MontiWeb — Modular Development of Web
Information Systems

Michael Dukaczewskil, Dirk Reiss?!, Bernhard Rumpe?, Mark Stein!

Linst. f. Wirtschaftsinformatik, Technische Universitat Braunschweig
2 Software Engineering, RWTH Aachen

9th OOPSLA Workshop on Domain-Specific Modeling
25-26 October 2009

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 2

Outline

Introduction + Motivation

Technical Infrastructure

General Architecture

Modeling Languages

Conclusion + Future Work

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Introduction

page 3

= Last 3 years working on a project initiated by TU Braunschweig

= Focus: Developing and customizing (web-based) applications for
teachings and administration

= Developing with different languages and frameworks (depending on
the existing infrastructure and requirements)

) Stipendien: =loix g = =loix
m-n-a-n-w Crard W!l‘ﬁ’ Uss peabeden fuiht Clrosk Lecesschen Egtrsd e
Y C X . P i s : - I ; o Y rT—— T -
s TECINISCHE UNIVERSTTRT = Ul TECHNISCHE UNIVERSTTRT e .‘..
PRy CAROLOAMILHETLMINA (¢ \N”I.U-“i[HEIMINA
LN i Braunscdm e it r e T
[e — TSR) 10 tranuschorei eues fntr:
o EeEmmEmETITTE pdall e

Qb ¢ % . (-

Sl TECHNISCHE UNIVERSITAT
P 2: : G \]l(}l_.(l—“][HELMINA
I 1m0 Brsmmnset iz

Newer Antrag

nnnnnnnnnnnn

= Many different applications, still the same patterns and work ...

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Web Information Systems

page 4

Our understanding of the domain:
» Used to process data
e HTML form based
« Usually same layout and similar behavior

Web information systems usually consist of
o Data structure / Persistence mechanisms
e Views on data structure
* Navigation / workflow logic between these views

Implementation often
* Repetitive work
* Repeating components

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 5

Traditional Approach

Definition of the same element at different parts of a system
e Source code (in e.g. classes)

Database (in tables and rows)

GUI elements in HTML / JSP form

Potentially glue code in XML files

All mostly dependent but still not integrated

Changes need to be made on all parts
Lots of boilerplate code
Consistency checked often at runtime

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 6

MontiWeb Approach

Raising abstraction from the implementation details
Models to specify the elementary parts, actually

e Data structure

* Views

« Control- and dataflow

Goal: Keeping these aspects separate to allow reuse in different
contexts

Generators create working prototypes
« Basic models already enough to generate CRUD application
« Additional models to add more fine grained functionality
Using textual models specified using MontiCore framework

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 7

MontiCore - Modeling Framework
Infrastructure

Framework for the efficient development of DSLs

Developed at Software Systems Engineering Institute of TU
Braunschweig and now RWTH Aachen

Extended grammar format for language definition
Generates components for the processing of models such as
o Parsers
 AST classes
* Basic symbol tables
e Pretty printers
e Basic editor support

Provides infrastructure to conveniently access and use the
generated components

DSM09 @ OOPSLA
Dukaczewski, Reiss,
Rumpe, Stein - -
Architecture Overview
page 8
MontiCore = °
Grammar |::> fm ontL
input iy X3
defines
generates
V
d‘CIass- Views)
lagramm MontiWeb Parser
7 7 :: :I|> Web-
Application
Activity- input generates
diagramms Generator
I 4

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb
page 9

Modeling Data Structure

Requirements for a data model in web information system
(according to our experience)
* Incorporates a type system (with domain-specific behavior)
* |Is composable (for reuse of elements)
e Can have associations between model elements

Textual representation of class diagrams as modeling language
* Generally well known and understood
» Expressive enough to fulfill the abovementioned requirements

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb
page 10

Types of Classes

Base classes (e.g. Email, Date, String, Number)
* Do not contain further attributes
« Usually domain-specific (or at least often used in that domain)

« Standard behavior in the target domain (e.g. consistency checks,
special input methods)

Enumerations
 Can hold static values and be used as attributes

Complex classes
* Consist of base classes, enumerations or other complex classes

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Associlations between Classes

page 11

= Normal associations

* Represent links between two objects A and B A
A and B need to exist (or one is just created)
* Implemented by (multi-)selection mechanisms

B

= Compositions
* Represents part-whole association between A and B
« If Ais composed of B, B exists only in combination with A
* Implemented by simultaneous creation

* B is created when A is created A
» B is deleted when A is deleted ?

