
Advancing Generic Metamodels

Henning Berg
Department of Informatics

University of Oslo
hennb@ifi.uio.no

Birger Møller-Pedersen
Department of Informatics

University of Oslo
birger@ifi.uio.no

Stein Krogdahl
Department of Informatics

University of Oslo
steinkr@ifi.uio.no

ABSTRACT
Domain-Specific Languages (DSLs) allow modelling concerns
at a high abstraction level. This simplifies the modelling
process and ensures that non-technical stakeholders can be
more closely involved in software development. However, in-
creasing the abstraction level causes details of the problem
domain to be excluded from the problem space. In some
situations, this may render a DSL useless since required de-
tails can not be captured by the language. In this paper
we explore how generic metamodels can be parameterised
to model additional details and thereby increase the reuse
value of DSLs.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.2 [Program-
ming Languages]: Specialised application languages; D.3.3
[Programming Languages]: Language constructs and fea-
tures; D.3.2 [Programming Languages]: Modules, pack-
ages

General Terms
Languages, Design, Genericity

Keywords
Metamodelling, specialised languages, DSLs, generic types,
class nesting, virtual classes

1. INTRODUCTION
Generics were first introduced by the programming language
Ada in 1983 [1]. Their purpose was to enable parameterisa-
tion of packages and subprograms. Today, generic types is
a well-known mechanism supported by many programming
languages. The most common usages are construction of
generic data structures and algorithms.

Another popular mechanism in object-oriented languages is
class nesting. Class nesting allows defining inner classes in
the context of an enclosing class. Nested classes are often

used to define local data structures, where the details of the
data structure are not of interest outside of the enclosing
class.

In the last decade, model-driven software engineering [4]
has established a strong foothold in industry. This includes
language-driven approaches [10] where languages are consid-
ered first-class entities of the software development process.
An important activity in these approaches is the ability to
create metamodels. A metamodel can be used to define a
language by describing its abstract syntax and semantics.
Metamodelling is the process of creating metamodels.

Metamodelling is for the most part concerned with making
simple class models. A class model consists of metaclasses
that reflect concepts of the problem domain. Generic meta-
classes are supported by both Eclipse Modeling Framework
(EMF) [2] and Kermeta [6]; that is, metaclasses with one or
more formal type parameters. However, the application and
usage scenarios of generics in metamodelling are not obvi-
ous. In this paper, we discuss how generic metaclasses and
class nesting can be combined to create generic metamod-
els. A generic metamodel consists of an enclosing class that
encapsulates a set of metaclasses. These metaclasses consti-
tute the metamodel. The enclosing class has one or more
formal type parameters that are accessible from the meta-
classes. A generic metamodel can be parameterised with
the purpose of configuring or adding new constructs to a
language. This addresses how languages can be customised
for different projects and processes, which is identified as
desirable in the industry [9].

We will also illustrate how virtual classes [5] can be applied
in metamodels for defining variability points, and discuss
how model conformance can be preserved when using generic
metamodels.

We will use a textual syntax based on Kermeta to illustrate
the ideas of this paper1. Kermeta is an object-oriented meta-
language and framework for language design. It allows defin-
ing the structure and semantics of metamodels. The ideas
presented are applicable to other frameworks for metamod-
elling, e.g. EMF.

A Domain-Specific Language (DSL), named Simple Math,
will be used to describe the ideas. The purpose of such

1Class nesting and virtual classes are not supported by Ker-
meta.

language is to model mathematical problems, which can be
calculated using the dynamic semantics of the language. To
keep the overview, only a small number of language con-
structs are included in the language definition. The lan-
guage is inspired by Matlab which is a popular language for
technical computations. The metamodel for Simple Math is
given in Figure 1.

package simpleMath;

class Program {
attribute expressions : Expression[0..*]
attribute plots : Plot[0..*]

// Shows values and graphs on screen
operation exec() is do ... end

}
abstract class Expression {

operation eval() : Real is abstract
}
abstract class Plot {

reference expressions : Expression[1..*]
attribute caption : String
operation plot() is abstract

