned to the association in order to specify the

number of participating instances. In addition, it can also be used

to describe the boundedness of a relationship. For example,

Figure 2(a) shows the relationship links for two classifiers with

source and target, which denotes the situation where at least one

source and target exist due to both the multiplicity of source and

target being specified as one-to-many. On the contrary, in Figure

2(b), the multiplicity of source and target is set to one-to-many

and zero-to-many, respectively. This means that there exists at

least one source, but the target may or may not exist in the

relationship.

2.3.2 Metamodel for Typed Relationships
Associations represent a common relationship type in DSMLs.

However, several types of relationships may exist to enrich the

semantics between linked model elements. For example, a

UseCase diagram has two typed relationships, such as include and

extend. A class diagram has three typed relationships (i.e.,

inheritance, aggregation, and composition) in addition to

association.

Several metamodel designs for typed relationships and classifiers

have been presented in the literature. Figure 3(a) is excerpted

from the UML Superstructure Specification v2.3 [24], and Figure

3(b) is excerpted and simplified from Ouardani et al. [20].

Although the number of participating elements is equal, the two

metamodel designs are different in two key ways: linked elements

and a typed relationship to linked metamodel elements. First,

when looking at the linked elements, both metamodels are

designed to inherit typed relationships (i.e., include and extend)

from the common parent relationship. However, in Figure 3(a),

each typed relationship is linked with a classifier, but in Figure

3(b) the classifier and relationship are linked to each other instead

of linking the typed relationships.

s
o

u
rc

e

*

1

ta
rg

e
t 1

Classifier

include extend

Relationship

Classifier

include extend

Relationship

ta
rg

e
t 1

s
o

u
rc

e 1

*

s
o

u
rc

e

ta
rg

e
t 11

* *

(a) Excerpted from UML

Superstructure V 2.3 p620
(b) Simplified Ouardani et el.

metamodel design
Figure 3. Metamodel Design for Typed Relationship

(adapted from [20] and [24]

The two metamodel designs are both acceptable, but Figure 3(a)

is a more preferable design than Figure 3(b). To rationalize the

preference, we need to consider the notion of upcasting and

downcasting in object-oriented programming. Upcasting and

downcasting occur in inheritance hierarchies. Upcasting is “part

of expressing the is-a relationship and converts a derived class

reference or pointer to a base class reference or pointer and is

allowed for public inheritance without the need for an explicit

type cast.” Downcasting is “the opposite process of upcasting and

converts a base class pointer or reference to a derived class

pointer or reference.” [21]. Normally, downcasting is avoided

because is-a relationships are not reversible. This means that the

base class cannot access the data members and methods defined in

a derived class. As a result of downcasting, a system may show

unsafe system behavior and break abstraction and encapsulation.

As another point of differentiation, the two metamodels use

different typed relationships between the classifier and

relationship. In Figure 3(a), two different relationships,

composition and association, are used to link between classifiers

and typed relationships (i.e., include and extend). In this

metamodel, a composition relationship may be introduced to

describe that the source classifier is strongly dependent on the

target classifier. But in Figure 3(b), the association relationship is

used for both source and target links. Typically, association is

used to link classifiers weakly, and composition is used to

describe a part-whole relationship. However, because the two

relationships are relevant to each other and the semantics of the

two are defined slightly differently among OO modeling

approaches [1], it is difficult to say which one is more appropriate.

In general, we believe that association is to be preferred to

composition if there is no clear part-whole relationship.

2.3.3 Metamodel for Containment
Containment represents a part-whole hierarchy and is used to

raise the level of abstraction by grouping large and complex

model elements with a simple element. The Composite design

pattern [11] is commonly used for designing containment needs,

but containment also can be designed without using the

Composite design pattern. Three different containment

metamodel designs are shown in Figure 4.

Figure 4(a) uses the Composite design pattern to design a

containment metamodel. The design leverages the benefits of the

design pattern such as facilitating the addition of new kinds of

classifiers and recursive composition. Figure 4(b) represents

containment with a unary composition relationship. Although

Figure 4(b) represents a viable design option for containment, the

design is only applied for containing the same type of classifiers

and may violate the open/closed principle when a container needs

to include new kinds of classifiers. In Figure 4(c), the classifier is

inherited from Composite Classifier, which represents an abstract

classifier that can have sub-classifiers. In addition, a classifier is

linked with the Container through an association relationship.

