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Issues

• No explicit definition of interfaces. Don’t know 
which elements to extend, the semantics might 
break.

• Stay within the language, migrate to the new 
model is a problem. Possible solution: patching 
problems, new version contains patching 
modules, contains the deltas.

• Patches might be difficult due to links to the 
meta-levels which change. Can ship 
transformations with the changes. Difficult to do.



Problems

• When a DSL is designed, don't have extensibility 
in mind. One shot solution. A Solution might be 
to identify the variation points at the beginning. 
Problem: how to build extensibility into a 
language.

• Extensibility via interfaces – how to do that in 
language design.

• Example from WebDSL: attaching behaviour to 
text, was not envisaged originally need to go into 
the code and add this.



Language Extension Strategies

• Principles for designing-in extensibility. 

• Monticore holes in  the grammar – extension 

points for syntax. Editors are defined separately 

then combined at run-time in to the tool for the 

language. Also for code generation.

• UML left open the action language – OMG left a 

placeholder for action languages. To do this need 

a component and interface model for combining 

language elements.



Language Decomposition and 

Extensions

• Is it possible to have a standard library for example an 
expression language that can be reused in new 
languages. For example, OCL has been decomposed 
like this.

• Extension Strategies:

– Use 1 language and then adapt it to produce a new 
language. For example UML profiles.

– Use several languages (could be independent) and then 
merge.

– A (possibly incomplete) language with extension points.

• Should a language know that it is being extended?



Semantics

• When integrating multiple independent languages there are problems due 
to semantic integration. Often the semantics is informal and cannot easily 
be combined. 

• Need a way to standardize on the language semantics to facilitate 
language combination.

• Approaches:

– Common language

– Pair to pair transformations

– Proxies or middleware

• An approach: use proxies over independent language definitions. E.g. C++ 
with templates and Java.

• Semantics is key to language integration.

• Possibly project the semantics of languages into a common 
representation to perform combination.

• Common meta-meta-models have been tried before. Perhaps agreeing on 
such a thing would be a solution (the MOF++ approach).



Integration

• Integration approaches:
– One language references another

– Java syntax embedded in the new language

– Common Semantics.
• Code generator

• Interpreter.

• Take 2 independent languages and construct a meta-model that covers both for 
integration.

• Adding a new language must involve the constraints and requirements that must be 
met by composition.

• Be clear about the requirements for combination: do you want a single tool for the 
merged language or continue with the original tool-set.

• Are there patterns for language integration that can be identified and documented?

• Currently integration is performed manually. Can language components be integrated 
automatically? What does this requirement mean for the models used to express 
language interfaces etc.

• Problem: integrating many special purpose languages can end up with a single GPL.



Language Components and Interfaces

• Problem: what does an interface for a language look like?

• Problem: There is no component model for languages.

• Start with a base module and define the interfaces for future extensions.

• Languages are defined as a core and extension modules.

• Interfaces should include requirements and guarantees for use and 
combination of the language component.

• Example: build an expression language, plug-in the expression language to 
several new languages. Question: what interface should the expression 
language have to support insertion and combination.

• Aim: How to achieve a product-line approach to language definition.

• Type systems are going to be part of the interface of a language
component. Type systems need to be integrated (or mapped) when 
language components are integrated.

• Problem: When defining interfaces how to anticipate all possible future 
extensions and combinations of the language.



Language Tools

• Problem: how to combine existing tools 

(compilers, editors etc) when combining 

existing languages into a new DSL.

• How to reuse tools when defining a 

modification of an existing language.



Guidelines

• DSL designers need to be aware of where the extension 
points are.

• Possible to leave plug-points in a language.

• Look to produce and use a library of reusable components.

• Standardize and define the semantics  for language 
combination.

• Common Meta-models makes life easier.

• Designing language components for reuse is easier than 
reusing an existing language.

• The abstract syntax and the semantics seems core the 
notion of languages and integration.