}
class ScalarPlot inherits Plot { ... }
class GraphPlot inherits Plot { ... }
class Add inherits Expression {
attribute e1 : Expression[1..1]
attribute e2 : Expression[1..1]
operation eval() : Real is do

result := e1.eval() + e2.eval()
end

}
class Sub inherits Expression { ... }
class Multi inherits Expression { ... }
class Number inherits Expression {

attribute value : Real
operation eval() : Real is do

result := value
end

}

Figure 1: A DSL for modelling of mathematical cal-
culations

As can be seen in Figure 1, the language comprises seven
constructs. A program consists of expressions and plots.
An Expression is the smallest unit of computation. There are
three types of binary expressions: Add, Sub and Multi, rep-
resenting addition, subtraction and multiplication, respec-
tively. Number is an unary expression and represents single
floating-point numbers, e.g. 2.718 and 3.14. The result of
each calculation can be shown on screen using one of the
two plot types: a ScalarPlot or a GraphPlot.

GraphP lotx=5[2 + 5, 2× 4, 9]

(5,8)
(0,7)

(10,9)

X

Y

Figure 2: Example model and printout to screen

As an example, a graph can be made by adding several ex-
pressions to the same graph plot. Figure 2 illustrates this in
a textual concrete syntax. Executing the program of Figure
2 gives a line with the three points: (0,7), (5,8) and (10,9).

2. TOWARDS GENERIC METAMODELS
A metamodel comprises a set of language constructs that
closely reflect concepts of the language’s problem domain.
In the context of DSLs, these constructs usually are on a
high abstraction level. This allows creating models that are
more expressive. However, the high abstraction level can
also make it difficult to model variations that are not cap-
tured by the constructs. In addition, reuse of a DSL may be
impossible if it lacks required constructs. Both issues can
be addressed using generic metamodels.

A generic metamodel is defined using class nesting. Specif-
ically, the language constructs are encapsulated by an en-
closing class. The enclosing class has one or more formal
type parameters which are accessible from all language con-
structs. Thus, the metamodel can be parameterised by dif-
ferent metaclasses. The idea is illustrated in Figure 3. Here,
GenericMetamodel has two type parameters: T1 and T2. These
are bound by B1 and B2, as defined outside the scope of the
generic metamodel. Notice that the inner classes of a generic
metamodel are not grouped in a package. The enclosing
class is sufficient.

package genericMetamodel;

class B1 { ... }
class B2 { ... }

class GenericMetamodel <T1 : B1, T2 : B2> {
class ConstructX { attribute t1 : T1[0..1] }
class ConstructY { attribute t2 : T2[0..*] }
...

}

Figure 3: Conceptual overview of a generic meta-
model

All language constructs are defined as non-static inner classes,
and are therefore only available through an instance of the
enclosing class. Instantiation of the generic metamodel gives
a parameterised metamodel in the scope where the instanti-
ation takes place. Figure 4 illustrates this. Notice that it is
possible to instantiate a generic metamodel without provid-
ing actual type arguments if usage of the type parameters is
optional. Refer the multiplicities in Figure 3. (This would
require additional static semantics.)

package genericMetamodel;

class X inherits B1 { ... }
class Y inherits B2 { ... }

var gm1 : GenericMetamodel<X,Y> init
GenericMetamodel<X,Y>.new

var gm2 : GenericMetamodel init
GenericMetamodel.new

Figure 4: Instantiations of a generic metamodel

2.1 Adding new language constructs
As argued, there may be situations where a language lacks
the ability to express a concern in adequate detail. Let us
return to the math language example. In some applications
of the language it may be required to model more advanced
calculations using trigonometric functions, integrals or simi-
lar. However, the language is not expressive enough to cover
such calculations. It would be practical to facilitate more
advanced calculations when needed.

A DSL should not contain a lot of unnecessary constructs
that clutter the language. Adding constructs for several ad-
ditional mathematical functions would thus not be a good
idea, if these are to be used rarely. Instead, the metamodel
of the language can be defined as a generic metamodel. With
respect to the ongoing example, this would allow parameter-
isation of the math language with mathematical functions2.
If no such functions are required, the language can be used
with no actual type argument.