The intent of the design is to treat the container differently from

the contents by introducing Container, which may have different

characteristics than other classifiers. For example, a deployment

diagram (or allocation diagram) may be used to illustrate how

physical resources (i.e., storages, processors, network interfaces)

are allocated onto execution environment nodes. Physical

resources are often composed of the same or other physical

resource (i.e., a network interface may have a processor and

storage to manage network packets) to provide their own

functionality, but the instance of the composed physical resources

are treated as composite physical resources. However, nodes are

composed of physical resources to offer services, but they can be

designated as a container rather than composite entities because

they are grouped logically. The advantage of the design is that

containers can specify classifiers to be contents of the container

through the links between classifiers and container.

Classifier

c
o

n
ta

in
e

r

c
o

n
te

n
t

0
..
.1 1

Classifier

Container
container

content

0...1

0…*

(a) Modified

BPMN p119
(c) Modified from Q-

ImPrESS Project p49

(b) Excerpted from UML

Infrastructure V 2.3 p87

Composite

Classifier

Classifier

1

1,…,*

Container

*

1

Figure 4. Metamodel Design for Containment

(adapted from [23], [24], and [26])

As described above, each metamodel design has its own intent,

but the metamodel design for containment can be unified into

Figure 4(a), which is an overly general design for containment

that has the flexibility of extension for adding new classifiers or

other properties. For example, if a container should have different

characteristics that are abstract (or logical) from classifier, an

attribute may be added to the classifier class to represent that need.

Moreover, Figure 4(a) can represent nested containers without

additional descriptions.

3. APPLICATION OF METAMODEL

DESIGN PATTERNS
Describing the applicability of a design pattern is an important

factor in characterizing its usefulness and promoting its

understanding. The metamodel design patterns introduced in

Section 2.3 can form the basis for designing the metamodel for a

DSML. The first metamodel design pattern can be applied to

design a simple box-and-line style DSMLs. The second and third

patterns can be used to describe metamodels that support typed

relationships and containment, respectively. In addition to these

applications, metamodel design patterns can be used for

composing and inferring metamodels.

Metamodel composition [8][15][16][18][19] is a technique that

creates a new metamodel by reusing all or part of existing

metamodels. To make metamodels reusable and/or composable,

the metamodels are refined to abstract metamodels that are not

designed for specific DSMLs, but capture general structures and

behaviors of DSMLs. The proposed metamodel design patterns

are elicited from commonality analysis and can represent general

characteristics of DSMLs, much like abstract design patterns.

Metamodel inference is the other application area of metamodel

design patterns. Metamodel inference has recently been

considered as an application of grammar inference [4][10][12]

and used to recover metamodels from existing model instances

[9][13]. To infer a metamodel accurately, a metamodel inference

engine may require a large set of training data [17]. However,

having a large set of existing training data may not be practical in

many cases. To complement the lack of training data, metamodel

design patterns can be used as a supplementary aid to generate

representative instances for metamodel inference through the

commonality provided by DSMLs for recurring metamodel

design problems.

4. DISCUSSION
In this paper, we proposed three metamodel design patterns based

on the common characteristics of DSMLs, which we think are

important and offer the potential for high impact for metamodel

design. Although the notion of “patterns” does not fit the

generally ascribed parts that are contained in a pattern language,

the design guidelines for each concept will be expanded into a

more complete description following a pattern language.

The main threat for the generality of the approach is the selection

of DSMLs that we used to derive our feature model. Because

DSMLs are designed for different domains and sometimes used in

closed groups, it is difficult to collect all kinds of DSMLs. Thus,

our feature model may not reflect features that are mandatory for

all types of DSMLs. However, considering DSML development

tools such as GEMS [22] and MetaCase [25] and reviewing the

literature, we believe that the proposed approach and metamodel

design patterns have general applicability.

