
Michael Dukaczewski1, Dirk Reiss1, Bernhard Rumpe2, Mark Stein1

1 Inst. f. Wirtschaftsinformatik, Technische Universität Braunschweig
2 Software Engineering, RWTH Aachen

9th OOPSLA Workshop on Domain-Specific Modeling
25-26 October 2009

MontiWeb – Modular Development of Web
Information Systems

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 2

Outline

 Introduction + Motivation

 Technical Infrastructure

 General Architecture

 Modeling Languages

 Conclusion + Future Work

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 3

Introduction

 Last 3 years working on a project initiated by TU Braunschweig
 Focus: Developing and customizing (web-based) applications for

teachings and administration
 Developing with different languages and frameworks (depending on

the existing infrastructure and requirements)

 Many different applications, still the same patterns and work …

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 4

Web Information Systems

 Our understanding of the domain:
• Used to process data
• HTML form based
• Usually same layout and similar behavior

 Web information systems usually consist of
• Data structure / Persistence mechanisms
• Views on data structure
• Navigation / workflow logic between these views

 Implementation often
• Repetitive work
• Repeating components

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 5

Traditional Approach

 Definition of the same element at different parts of a system
• Source code (in e.g. classes)
• Database (in tables and rows)
• GUI elements in HTML / JSP form
• Potentially glue code in XML files
• All mostly dependent but still not integrated

 Changes need to be made on all parts
 Lots of boilerplate code
 Consistency checked often at runtime

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 6

MontiWeb Approach

 Raising abstraction from the implementation details
 Models to specify the elementary parts, actually

• Data structure
• Views
• Control- and dataflow

 Goal: Keeping these aspects separate to allow reuse in different
contexts

 Generators create working prototypes
• Basic models already enough to generate CRUD application
• Additional models to add more fine grained functionality

 Using textual models specified using MontiCore framework

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 7

MontiCore - Modeling Framework
Infrastructure

 Framework for the efficient development of DSLs
 Developed at Software Systems Engineering Institute of TU

Braunschweig and now RWTH Aachen
 Extended grammar format for language definition
 Generates components for the processing of models such as

• Parsers
• AST classes
• Basic symbol tables
• Pretty printers
• Basic editor support

 Provides infrastructure to conveniently access and use the
generated components

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 8

MontiCore
Grammar

MontiWeb Parser

Generator

Class-
diagramm Views

Activity-
diagramms

generates
defines

Web-
Application

generates

input

input

Architecture Overview

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 9

Modeling Data Structure

 Requirements for a data model in web information system
(according to our experience)
• Incorporates a type system (with domain-specific behavior)
• Is composable (for reuse of elements)
• Can have associations between model elements

 Textual representation of class diagrams as modeling language
• Generally well known and understood
• Expressive enough to fulfill the abovementioned requirements

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 10

Types of Classes

 Base classes (e.g. Email, Date, String, Number)
• Do not contain further attributes
• Usually domain-specific (or at least often used in that domain)
• Standard behavior in the target domain (e.g. consistency checks,

special input methods)

 Enumerations
• Can hold static values and be used as attributes

 Complex classes
• Consist of base classes, enumerations or other complex classes

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 11

Associations between Classes

 Normal associations
• Represent links between two objects A and B
• A and B need to exist (or one is just created)
• Implemented by (multi-)selection mechanisms

 Compositions
• Represents part-whole association between A and B
• If A is composed of B, B exists only in combination with A
• Implemented by simultaneous creation

• B is created when A is created
• B is deleted when A is deleted

A

B

A

B

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 12

Data Model

 Example: Very basic carsharing application

classdiagram Carsharing {

class Person {
String name;
Email email;
Number age;

}

enum Brand {AUDI, BMW, VW;}

class Car {
Brand brand;
Number numSeats;
Date constYear;

}
composition Person (keeper) -> (cars) Car [*];

}

Person

String name
Email email
Number age

Car

Brand brand
Number numSeats

Date constYear

<<enumeration>>
Brand

AUDI
BMW
VWcars

keeper

*

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 13

Modeling View Structure

 Requirements for a view language
• Different views on the same data structure (e.g. edit, display)
• Views can be composed and included in each other
• Static parts (e.g. images, text) are possible
• Convenience functionality (e.g. filtering, sorting) can specified

 Own language that fulfills these requirements
 Optional; if omitted, default views are generated

 Focus of the view language:
• Generation of usable and consistent layout
• Skinable through later inclusion of different CSS and a basic

template mechanism

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 14

View structure

Person {
attributes {
@Required
@Length(min=3, max=30)
name;
@Required
age;

}

@Captcha
editor registration {
name;
email;
age;
cars;

}
// …

}

views for class Person
applies to all views in this file

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 15

View Structure

Person {

// …

display protectedMail {
name;
@AsImage
email;

}

display welcome {
text {Welcome to Carsharing Service}
include protectedMail;
age;

}
}

includes previously defined view

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 16

Modeling Control- and Dataflow

 Basic control can be generated from view or even classes alone
 Standard way: Class diagram to CRUD application with named

standard views
 For more complex web information systems, we need means to

specify
• Order of pages
• Flow of data between pages
• Complex workflow logic

 Textual notation of activity diagrams
 Actually inclusion of views and Java code supported
 Hierarchical actions and most common control structures

(decisionnodes, forks etc) supported

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 17

Control- and Dataflow

activity UserRegistration {

action Registration {
out: Person p;
view : p = Person.registration();

}

action Welcome {
in: Person p;
view : Person.welcome(p);

}

action Error {
in: Person p;
view : Person.registrationError(p);

}

initial -> Registration;
Registration.p -> [p.age >= 18] Welcome.p

| [p.age < 18] Error.p;
Welcome | Error -> final;

}

Registration

Welcome Error

[p.age >=18] [p.age <18]
p

pp
reference to a view

holds the entered object

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 18

Interaction of Components

 Models are specified independently but partially rely on each other
 Classviews reference class diagram attributes by name
 Activity diagram references

• Classviews (to display them)
• Classes (as data type)

 Therefore: Reuse of different parts of the system in different
contexts possible

 Intra- and intermodel correctness is
checked on model level during generation Activitydiagram

Class diagram Classviews

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 19

Conclusion

 MontiWeb allows modeling of data-intensive web information
systems

 Working web application even with minimal model through default
behavior

 Advanced behavior specifiable through additional models
 DSL designed by reusing known concepts and languages (UML,

Java)
 Language concepts so far suitable for the web information systems

domain

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 20

Future Work

 Incorporation of means to model rights and roles system
and access control

 Modeling global features and roles with use case diagrams
 More complete use of language features

• Inheritance in class diagrams
• Inclusion of method stubs in classes

 Extend base classes to include more predefined datatypes
 Generation of interfaces to use the generated code from handwritten

classes (or other generated code)
 Means to pack models and source code to component libraries

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 21

Thanks for your attention!

Questions?

	MontiWeb – Modular Development of Web Information Systems
	Outline	
	Introduction
	Web Information Systems
	Traditional Approach
	MontiWeb Approach
	MontiCore - Modeling Framework Infrastructure
	Architecture Overview
	Modeling Data Structure
	Types of Classes
	Associations between Classes
	Data Model
	Modeling View Structure
	View structure
	View Structure
	Modeling Control- and Dataflow
	Control- and Dataflow
	Interaction of Components
	Conclusion
	Future Work
	Thanks for your attention!