The math language, as defined using a generic metamodel,
is given in Figure 5. An enclosing class SimpleMath is used to
group the language constructs. It features a type parameter
F bound by FunctionDef. The purpose of this type parameter
is to allow parameterisation of the metamodel with exter-
nally defined functions.

package genericSimpleMath;

abstract class FunctionDef {
operation calculate() : Real is abstract

}
class SimpleMath<F : FunctionDef> {

class Program{
attribute expressions : Expression[0..*]
attribute plots : Plot[0..*]

// Shows values and graphs on screen
operation exec() is do ... end

}
abstract class Expression {

operation eval() : Real is abstract
}
...
class Number inherits Expression {

attribute value : Real
operation eval() : Real is do ... end

}
class Function inherits Expression {

attribute fDef : F[0..1]

operation eval() : Real is do
result := fDef.calculate()

end
}

}

Figure 5: The math language defined using a generic
metamodel

An additional expression type, named Function, has been
added to the math language. It has an (optional) attribute
typed by the type variable F. Thus, a Function object may be
composed by an object of the actual type argument. An in-

2It can be argued that an actual type argument acts as a
plug-in for the language.

teresting implication of using containment references is that
a single argument may in fact represent several metaclasses
- a metamodel fragment. Consider the metaclasses of Fig-
ure 6 which consitute a metamodel for modelling of definite
integrals over polynomials.

package integral;

class Integral inherits FunctionDef {
attribute polynomial : Polynomial[1..1]
attribute varsOfInt : VarOfIntegration[1..*]
operation calculate() : Real is do ... end

}
class Polynomial {
attribute terms : Term[1..*]

}
class VarOfIntegration {
attribute name : String
attribute upperLimit : Real
attribute lowerLimit : Real

}
class Term {
attribute variables : Variable[0..*]
attribute coefficient : Real

}
class Variable {
reference varOfInt : VarOfIntegration[1..1]
attribute degree: Integer

}

Figure 6: A metamodel for modelling of definite in-
tegrals

The metamodel for modelling of definite integrals can be
used to parameterise the math language by importing the
classes of the integral package into the genericSimpleMath pack-
age, and instantiating the SimpleMath class with Integral as
actual type argument. As can be seen, objects of the Vari-

able class are contained by objects of the Term class. Objects
of Term are contained by an object of Polynomial. An object
of this class is contained by an Integral object. Objects of
VarOfIntegration are contained by the Integral object as well.
Consequently, using Integral as an actual type argument for
SimpleMath results in five new classes being (temporarily)
added to the math language. These classes define a new
function that can be utilised by the other constructs of the
language. Integral supports modelling of higher-order inte-
grals. A simple model illustrates how integrals can be used
with the other expression types in the language. See Figure
7.

ScalarP lot[

Z 5

0

Z 7

1

Z 5

3

3+xy2 +5x7z3 dx dy dz)+10.5×4.1]

Result : 225 042 283.05

Figure 7: An example model of an integral, addition
and multiplication

Generic types allow static type checking. This ensures that
actual type arguments comply with the structure and se-
mantics of the generic metamodel. In particular, language
extensions can be defined without knowing the inner details
of a language. The only criterion is that the type argument
fulfills the constraints of the type parameter bound.

2.2 Configuring a language
We have seen how new constructs can be added to a lan-
guage. An actual type argument can also be used to config-
ure a language by changing its properties. With respect to
the math language, it may be convenient to be able to spec-
ify how results are plotted to screen. This can be achieved
by defining custom plot functions that are provided as actual
arguments to the generic metamodel.

package genericSimpleMath;

abstract class ScalarPlotDef {
operation plot() is abstract

}
abstract class GraphPlotDef {

enumeration Colour{ red; blue; green; ... ; }
operation plot() is abstract
operation getPointColor() : Colour is abstract
operation getGraphColor() : Colour is abstract
...

}
class SimpleMath<SP : ScalarPlotDef,
GP : GraphPlotDef> {
abstract class Plot {

reference expressions : Expression[1..*]
attribute caption : String
operation plot() is abstract

}
class ScalarPlot inherits Plot {

attribute sp : SP[0..1]

operation plot() is do
if(sp != void)

// Custom plot
sp.plot()

else
// Default plot
...

end
end

}
class GraphPlot inherits Plot {
attribute gp : GP[0..1]
...

