
Michael Dukaczewski1, Dirk Reiss1, Bernhard Rumpe2, Mark Stein1

1 Inst. f. Wirtschaftsinformatik, Technische Universität Braunschweig
2 Software Engineering, RWTH Aachen

9th OOPSLA Workshop on Domain-Specific Modeling
25-26 October 2009

MontiWeb – Modular Development of Web
Information Systems

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 2

Outline

 Introduction + Motivation

 Technical Infrastructure

 General Architecture

 Modeling Languages

 Conclusion + Future Work

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 3

Introduction

 Last 3 years working on a project initiated by TU Braunschweig
 Focus: Developing and customizing (web-based) applications for

teachings and administration
 Developing with different languages and frameworks (depending on

the existing infrastructure and requirements)

 Many different applications, still the same patterns and work …

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 4

Web Information Systems

 Our understanding of the domain:
• Used to process data
• HTML form based
• Usually same layout and similar behavior

 Web information systems usually consist of
• Data structure / Persistence mechanisms
• Views on data structure
• Navigation / workflow logic between these views

 Implementation often
• Repetitive work
• Repeating components

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 5

Traditional Approach

 Definition of the same element at different parts of a system
• Source code (in e.g. classes)
• Database (in tables and rows)
• GUI elements in HTML / JSP form
• Potentially glue code in XML files
• All mostly dependent but still not integrated

 Changes need to be made on all parts
 Lots of boilerplate code
 Consistency checked often at runtime

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 6

MontiWeb Approach

 Raising abstraction from the implementation details
 Models to specify the elementary parts, actually

• Data structure
• Views
• Control- and dataflow

 Goal: Keeping these aspects separate to allow reuse in different
contexts

 Generators create working prototypes
• Basic models already enough to generate CRUD application
• Additional models to add more fine grained functionality

 Using textual models specified using MontiCore framework

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 7

MontiCore - Modeling Framework
Infrastructure

 Framework for the efficient development of DSLs
 Developed at Software Systems Engineering Institute of TU

Braunschweig and now RWTH Aachen
 Extended grammar format for language definition
 Generates components for the processing of models such as

• Parsers
• AST classes
• Basic symbol tables
• Pretty printers
• Basic editor support

 Provides infrastructure to conveniently access and use the
generated components

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 8

MontiCore
Grammar

MontiWeb Parser

Generator

Class-
diagramm Views

Activity-
diagramms

generates
defines

Web-
Application

generates

input

input

Architecture Overview

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 9

Modeling Data Structure

 Requirements for a data model in web information system
(according to our experience)
• Incorporates a type system (with domain-specific behavior)
• Is composable (for reuse of elements)
• Can have associations between model elements

 Textual representation of class diagrams as modeling language
• Generally well known and understood
• Expressive enough to fulfill the abovementioned requirements

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 10

Types of Classes

 Base classes (e.g. Email, Date, String, Number)
• Do not contain further attributes
• Usually domain-specific (or at least often used in that domain)
• Standard behavior in the target domain (e.g. consistency checks,

special input methods)

 Enumerations
• Can hold static values and be used as attributes

 Complex classes
• Consist of base classes, enumerations or other complex classes

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 11

Associations between Classes

 Normal associations
• Represent links between two objects A and B
• A and B need to exist (or one is just created)
• Implemented by (multi-)selection mechanisms

 Compositions
• Represents part-whole association between A and B
• If A is composed of B, B exists only in combination with A
• Implemented by simultaneous creation

• B is created when A is created
• B is deleted when A is deleted

A

B

A

B

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 12

Data Model

 Example: Very basic carsharing application

classdiagram Carsharing {

class Person {
String name;
Email email;
Number age;

}

enum Brand {AUDI, BMW, VW;}

class Car {
Brand brand;
Number numSeats;
Date constYear;

}
composition Person (keeper) -> (cars) Car [*];

}

Person

String name
Email email
Number age

Car

Brand brand
Number numSeats

Date constYear

<<enumeration>>
Brand

AUDI
BMW
VWcars

keeper

*

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 13

Modeling View Structure

 Requirements for a view language
• Different views on the same data structure (e.g. edit, display)
• Views can be composed and included in each other
• Static parts (e.g. images, text) are possible
• Convenience functionality (e.g. filtering, sorting) can specified

 Own language that fulfills these requirements
 Optional; if omitted, default views are generated

 Focus of the view language:
• Generation of usable and consistent layout
• Skinable through later inclusion of different CSS and a basic

template mechanism

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 14

View structure

Person {
attributes {
@Required
@Length(min=3, max=30)
name;
@Required
age;

}

@Captcha
editor registration {
name;
email;
age;
cars;

}
// …

}

views for class Person
applies to all views in this file

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 15

View Structure

Person {

// …

display protectedMail {
name;
@AsImage
email;

}

display welcome {
text {Welcome to Carsharing Service}
include protectedMail;
age;

}
}

includes previously defined view

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 16

Modeling Control- and Dataflow

 Basic control can be generated from view or even classes alone
 Standard way: Class diagram to CRUD application with named

standard views
 For more complex web information systems, we need means to

specify
• Order of pages
• Flow of data between pages
• Complex workflow logic

 Textual notation of activity diagrams
 Actually inclusion of views and Java code supported
 Hierarchical actions and most common control structures

(decisionnodes, forks etc) supported

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 17

Control- and Dataflow

activity UserRegistration {

action Registration {
out: Person p;
view : p = Person.registration();

}

action Welcome {
in: Person p;
view : Person.welcome(p);

}

action Error {
in: Person p;
view : Person.registrationError(p);

}

initial -> Registration;
Registration.p -> [p.age >= 18] Welcome.p

| [p.age < 18] Error.p;
Welcome | Error -> final;

}

Registration

Welcome Error

[p.age >=18] [p.age <18]
p

pp
reference to a view

holds the entered object

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 18

Interaction of Components

 Models are specified independently but partially rely on each other
 Classviews reference class diagram attributes by name
 Activity diagram references

• Classviews (to display them)
• Classes (as data type)

 Therefore: Reuse of different parts of the system in different
contexts possible

 Intra- and intermodel correctness is
checked on model level during generation Activitydiagram

Class diagram Classviews

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 19

Conclusion

 MontiWeb allows modeling of data-intensive web information
systems

 Working web application even with minimal model through default
behavior

 Advanced behavior specifiable through additional models
 DSL designed by reusing known concepts and languages (UML,

Java)
 Language concepts so far suitable for the web information systems

domain

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 20

Future Work

 Incorporation of means to model rights and roles system
and access control

 Modeling global features and roles with use case diagrams
 More complete use of language features

• Inheritance in class diagrams
• Inclusion of method stubs in classes

 Extend base classes to include more predefined datatypes
 Generation of interfaces to use the generated code from handwritten

classes (or other generated code)
 Means to pack models and source code to component libraries

DSM09 @ OOPSLA

Dukaczewski, Reiss,
Rumpe, Stein

MontiWeb

page 21

Thanks for your attention!

Questions?

	MontiWeb – Modular Development of Web Information Systems
	Outline	
	Introduction
	Web Information Systems
	Traditional Approach
	MontiWeb Approach
	MontiCore - Modeling Framework Infrastructure
	Architecture Overview
	Modeling Data Structure
	Types of Classes
	Associations between Classes
	Data Model
	Modeling View Structure
	View structure
	View Structure
	Modeling Control- and Dataflow
	Control- and Dataflow
	Interaction of Components
	Conclusion
	Future Work
	Thanks for your attention!