Another concern regarding the generality of our proposal emerges

when one considers that DSMLs are often used to model system

behaviors. However, most of the DSMLs that we analyzed are

used to model the structural aspects of a system. However,

reviewing several available behavioral modeling languages, the

approach may be applied equally if new patterns can be

uncovered. For example, sequence diagrams, activity diagrams,

and state transition diagrams are the typical examples of

behavioral modeling languages, even though they are classified as

general-purpose modeling languages. They also can be analyzed

to determine characteristics of behavioral modeling that may be of

use also for DSML designers.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we analyzed the commonality and variability of

DSML concrete syntax based on the properties of classifiers and

their relationships. From this analysis, we derived recurring

metamodel design problems from a DSML feature model. In

addition, we proposed three metamodel design patterns for the

identified problems. As the proposed metamodel design patterns

are the basic and/or core of the metamodel design, they can be

commonly applied across different metamodel designs. We

believe that the proposed metamodel design guidelines will help

to design quality metamodels.

With the proposed metamodel design patterns, our future work

will apply these patterns to metamodel composition. The patterns

introduced in this paper form the basis for metamodel

construction, but they need to be composed with other metamodel

elements to construct a complete metamodel for a DSML. For this,

we will introduce the notion of component, whereby each

metamodel design pattern and metamodel element will be treated

as components. Generating a metamodel through metamodel

composition can leverage the benefits of both design patterns and

Component-Based Development, while minimizing manual tasks

of language design for recurring situations.

Our focus has been on metamodels that are defined in a graphical

manner. There are also many popular metamodeling environments

and languages that focus on a textual description of a metamodel.

We plan to perform a similar analysis on textual metamodels.

In addition, we will research how metamodel design patterns can

be used effectively for metamodel inference. We have observed

occasions when a metamodel needs to be reconstructed from

legacy instances (e.g., when DSMLs have evolved and no

development documents exist). Normally, reconstructing through

inference requires a large set of model instances to train an

inference engine. Although preparing a quality training set affects

the inference accuracy, it is challenging and considered mundane

and error-prone to prepare such training sets. Thus, we expect that

the use of metamodel design patterns can resolve the issues of

training set preparation and computation complexity.

6. ACKNOWLEDGMENTS
This work is supported by NSF CAREER award CCF-1052616.

7. REFERENCES
[1] Albert, M., Pelechano, V., Fons, J., Ruiz, M., & Pastor, O.

2003. Implementing UML association, aggregation, and

composition: a particular interpretation based on a

multidimensional framework. In Proceedings of the

International Conference on Advanced Information Systems

Engineering (CAiSE'03), Johann Eder and Michele

Missikoff (Eds.). pp. 143-158, Springer-Verlag, Berlin,

Heidelberg.

[2] Alexander, C., Ishikawa, S., & Silverstein, M. 1977. A

Pattern Language. Oxford University Press, Oxford.

[3] Ash, S., Cline, M. A, Homer, R. W., Hurst, T. & Smith, G.

B. 1997. SYBYL Line Notation (SLN):  A Versatile

Language for Chemical Structure Representation, Journal of

Chemical Information and Computer Sciences, vol. 37, no. 1,

pp. 71-79.

[4] Berwick, R. C., & Pilato, S. 1987. Learning Syntax by

Automata Induction. Machine Learning, vol. 2, no. 1, Mar

1987, pp. 9-38.

[5] Brown, W., McCormick, H., Mowbray, T., & Malveau, RC.

1998. Anti-patterns: Refactoring Software, Architectures,

and Projects in Crisis. John Wiley & Sons.

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., &

Stal, M. 1996. Pattern-Oriented Software Architecture: A

System of Patterns. Wiley.

[7] Coplien, J. O. 2003. Software design patterns. In:

Encyclopedia of Computer Science (4th ed.), Ralston, A.,

Reilly, E. D., Hemmendinger, D. (Eds.). pp. 1604--1606.

John Wiley and Sons Ltd., Chichester, UK.

[8] Emerson, M. & Sztipanovits, J. 2006. Techniques for

metamodel composition. In The 6th OOPSLA Workshop on

Domain-Specific Modeling, pp. 123-139, Oct 2006, Portland,

OR, USA.

[9] Favre, J-M. 2004. CacOphoNy: Metamodel driven

architecture reconstruction, In Proceedings of the 11th

Working Conference on Reverse Engineering (WCRE2004),

Delft, The Netherlands, 2004, pp. 204-213.

[10] Fu, K-S. & Booth, T. L.1986. Grammatical Inference:

Introduction and Survey-Part I. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. PAMI-8, no.

3, pp. 343-359, May 1986.