}
...

}

Figure 8: Using type parameters to configure a lan-
guage

A slightly different generic metamodel for the math language
is given in Figure 8. This time, type parameters are used to
allow customisation of the plot semantics. ScalarPlotDef and
GraphPlotDef define operations that need to be implemented
by an actual type argument. These operations are invoked
from the respective plot constructs. The default plot styles
are used if the metamodel is instantiated without type ar-
guments. This is illustrated in the plot() operation of the
ScalarPlot class.

Type parameters can be accessed by all the inner classes.
This allows configuring cross-cutting concerns using type ar-
guments. An example of such concern is calculation of statis-
tics for languages whose domain deals with performance crit-
ical processing. The types of required statistical computa-
tions may change, something which can be addressed by
using type parameters.

3. GENERIC METAMODELS AND SPECIAL-
ISATION

We have seen how class nesting and generic types can be
used to define generic metamodels. Another interesting as-
pect of class nesting is the ability to subtype the enclosing
class, with the intention of specialising the inner classes or
adding new constructs to the language.

package genericSimpleMath;

class SimpleMathTrig<...>
inherits SimpleMath<...> {
abstract class Plot inherits SimpleMath.Plot {

attribute colour : Colour[0..1]
}
class Colour {
attribute red : Integer
attribute green : Integer
attribute blue : Integer

}
class Sin inherits Expression { ... }
class Cos inherits Expression { ... }
class Tan inherits Expression { ... }

}

Figure 9: Defining a language variation using spe-
cialisation

A variation of the math language with support for trigono-
metric functions is given in Figure 9. SimpleMathTrig sub-
types SimpleMath. It specialises the Plot class and adds three
new classes: Sin, Cos and Tan. The difference between using
type arguments to achieve this and creating a language vari-
ation is that the latter approach should reflect core changes
to the language. An advantage when subtyping the enclosing
class is that specialised classes, like Plot in this case, can keep
its original name. This ensures that users of the language
will immediately be familiar with specialised constructs.

A B

C D

E

X

Y Z

V UW

A F

C D

E

A B

C D

EH

G

A F

C D

EI

G A B

C D

E

J A K

C D

E

Figure 10: Construction of a language hierarchy

Subclassing also allows defining language hierarchies where
different language variations can be used for slightly differ-
ent domains. A language variation can easily be made by
reusing existing language definitions. Figure 10 illustrates a

language hierarchy. The language denoted by X comprises
five metaclasses. It is specialised in five variants: Y, Z, V,
W and U. As an example, Y subtypes X and specialises the
classes A and B of X. The specialised version of B is given
the name F. Two additional classes, G and H, are added to
the language. V subtypes Y and specialises the classes A and
H. The specialised version of H is given the name I.

It is also possible to specialise generic metamodels. Spe-
cialisation is suitable for refining core aspects of a language,
while type parameters allow further tuning of properties that
differ depending on usage and context.

4. DEFINING VARIABILITY POINTS
Subtyping of nested classes is not always sufficient when
specialising dynamic semantics. In fact, newly defined oper-
ations may be out of reach from the classes that should be
able to invoke these. A solution is to define metaclasses as
virtual, which ensures that the correct operations are bound
at runtime.

package genericSimpleMath;
...
class SimpleMath<...> {

class Program {
attribute expressions : Expression[0..*]
attribute plots : Plot[0..*]

// Shows values and graphs on screen
operation exec() is do

...
var s : Screen init Screen.new
plots.each{ p | s.prepare(p).plot() }

end
}
virtual class Screen {

operation prepare(plot : Plot) : Plot
is do ... end

}
}

Figure 11: Defining a semantic variability point

As an example, let us assume that the exec() operation of
Program uses an instance of a class Screen to prepare Plot

objects for visualisation on the screen. See Figure 11. The
Screen class is declared as virtual and thus identifies a se-
mantic variability point. It can be redefined as illustrated
in Figure 12.

package genericSimpleMath;
...
class SimpleMathScreen<...>

inherits SimpleMath<...> {

class Screen {
operation prepare(plot : Plot) : Plot
is do ... end

}
}

Figure 12: Redefinition of the Screen class

The new definition of the Screen class can be utilised by in-
stantiating SimpleMathScreen. This causes the newly defined
Screen class to be instantiated in the exec() operation of Pro-

gram. Thus, the new version of prepare(...) is used. If Screen

was not declared as virtual, the Screen class of SimpleMath

would instead be instantiated in exec().

