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ABSTRACT 

A metamodel is used to define the abstract syntax (i.e., entities, 

attributes, and relations) of a Domain-Specific Modeling 

Language (DSML). In addition, a metamodel also defines 

constraints and static semantics that provide additional 

information about the modeling language beyond the abstract 

syntax. In many cases, the specification of a new metamodel is 

highly dependent on the designer’s background and experiences. 

Thus, metamodel designs often differ from designer to designer, 

even for recurring design problems (i.e., there is more than one 

way to specify a modeling language with a metamodel). The 

quality of a metamodel design may also vary according to the 

designer’s domain knowledge and modeling language expertise. 

To provide consistent solutions for recurring metamodel design 

issues, design patterns applied to metamodels may offer key 

insights, especially to new language designers who have less 

experience. In this paper, we motivate the need for design patterns 

for metamodels and provide a few examples of the concept. 
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1. INTRODUCTION 
A language is generally developed by designing and 

implementing three language elements: concrete syntax, abstract 

syntax, and semantics. When developing Domain-Specific 

Modeling Languages (DSMLs), especially visual modeling 

languages, the concrete syntax corresponds to modeling elements 

that symbolize the concepts of the domain, and abstract syntax is 

defined as the inter-relationships of modeling concepts as defined 

within the metamodel. Semantics, which govern structural and 

behavioral properties of DSMLs, are also often associated with a 

metamodel. Thus, to develop a quality DSML, language designers 

are required to have deep understanding of both a target domain 

and language development expertise. 

General-Purpose Modeling Languages (GPMLs) are designed to 

model a wide range of domains, such as business process 

modeling and manufacturing, in addition to software design. 

Generally, GPMLs like the UML consist of a large set of 

language constructs to be used in many contexts, with the 

understanding that not all of the provided modeling concepts are 

needed for each domain. However, DSMLs are designed and 

implemented to be used for a specific domain. Because DSMLs 

can offer several benefits due to their conciseness and 

expressiveness, many DSMLs have been developed and applied 

for various domains. 

Despite numerous successful case studies, there are several 

challenges that may contribute to the lack of widespread adoption 

of DSMLs in industry: (1) domain knowledge and language 

development expertise are required when developing DSMLs, but 

few experts have such expertise, (2) lack of methods and 

guidelines to develop and manage quality DSMLs. In addition, 

DSMLs are often developed from scratch because many are 

designed and implemented for internal use within a specific 

domain, which makes it difficult to publicly share development 

artifacts. Due to these issues, DSMLs are sometimes developed 

only when they are absolutely necessary. 

We believe that one way to resolve these issues is to reuse 

previous DSML designs, especially reuse of recurring concepts in 

the design of metamodels. Although DSMLs are developed to be 

used for a specific domain, some design decisions commonly 

occur across modeling language creation, regardless of the 

domains of interest. For example, classifiers, which represent 

domain notations and their relationships (e.g., association, 

aggregation, and inheritance), are typically present in every 

DSML. 

In this paper, we consider the application of design patterns in 

metamodel design. The goals of this paper are (1) identification of 

common design problems of DSMLs by analyzing the concrete 

syntax of DSML examples, (2) the proposition of metamodel 

design patterns based on the results of the concrete syntax 

analysis, and (3) metamodel design guidelines. 

The paper is organized as follows. Section 2 describes our 

approach for identifying metamodel design patterns and then lists 

a set of questions that can be used to find other metamodel design 

patterns. To identify a set of questions, we analyze commonality 

of DSMLs and present a feature model as the result of the 

analysis. Based on the analysis, basic metamodel designs are 

elicited and elaborated. Section 3 discusses the possible issues to 

rationalize our approach and Section 4 concludes with future 

work. 

2. APPROACH OF METAMODEL DESIGN 

PATTERN IDENTIFICATION 
Since the notion of patterns in urban design and the architecture 

of their construction were introduced into the software 

community [2], design patterns [11] have been widely adopted in 

both research and the software industry during the past decades. 



As design patterns describe mature solutions for particular 

software design problems that recur in a given context [7], 

software architects and designers can leverage the experience of 

master designers. The solution can be structured into either 

desirable patterns [11] or undesirable patterns (e.g., “anti-patterns) 

[5]. Desirable patterns represent reusable elements at a higher 

level of abstraction, and undesirable patterns describe patterns 

that protect a design from common and expensive mistakes, 

which should be identified and avoided at an early design stage. 

As a result, design patterns can help capture domain knowledge 

and improve the quality of software products. Design patterns are 

applied to a wide range of software development areas, such as 

software architecture design [6], user interface design, 

information visualization, and business modeling.  

