
25.10.2009

1

Gabor Karsai², Holger Krahn¹,

Claas Pinkernell¹, Bernhard Rumpe¹,

Martin Schindler¹, Steven Völkel¹

1. Department of Computer Science 3 (Software Engineering)

RWTH Aachen University, http://www.se-rwth.de/

2. Institute for Software Integrated Systems

Vanderbilt University Nashville, USA

Design Guidelines for
Domain Specific Languages

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 2

Outline

Introduction1.

Conclusion4.

Discussion3.

DSL Design Guidelines2.

25.10.2009

2

1. Introduction

Design Guidelines for
Domain Specific Languages

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 4

Why Design Guidelines for DSLs?

� Designing a new DSL

• needs experience and

• is sometimes error-prone and time consuming

� Existing tools simplify technical aspects

but lacks support for a good language design

� Guidelines based on

• our experience in developing languages

• relying on existing guidelines on general

purpose and modeling languages

Target:

Support DSL developers to achieve better quality of the

language design and acceptance among its users.

25.10.2009

3

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 5

Categories of DSL Design Guidelines

� 5 categories along the language development process:

1. Language Purpose:
What is the aim of the language?

2. Language Realization:
How to implement the language?

3. Language Content:
Which elements should be included?

4. Concrete Syntax:
How to define a readable representation of the elements?

5. Abstract Syntax:
How should the language represented internally?

2. DSL Design Guidelines

Design Guidelines for
Domain Specific Languages

25.10.2009

4

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 7

1. Language Purpose

� Guideline 1: "Identify language uses early."

• many forms of usage:

documentation, analysis, configuration, code generation, …

• differences strongly influence needed language concepts

� Guideline 2: "Ask questions."

• Who is going to model in the DSL?

• Who is going to review the models? When?

• Who is using the models for which purpose?

�Identify the domain, its experts, and the development process

� Guideline 3: "Make you language consistent."

• DSLs are typically designed for a specific purpose

• each feature of a language should contribute to this purpose

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 8

2. Language Realization

� Guideline 4: "Decide carefully whether to use graphical or textual
realization."

• both approaches have advantages/disadvantages

• weight and match against end users' preferences and uses

� Guideline 5: "Compose existing languages where possible."

• by embedding, using extendable languages, or referencing

• concepts of the composed languages need to fit together

� Guideline 6: "Reuse existing language definitions."

• by language extension or language specialization

• or taking existing definitions as a starter ("language pattern")

� Guideline 7: "Reuse existing type systems."

• improves comprehensibility and avoids misinterpretations

25.10.2009

5

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 9

3. Language Content (1/2)

� Guideline 8: "Reflect only the necessary domain concepts."

• by validating the language definition against the domain

(e.g. using examples)

• to ensure expressiveness for all necessary domain concepts

� Guideline 9: "Keep it simple."

• one of the main targets

• eases implementation, introduction, understandability, …

• achieved by guidelines 10-12

� Guideline 10: "Avoid unnecessary generality."

• by preventing generalization or parameterization not yet needed

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 10

3. Language Content (2/2)

� Guideline 11: "Limit the number of language elements."

• sublanguages can cover different aspects of the system/domain

• libraries extend expressiveness based on basic language

elements

� Guideline 12: "Avoid conceptual redundancy."

• concepts with none or slightly differences are often source of

confusion

� Guideline 13: "Avoid inefficient language elements."

• efficiency of a model should be transparent to the language user

�should not depend on specific elements used within the model

25.10.2009

6

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 11

4. Concrete Syntax (1/3)

� Guideline 14: "Adopt existing notations domain experts use."

• inventing a new concrete syntax raises the barrier for domain

experts

�chose syntax close to existing notations

(within the domain or other common used languages)

� Guideline 15: "Use descriptive notations."

• supports learnability and comprehensibility

� Guideline 16: "Make elements distinguishable."

• basic requirement to support understandability

• usually a document is written only once but read many times

�efficiency for the reader more important than for the writer

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 12

4. Concrete Syntax (2/3)

� Guideline 17: "Use syntactic sugar appropriately."

• syntactic sugar improves readability

• but an overuse can hide the important content

� Guideline 18: "Permit comments."

• enables explanation of design decisions

• for better understanding or even documentation

� Guideline 19: "Provide organizational structures for models."

• possibility to arrange models in hierarchies

• to handle complex systems

• requires definition of references

25.10.2009

7

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 13

4. Concrete Syntax (3/3)

� Guideline 20: "Balance compactness and comprehensibility."

• compact notations enables productivity while writing but can

hinder comprehensibility

�short notations are more preferable for frequently used elements

� Guideline 21: "Use the same style everywhere."

• improves understandability

• eases identification of language elements

• user can obtain some kind of intuition for a new language

� Guideline 22: "Identify usage conventions."

• not every aspect should be defined within the language definition

(e.g. a certain layout)

• conventions describe more detailed regulations that can, but

need not be enforced

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 14

5. Abstract Syntax

� Guideline 23: "Align abstract and concrete syntax."

• eases automated processing, transformations, and presentation
(pretty printing) of the model

� Guideline 24: "Prefer layout which does not affect translation from
concrete to abstract syntax."

• otherwise using different editors or arranging the model might
change its meaning without purpose

� Guideline 25: "Enable modularity."

• enables incremental processing of the models

• important for comprehensibility and efficiency in handling large
systems

� Guideline 26: "Introduce interfaces."

• to increase flexibility and hiding complexity

25.10.2009

8

3. Discussion

Design Guidelines for
Domain Specific Languages

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 16

Discussion

� Depending on language purpose and domain, guidelines might be

• contradicting:
e.g., combining existing languages may introduce conceptual
inconsistencies

• unimportant:
e.g., none executable DSLs for documentation cannot introduce
inefficient elements

• too cost or time intensive:
e.g., for small DSLs with few users some improvements might
not amortize the costs/time

Guidelines have to be matched against purpose, complexity, and

number of users of the resulting language.

25.10.2009

9

4. Conclusion

Design Guidelines for
Domain Specific Languages

Martin Schindler
Software Engineering

RWTH Aachen
University

Page 18

Conclusion

� Discussion of 26 guidelines

• as a basis for language design and development

• categorized along the development phases

� Guidelines need to be

• weighted and balanced specific to domain and purpose

� Other guidelines are needed for

• integrating DSLs in a software development process,

• deploying it to new users, and

• evolving syntax and existing models in a coherent way