5. PRESERVING CONFORMANCE
Model conformance is a term that indicates whether a model
comply with a metamodel according to classifier relation-
ships. Specifically, model elements are instances of classes
defined in the model’s metamodel. Changing a metamodel
usually compromises conformity between the metamodel and
the existing models. This is not desirable since it requires
models to be transformed in order to conform with the new
metamodel version. An interesting consequence of using
generic metamodels is that language properties can be changed
without breaking conformance. In particular, a simple ac-
tual type argument will not introduce new syntax if used
within the nested classes. This is the case of Figure 8. Both
type arguments are used exclusively within ScalarPlot and
GraphPlot, by providing new dynamic semantics. A model
conforming to the raw metamodel will conform to any pa-
rameterised metamodel regardless of type arguments. Con-
sequently, evolution of languages can be dealt with in simple
terms.

6. RELATED WORK
A definition of reusable metamodel components for OMG’s
Meta Object Facility (MOF) [3] is proposed in [11]. Com-
position is supported through the use of export and import
interfaces. An export interface identifies a metamodel frag-
ment, referred to as a submodel, that is visible outside of
the component. An exported submodel from one compo-
nent can be bound to another component using an import
interface. The approach yields a mechanism for definition of
parameterised language descriptions. Thus, it resembles the
purpose of generic metamodels as discussed in this paper.

A workbench for language design and code generation, named
MetaEdit+, is described in [8]. Two important features of
this workbench are: support for easy code generation and
integration of different languages. In addition, evolution is
addressed by providing means of seamless metamodel and
model updates. It is stated that MetaEdit+ increases the
efficiency of language design and maintenance.

Application of aspect-orientation in metamodelling is dis-
cussed in [7], with the purpose of being able to reuse lan-
guage definitions in a non-intrusive manner. An approach
that addresses how this can be achieved using relationship
aspects is discussed. With respect to this paper, creating
language variations should not require changes to the origi-
nal language definition. We have seen how language varia-
tions can be constructed non-intrusively using a combination
of type parameters, specialisation and virtual classes.

7. CONCLUSIONS
This paper has illustrated how generic metamodels can be
defined using class nesting and type parameterisation. A
generic metamodel provides means for extending a language
with new constructs, and configuring a language with new
dynamic semantics. This is desirable in situations where a
DSL is not accurate enough to model a specific concern of its
problem domain. We have also discussed how specialisation
of nested classes, and virtual classes may further increase

customisation of metamodels. As a consequence, the ability
to reuse DSLs is increased.

8. REFERENCES
[1] G. Bray. Implementation implications of ada generics.

ACM Ada Letters, 3(2), 1983.

[2] EMF. Eclipse modeling framework, 2011.

[3] O. M. Group. Meta object facility (mof) core
specification.

[4] S. Kent. Model driven engineering. In Proceedings of
IFM’02, 2002.

[5] O. L. Madsen and B. Møller-Pedersen. Virtual classes
- a powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA ’89, 1989.

[6] F. F. Pierre-Alain Muller and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
Proceedings of MODELS 2005, 2005.

[7] A. M. R. Quintero and J. T. Valderrama. Using
aspect-orientation techniques to improve reuse of
metamodels. Electronic Notes in Theoretical Computer
Science, (163), 2007.

[8] J.-P. Tolvanen and S. Kelly. Metaedit+: Defining and
using integrated domain-specific modeling languages.
In OOPSLA 2009, 2009.

[9] A. E. Tony Clark and S. Kent. Aspect-oriented
metamodelling. The Computer Journal, 46(5), 2003.

[10] P. S. Tony Clark and J. Willans. Applied
metamodelling (second edition). Ceteva, 2008.

[11] I. Weisemöller and A. Schürr. Formal definition of mof
2.0 metamodel components and composition. In
Proceedings of MODELS 2008, 2008.