In this paper, we consider the notion of design patterns in 

metamodel design to capture experience that could be applied 

across a broad base of metamodels. To mine design patterns in 

metamodels, we took the following steps: 

 Context setting: To identify issues of metamodel design, we 

reviewed the concrete syntax of several DSMLs and modeled 

their commonality and variability. Because complete DSMLs 

are challenging to obtain from industrial settings, we include 

GPMLs such as UML diagrams, assuming that each diagram 

can be tailored for a specific domain. A feature model [14] 

was used to summarize our understanding of commonality 

and variability in the DSML examples that we analyzed. 

 Identification of metamodel design problems: Based on the 

feature model that was created from the analysis of DSML 

concrete syntax, we observed several metamodel design 

challenges. To derive the recurring metamodel design idioms, 

we focused on the commonalities in the DSML feature 

model. These commonalities represent a few of the common 

features at the core of metamodeling. 

 Metamodel design pattern proposal: Based on the identified 

problems from step 2, we searched and analyzed relevant 

metamodels and proposed a design pattern for each problem 

identified. 

2.1 Context Setting 
To identify the commonly recurring metamodel design problems, 

we examined the concrete syntax of several DSMLs (please see 

the Appendix for example domains), with specific focus on 

classifiers and relationships. To generalize the concrete syntax of 

DSMLs, we assume that most modeling languages commonly use 

a Box-and-Line style, even though there is some disagreement in 

the community on how to interpret and understand the syntax and 

semantics of graphical languages. Typically, Boxes represent the 

instances of the domain concepts such as key functionalities or 

behaviors, and Lines that connect Boxes describe how the 

connected Boxes communicate or are related to each other 

syntactically and semantically. The key benefit of using the Box-

and-Line style is its simplicity, and thus, many modeling 

languages inherently contain the notion of Box-and-Line even 

though they are realized with different concrete syntax. For 

example, Petri Nets define four basic symbols (i.e., Places, 

Transitions, Directed arcs, and Marks) to model and analyze 

reachability, liveness, and boundedness of concurrent discrete 

event systems. Places and Transitions, denoted by circles and 

rectanglrd (or bars), correspond to Boxes; Directed arcs, 

represented by arrows, correspond to Lines. 

Based on this observation, prior to identifying metamodel design 

patterns, the concrete syntax of DSMLs should be identified and 

generalized from model instances. In particular, we paid close 

attention to what and how many modeling entities are used in 

DSMLs, and what and how the relationships link modeling 

elements both syntactically and semantically. 

2.2 Identification of Metamodel Design 

Problems 
Based on the analysis of existing DSMLs, we identified the 

commonality among several DSMLs and derived a feature model 

as shown in Figure 1. 

 

 

Figure 1. Feature Model of DSML Concrete Syntax 

Four major features (i.e., Classifier, Relationship, Style, and 

Boundedness) are defined as mandatory features. There are two 

other features (i.e., Containment and Nesting), which describe 

characteristics of a classifier, that are defined as optional features. 

In addition, Sub features of Type, Orientation, and Boundedness 

are defined as an Alternative feature because a relationship can 

have only one kind of Type, Orientation, and Boundedness. Based 

on the feature model in Figure 1, we derived the following 

questions that relate to metamodel design challenges: 

 How to design a metamodel if the concrete syntax of the 

DSML consists of simple boxes and lines? This question will 

examine how to design a metamodel for a very primitive 

concrete syntax, which consists of classifiers and association 

relationships. Thus, the solution for this problem will be the 

base metamodel, and metamodels for complex DSMLs will 

be designed by extending this base metamodel. 

 How to design or evolve a base metamodel if the concrete 

syntax is more complex (e.g., classifiers are linked with 

several different types of relationships)? This is generally 

required for both GPMLs and DSMLs. For example, in a 

UseCase diagram, a use case can be linked with other use 

cases that include or extend the relation. This question may 

also be important in the design of DSMLs, which heavily 

depend on relationships between classifiers to describe 

domain knowledge. 

 How to represent boundedness of a relationship? Generally, 

most DSMLs implicitly enforce that both ends of a 

relationship are bounded to classifiers to represent which 

classifier drives a behavior and which classifier reacts to the 

action. In some cases, one end of the relation can be open. A 

DSML for representing chemical structure [3] can be a good 



example for this case because some chemical structures have 

lone pairs of electrons, which are not involved in chemical 

bond formation, as well as bonding pairs. 