[11] Gamma, E., Helm, R. Johnson, R., & Vlissides, J. 1995.

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Boston, MA, USA.

[12] Gold, E. M. 1967. Language identification in the limit.

Information and Control, vol. 10, pp. 447–474, 1967.

[13] Javed, F., Mernik, M., Gray, J., & Bryant. B. R. 2008.

MARS: A metamodel recovery system using grammar

inference. Information and Software Technology, vol. 50, no.

9-10 (Aug 2008), pp. 948-968.

[14] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., &

Peterson, A.S. 1990. Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-

TR-21, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA.

[15] Karagiannis, D. & Höfferer. P. 2008. Metamodeling as an

Integration Concept. Software and Data Technologies (2008),

vol. 10, pp. 37-50.

[16] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., & Sztipanovits,

J. 2004. Composition and cloning in modeling and meta-

modeling. IEEE Transactions on Control Systems

Technology, vol. 12, no. 2, pp. 263-278.

[17] Kirsopp, C., & Shepperd, M. 2002. IEE Proceedings:

Software, vol. 149, no. 5, pp 123-130.

[18] Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., &

Maroti, M. 2001. On metamodel composition. In

Proceedings of the 2001 IEEE International Conference on

Control Applications, 2001. (CCA '01), pp.756-760, Sep

2001, Mexico City, Mexico.

[19] Mapelsden, D., Hosking, J., & Grundy, J. 2002. Design

pattern modelling and instantiation using DPML. In

Proceedings of the Fortieth International Conference on

Tools Pacific: Objects for internet, mobile and embedded

applications (CRPIT '02), pp. 3-11, Feb 2002, Sydney,

Australia.

[20] Ouardani, A., Esteban, P., Paludetto, M., & Pascal, J. C.

2006. A Meta-modeling Approach for Sequence Diagrams to

Petri Nets Transformation within the requirements validation

process. In Proceedings of the European Simulation and

Modeling Conference, pp. 345-349, Toulouse, France.

[21] Prata, S. 2004. C++ Primer Plus, 5th edition. Sams

[22] GEMS. http://www.eclipse.org/gmt/gems/

[23] OMG Business Process Model And Notation (BPMN) Ver.

2.0, http://www.omg.org/spec/BPMN/2.0/

[24] OMG UML 2 Superstructure,

http://www.omg.org/spec/UML/2.3/Superstructure/PDF

[25] MetaCase. http://www.metacase.com/

[26] QImPrESS Service Architecture Meta-Model, http://www.q-

impress.eu/wordpress/wp-content/uploads/2009/05/d21-

service_architecture_meta-model.pdf.

Appendix: Listing of Example Domains for Representative DSMLs

Domain Diagrams Brief Description Key Modeling Elements
Containment/

Nesting

Relationship

Style/

Boundedness

Concurrent Discrete Event System

Modeling
Petri net Modeling systems with concurrency and resource sharing

Place, Transition (C), Directed Arc

(R)
A N Directed Closed

Data Modeling ERD Model the logical structure of database Entity(C), Relation(R) N N Directed Closed

Project Management

Gantt Chart
Model project activities with relevant information (i.e.,

duration, cost, …)
Task(C), Predecessor (R) N N Directed Open

PERT Chart
Identify the critical path of the project by modeling the

sequence of tasks
Task(C), Directed arcs (R) N N Directed Closed

Electronic Circuit Design

Schematic

Diagram

Represent how electronic components are connected with

others
Component (C), Line(R) N A Undirected Closed

PCB Layout
Show the placement of electronic components on printed

circuit board
Hole (C), Line (R) N N Undirected Closed

Molecular Modeling - Model the structures and reactions of molecules Atom (C), Bond (R) N N Undirected Open

SW Design

Flowchart Model process or algorithm Symbols (C), Connector(R) N N Directed Closed

Component

Diagram

Represent static structure of components and their

relations

Component, Interface, Port (C),

Connector (R)
A A (Un)Directed Both

UseCase Diagram
Describe system functionalities or behaviors with

UseCase and Actor
UseCase, Actor (C), Relation (R) N A

(Un)Directed

Typed
Closed

Class Diagram
Describe the static structure of the system in terms of

classes
Class (C), Relation (R) N N

(Un)Directed

Typed
Closed

