
DSM Working Group:

Composition and Integration of

DSMs

Contributions From

Tony Clark

Jeff Gray

Danny Groenewegen

David Heise

Heiko Kattenstoth

Zekai Deminezen

Arturo Sanchez

Dirk Reiss

Jendrik Johannes

Thomas Kuhn

Arnon Sturm

Martin Schindler

Issues

• No explicit definition of interfaces. Don’t know
which elements to extend, the semantics might
break.

• Stay within the language, migrate to the new
model is a problem. Possible solution: patching
problems, new version contains patching
modules, contains the deltas.

• Patches might be difficult due to links to the
meta-levels which change. Can ship
transformations with the changes. Difficult to do.

Problems

• When a DSL is designed, don't have extensibility
in mind. One shot solution. A Solution might be
to identify the variation points at the beginning.
Problem: how to build extensibility into a
language.

• Extensibility via interfaces – how to do that in
language design.

• Example from WebDSL: attaching behaviour to
text, was not envisaged originally need to go into
the code and add this.

Language Extension Strategies

• Principles for designing-in extensibility.

• Monticore holes in the grammar – extension

points for syntax. Editors are defined separately

then combined at run-time in to the tool for the

language. Also for code generation.

• UML left open the action language – OMG left a

placeholder for action languages. To do this need

a component and interface model for combining

language elements.

Language Decomposition and

Extensions

• Is it possible to have a standard library for example an
expression language that can be reused in new
languages. For example, OCL has been decomposed
like this.

• Extension Strategies:

– Use 1 language and then adapt it to produce a new
language. For example UML profiles.

– Use several languages (could be independent) and then
merge.

– A (possibly incomplete) language with extension points.

• Should a language know that it is being extended?

Semantics

• When integrating multiple independent languages there are problems due
to semantic integration. Often the semantics is informal and cannot easily
be combined.

• Need a way to standardize on the language semantics to facilitate
language combination.

• Approaches:

– Common language

– Pair to pair transformations

– Proxies or middleware

• An approach: use proxies over independent language definitions. E.g. C++
with templates and Java.

• Semantics is key to language integration.

• Possibly project the semantics of languages into a common
representation to perform combination.

• Common meta-meta-models have been tried before. Perhaps agreeing on
such a thing would be a solution (the MOF++ approach).

Integration

• Integration approaches:
– One language references another

– Java syntax embedded in the new language

– Common Semantics.
• Code generator

• Interpreter.

• Take 2 independent languages and construct a meta-model that covers both for
integration.

• Adding a new language must involve the constraints and requirements that must be
met by composition.

• Be clear about the requirements for combination: do you want a single tool for the
merged language or continue with the original tool-set.

• Are there patterns for language integration that can be identified and documented?

• Currently integration is performed manually. Can language components be integrated
automatically? What does this requirement mean for the models used to express
language interfaces etc.

• Problem: integrating many special purpose languages can end up with a single GPL.

Language Components and Interfaces

• Problem: what does an interface for a language look like?

• Problem: There is no component model for languages.

• Start with a base module and define the interfaces for future extensions.

• Languages are defined as a core and extension modules.

• Interfaces should include requirements and guarantees for use and
combination of the language component.

• Example: build an expression language, plug-in the expression language to
several new languages. Question: what interface should the expression
language have to support insertion and combination.

• Aim: How to achieve a product-line approach to language definition.

• Type systems are going to be part of the interface of a language
component. Type systems need to be integrated (or mapped) when
language components are integrated.

• Problem: When defining interfaces how to anticipate all possible future
extensions and combinations of the language.

Language Tools

• Problem: how to combine existing tools

(compilers, editors etc) when combining

existing languages into a new DSL.

• How to reuse tools when defining a

modification of an existing language.

Guidelines

• DSL designers need to be aware of where the extension
points are.

• Possible to leave plug-points in a language.

• Look to produce and use a library of reusable components.

• Standardize and define the semantics for language
combination.

• Common Meta-models makes life easier.

• Designing language components for reuse is easier than
reusing an existing language.

• The abstract syntax and the semantics seems core the
notion of languages and integration.