 How to design a metamodel to represent containment and 

nesting? Some DSMLs may contain one or more types. Petri 

Nets and Activity Diagrams are examples of languages that 

have containment. As mentioned above, Petri Nets are 

defined with four modeling elements (i.e., Places, 

Transitions, Directed Arcs, and Marks). Places represent the 

pre- and post-state of a system by transition, and transition 

shows the place where events occurred. Directed arcs show 

the direction of a transition. Transitions between places are 

determined by the contained number of tokens in a place and 

are fired when one or more start places, linked to the same 

transition, contain enough tokens to satisfy the firing 

condition. Nesting can be a special case of containment and 

used to control the level of abstraction by organizing 

classifiers hierarchically. 

2.3 Metamodel Design Patterns 
Based on the questions described in Section 2.2, we propose an 

initial set of solutions in this section. The solutions are proposed 

by investigating several metamodels, including UML. We use 

object-oriented notations, such as those used in class diagrams, to 

represent metamodel designs. 

2.3.1 Design for Base Metamodel 
Extension to a base metamodel is proposed as a candidate solution 

for the first question related to metamodel design when the 

concrete syntax consists of boxes and lines. Consideration of 

metamodel design for the simple box-and-line style DSMLs is 

important because this style may be used when requirements of a 

DSML are captured at an initial sketch level, which may occur at 

the early stage of DSML development. This issue emerges when a 

domain needs to be modeled with a very high level of abstraction. 

In the Box-and-Line style, boxes are generalized as a set of 

Classifiers and lines are mapped to Relationships. As a 

Relationship normally links two Classifiers, one for the source 

Classifier and the other for the target Classifier, the Classifier and 

Relationship are linked with two association relationships, source 

and target. 
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Figure 2. Base Metamodel 

Multiplicity is assigned to the association in order to specify the 

number of participating instances. In addition, it can also be used 

to describe the boundedness of a relationship. For example, 

Figure 2(a) shows the relationship links for two classifiers with 

source and target, which denotes the situation where at least one 

source and target exist due to both the multiplicity of source and 

target being specified as one-to-many. On the contrary, in Figure 

2(b), the multiplicity of source and target is set to one-to-many 

and zero-to-many, respectively. This means that there exists at 

least one source, but the target may or may not exist in the 

relationship. 

2.3.2 Metamodel for Typed Relationships 
Associations represent a common relationship type in DSMLs. 

However, several types of relationships may exist to enrich the 

semantics between linked model elements. For example, a 

UseCase diagram has two typed relationships, such as include and 

extend. A class diagram has three typed relationships (i.e., 

inheritance, aggregation, and composition) in addition to 

association. 

Several metamodel designs for typed relationships and classifiers 

have been presented in the literature. Figure 3(a) is excerpted 

from the UML Superstructure Specification v2.3 [24], and Figure 

3(b) is excerpted and simplified from Ouardani et al. [20]. 

Although the number of participating elements is equal, the two 

metamodel designs are different in two key ways: linked elements 

and a typed relationship to linked metamodel elements. First, 

when looking at the linked elements, both metamodels are 

designed to inherit typed relationships (i.e., include and extend) 

from the common parent relationship. However, in Figure 3(a), 

each typed relationship is linked with a classifier, but in Figure 

3(b) the classifier and relationship are linked to each other instead 

of linking the typed relationships.  
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Figure 3. Metamodel Design for Typed Relationship 

(adapted from [20] and [24] 

The two metamodel designs are both acceptable, but Figure 3(a) 

is a more preferable design than Figure 3(b). To rationalize the 

preference, we need to consider the notion of upcasting and 

downcasting in object-oriented programming. Upcasting and 

downcasting occur in inheritance hierarchies. Upcasting is “part 

of expressing the is-a relationship and converts a derived class 

reference or pointer to a base class reference or pointer and is 

allowed for public inheritance without the need for an explicit 

type cast.” Downcasting is “the opposite process of upcasting and 

converts a base class pointer or reference to a derived class 

pointer or reference.” [21]. Normally, downcasting is avoided 

because is-a relationships are not reversible. This means that the 

base class cannot access the data members and methods defined in 

a derived class. As a result of downcasting, a system may show 

unsafe system behavior and break abstraction and encapsulation. 

As another point of differentiation, the two metamodels use 

different typed relationships between the classifier and 

relationship. In Figure 3(a), two different relationships, 

composition and association, are used to link between classifiers 

and typed relationships (i.e., include and extend). In this 

metamodel, a composition relationship may be introduced to 

describe that the source classifier is strongly dependent on the 

target classifier. But in Figure 3(b), the association relationship is 

used for both source and target links. Typically, association is 

used to link classifiers weakly, and composition is used to 



describe a part-whole relationship. However, because the two 

relationships are relevant to each other and the semantics of the 

two are defined slightly differently among OO modeling 

approaches [1], it is difficult to say which one is more appropriate. 