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 12

Data Model

Example: Very basic carsharing application

classdiagram Carsharing {

class Person {
String name;
Email email;
Number age;

}

enum Brand {AUDI, BMW, VW;}

class Car {
Brand brand;
Number numSeats;
Date constYear;

¥

Person

String name
Email email
Number age

keeper

cars

<<enumeration>>
Brand

Car

AUDI
BMW
VW

Brand brand
Number numSeats
Date constYear

composition Person (keeper) -> (cars) Car [*];

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 13

Modeling View Structure

Requirements for a view language
» Different views on the same data structure (e.g. edit, display)
* Views can be composed and included in each other
o Static parts (e.g. images, text) are possible
» Convenience functionality (e.qg. filtering, sorting) can specified

Own language that fulfills these requirements
Optional; if omitted, default views are generated

Focus of the view language:
» Generation of usable and consistent layout

« Skinable through later inclusion of different CSS and a basic
template mechanism

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb
page 14

View structure

Person —— views for class Person

attributes { <«

@Required
@Length(min=3, max=30)
name;

@Required

age;

@Captcha
editor registration {
name;
email;
age;
cars;

/] ..

applies to all views in this file

Registration

Marne®;
Email:

*

Age™

cars
Brand:

Mum Seats:

Const Year:

remove
Add row

Enter the word:

Save |

| auDI

]

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 15

View Structure

Person {

/] .

display protectedMail {
name;
@AsImage
email;

display welcome {

Welcome

Welcome to Carsharing Service

Mame Feiss

Ermail d.reisstu-bs.de
AQe 3z

Back |

]

text {Welcome to Carsharing Service}

include protectedMail;

}

a8e \ includes previously defined view

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 16

Modeling Control- and Dataflow

Basic control can be generated from view or even classes alone

Standard way: Class diagram to CRUD application with named
standard views

For more complex web information systems, we need means to
specify

e Order of pages

* Flow of data between pages

« Complex workflow logic

Textual notation of activity diagrams
Actually inclusion of views and Java code supported

Hierarchical actions and most common control structures
(decisionnodes, forks etc) supported

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Control- and Dataflow

page 17

activity UserRegistration {

action Registration {

out: Person p; _ _
view : p = Person.registration(); Registration
} ™~ holds the entered object D
action Welcome { [p.age >=18] é [p.age <18]
in: Person p;
view : Person.welcome(p); D D
} ™~ reference to a view
Welcome Error

action Error {
in: Person p;
view : Person.registrationError(p);

}

initial -> Registration;

Registration.p -> [p.age >= 18] Welcome.p
| [p.age < 18] Error.p;

Welcome | Error -> final;

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 18

Interaction of Components

Models are specified independently but partially rely on each other
Classviews reference class diagram attributes by name
Activity diagram references

» Classviews (to display them)

« Classes (as data type)

Therefore: Reuse of different parts of the system in different
contexts possible

Intra- and intermodel correctness is
checked on model level during generation | Activitydiagram

Class diagram

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 19

Conclusion

MontiWeb allows modeling of data-intensive web information
systems

Working web application even with minimal model through default
behavior

Advanced behavior specifiable through additional models
DSL designed by reusing known concepts and languages (UML,
Java)

Language concepts so far suitable for the web information systems
domain

DSM09 @ OOPSLA

Dukaczewski, Reiss,

Rumpe, Stein
MontiWeb
page 20

Future Work

Incorporation of means to model rights and roles system
and access control
Modeling global features and roles with use case diagrams
More complete use of language features

* Inheritance in class diagrams

 Inclusion of method stubs in classes
Extend base classes to include more predefined datatypes

Generation of interfaces to use the generated code from handwritten
classes (or other generated code)

Means to pack models and source code to component libraries

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

Thanks for your attention!

page 21

Questions?

	MontiWeb – Modular Development of Web Information Systems
	Outline	
	Introduction
	Web Information Systems
	Traditional Approach
	MontiWeb Approach
	MontiCore - Modeling Framework Infrastructure
	Architecture Overview
	Modeling Data Structure
	Types of Classes
	Associations between Classes
	Data Model
	Modeling View Structure
	View structure
	View Structure
	Modeling Control- and Dataflow
	Control- and Dataflow
	Interaction of Components
	Conclusion
	Future Work
	Thanks for your attention!