In general, we believe that association is to be preferred to 

composition if there is no clear part-whole relationship. 

2.3.3 Metamodel for Containment 
Containment represents a part-whole hierarchy and is used to 

raise the level of abstraction by grouping large and complex 

model elements with a simple element. The Composite design 

pattern [11] is commonly used for designing containment needs, 

but containment also can be designed without using the 

Composite design pattern. Three different containment 

metamodel designs are shown in Figure 4. 

Figure 4(a) uses the Composite design pattern to design a 

containment metamodel. The design leverages the benefits of the 

design pattern such as facilitating the addition of new kinds of 

classifiers and recursive composition. Figure 4(b) represents 

containment with a unary composition relationship. Although 

Figure 4(b) represents a viable design option for containment, the 

design is only applied for containing the same type of classifiers 

and may violate the open/closed principle when a container needs 

to include new kinds of classifiers. In Figure 4(c), the classifier is 

inherited from Composite Classifier, which represents an abstract 

classifier that can have sub-classifiers. In addition, a classifier is 

linked with the Container through an association relationship. 

The intent of the design is to treat the container differently from 

the contents by introducing Container, which may have different 

characteristics than other classifiers. For example, a deployment 

diagram (or allocation diagram) may be used to illustrate how 

physical resources (i.e., storages, processors, network interfaces) 

are allocated onto execution environment nodes. Physical 

resources are often composed of the same or other physical 

resource (i.e., a network interface may have a processor and 

storage to manage network packets) to provide their own 

functionality, but the instance of the composed physical resources 

are treated as composite physical resources. However, nodes are 

composed of physical resources to offer services, but they can be 

designated as a container rather than composite entities because 

they are grouped logically. The advantage of the design is that 

containers can specify classifiers to be contents of the container 

through the links between classifiers and container. 
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Figure 4. Metamodel Design for Containment 

(adapted from [23], [24], and [26]) 

As described above, each metamodel design has its own intent, 

but the metamodel design for containment can be unified into 

Figure 4(a), which is an overly general design for containment 

that has the flexibility of extension for adding new classifiers or 

other properties. For example, if a container should have different 

characteristics that are abstract (or logical) from classifier, an 

attribute may be added to the classifier class to represent that need. 

Moreover, Figure 4(a) can represent nested containers without 

additional descriptions. 

3. APPLICATION OF METAMODEL 

DESIGN PATTERNS 
Describing the applicability of a design pattern is an important 

factor in characterizing its usefulness and promoting its 

understanding. The metamodel design patterns introduced in 

Section 2.3 can form the basis for designing the metamodel for a 

DSML. The first metamodel design pattern can be applied to 

design a simple box-and-line style DSMLs. The second and third 

patterns can be used to describe metamodels that support typed 

relationships and containment, respectively. In addition to these 

applications, metamodel design patterns can be used for 

composing and inferring metamodels. 

Metamodel composition [8][15][16][18][19] is a technique that 

creates a new metamodel by reusing all or part of existing 

metamodels. To make metamodels reusable and/or composable, 

the metamodels are refined to abstract metamodels that are not 

designed for specific DSMLs, but capture general structures and 

behaviors of DSMLs. The proposed metamodel design patterns 

are elicited from commonality analysis and can represent general 

characteristics of DSMLs, much like abstract design patterns.   

Metamodel inference is the other application area of metamodel 

design patterns. Metamodel inference has recently been 

considered as an application of grammar inference [4][10][12] 

and used to recover metamodels from existing model instances 

[9][13]. To infer a metamodel accurately, a metamodel inference 

engine may require a large set of training data [17]. However, 

having a large set of existing training data may not be practical in 

many cases. To complement the lack of training data, metamodel 

design patterns can be used as a supplementary aid to generate 

representative instances for metamodel inference through the 

commonality provided by DSMLs for recurring metamodel 

design problems. 

4. DISCUSSION 
In this paper, we proposed three metamodel design patterns based 

on the common characteristics of DSMLs, which we think are 

important and offer the potential for high impact for metamodel 

design. Although the notion of “patterns” does not fit the 

generally ascribed parts that are contained in a pattern language, 

the design guidelines for each concept will be expanded into a 

more complete description following a pattern language. 

The main threat for the generality of the approach is the selection 

of DSMLs that we used to derive our feature model. Because 

DSMLs are designed for different domains and sometimes used in 

closed groups, it is difficult to collect all kinds of DSMLs. Thus, 

our feature model may not reflect features that are mandatory for 

all types of DSMLs. However, considering DSML development 

tools such as GEMS [22] and MetaCase [25] and reviewing the 

literature, we believe that the proposed approach and metamodel 

design patterns have general applicability. 

Another concern regarding the generality of our proposal emerges 

when one considers that DSMLs are often used to model system 

behaviors. However, most of the DSMLs that we analyzed are 

used to model the structural aspects of a system. However, 

reviewing several available behavioral modeling languages, the 

approach may be applied equally if new patterns can be 



uncovered. For example, sequence diagrams, activity diagrams, 

and state transition diagrams are the typical examples of 

behavioral modeling languages, even though they are classified as 

general-purpose modeling languages. They also can be analyzed 

to determine characteristics of behavioral modeling that may be of 

use also for DSML designers. 

5. CONCLUSIONS AND FUTURE WORKS 
In this paper, we analyzed the commonality and variability of 

DSML concrete syntax based on the properties of classifiers and 

their relationships. From this analysis, we derived recurring 

metamodel design problems from a DSML feature model. In 

addition, we proposed three metamodel design patterns for the 

identified problems. As the proposed metamodel design patterns 

are the basic and/or core of the metamodel design, they can be 

commonly applied across different metamodel designs. We 

believe that the proposed metamodel design guidelines will help 

to design quality metamodels. 

With the proposed metamodel design patterns, our future work 

will apply these patterns to metamodel composition. The patterns 

introduced in this paper form the basis for metamodel 

construction, but they need to be composed with other metamodel 

elements to construct a complete metamodel for a DSML. For this, 

we will introduce the notion of component, whereby each 

metamodel design pattern and metamodel element will be treated 

as components. Generating a metamodel through metamodel 

composition can leverage the benefits of both design patterns and 

Component-Based Development, while minimizing manual tasks 

of language design for recurring situations.  

Our focus has been on metamodels that are defined in a graphical 

manner. There are also many popular metamodeling environments 

and languages that focus on a textual description of a metamodel. 

We plan to perform a similar analysis on textual metamodels. 

In addition, we will research how metamodel design patterns can 

be used effectively for metamodel inference. We have observed 

occasions when a metamodel needs to be reconstructed from 

legacy instances (e.g., when DSMLs have evolved and no 

development documents exist). Normally, reconstructing through 

inference requires a large set of model instances to train an 

inference engine. Although preparing a quality training set affects 

the inference accuracy, it is challenging and considered mundane 

and error-prone to prepare such training sets. Thus, we expect that 

the use of metamodel design patterns can resolve the issues of 

training set preparation and computation complexity.  
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Appendix: Listing of Example Domains for Representative DSMLs 

Domain Diagrams Brief Description Key Modeling Elements 
Containment/ 

Nesting 

Relationship 

Style/ 

Boundedness 

Concurrent Discrete Event System 

Modeling 
Petri net Modeling systems with concurrency and resource sharing 

Place, Transition (C), Directed Arc 

(R)  
A N Directed Closed 

Data Modeling ERD Model the logical structure of database Entity(C), Relation(R) N N Directed Closed 

Project Management 

Gantt Chart 
Model project activities with relevant information (i.e., 

duration, cost, …) 
Task(C), Predecessor (R)  N N Directed Open 

PERT Chart 
Identify the critical path of the project by modeling the 

sequence of tasks 
Task(C), Directed arcs (R)  N N Directed Closed 

Electronic Circuit Design 

Schematic 

Diagram 

Represent how electronic components are connected with 

others 
Component (C), Line(R)  N A Undirected Closed 

PCB Layout 
Show the placement of electronic components on printed 

circuit board 
Hole (C), Line (R)  N N Undirected Closed 

Molecular Modeling - Model  the structures and reactions of molecules Atom (C), Bond (R)  N N Undirected Open 

SW Design 

Flowchart Model process or algorithm Symbols (C), Connector(R) N N Directed Closed 

Component 

Diagram 

Represent static structure of components and their 

relations 

Component, Interface, Port (C), 

Connector (R) 
A A (Un)Directed Both 

UseCase Diagram 
Describe system functionalities or behaviors with 

UseCase and Actor 
UseCase, Actor (C), Relation (R) N A 

(Un)Directed 

Typed 
Closed 

Class Diagram 
Describe the static structure of the system in terms of 

classes 
Class (C), Relation (R) N N 

(Un)Directed 

Typed 
Closed 

 


