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ABSTRACT 
The proliferation of Mobile P2P systems made a next generation 
mobile BitTorrent client an appropriate target to compare two 
different development approaches: the traditional manual coding 
and domain-specific modeling languages (DSMLs) accompanied 
by generators. We present two DSMLs for mobile communication 
modeling, and one for user interface development. We compare 
the approaches by development time and maintenance, using our 
modeling and transformation tool Visual Modeling and 
Transformation System (VMTS).   

Categories and Subject Descriptors 
D.2.2 [Software Enginering]: Design Tools and Techniques – 
state diagrams, user interfaces. D.2.13 Reusable Software – 
domain engineering.  

General Terms 
Design, Languages 

Keywords 
Domain Engineering, Methodologies, Graphical environments, 
Interactive environments, Specialized application languages 

1. INTRODUCTION 
Mobile Peer-to-Peer technology is a natural demand fueled by the 
appearance of Smart Phones on the market. The Applied Mobile 
Research Group at our department did pioneering work in this 
area. Symella, the first Gnutella client for Symbian OS, has been 
downloaded by more than 400,000 users since its first public 
release in the summer of 2005. SymTorrrent is the first BitTorrent 
client for mobile phones. The first free public version was 
available in 2006 October, as of writing the software has been 
downloaded by about 300,000 clients.  In order to involve 
mainstream phones into P2P networks, Péter Ekler has developed 
a BitTorrent client named MobTorrent for Java ME platform [1]. 
The original goal was to examine whether mainstream phones are 
able to run such complex applications. The experiment has met 
the expectations, and MobTorrent became a suitable for 
communicate with the BitTorrent network. The experience 
stemming from the products made MobTorrent an apt 
environment where we could compare the manual coding and the 
Domain-Specific Modeling Language (DSML)-aided 
development. 
Having developed the manually coded version, we started with 
creating domain-specific languages which can be used to describe 
P2P systems for mobile applications. We identified two main 

functionality groups where the DSMLs are useful: processing the 
protocol messages and designing the user interface. As a 
DSML platform, we chose the metamodeling and model 
transformation tool Visual Modeling and Transformation System 
(VMTS) [2]. In VMTS, we could create the DSMLs, and we 
could write the model processors that translate the models into 
Java ME code. 
We tried to address the following issues: 

• How can Mobile P2P application benefit from DSMLs? 
• Does the DSML technology pays off at all in mobile P2P 

development in time? 
• Do the domain-specific models require less maintenance 

effort? 
• Could the DSML approach accelerate the development of 

the future versions? 
 

We start with answering the first question by giving an insight of 
the used DSLs, moreover, we show how we got the facts that 
underpin the answers. 

2. Domain-Specific Languages for Mobile 
P2P Systems 
In VMTS, we developed an integrated environment to visually 
model different aspects of JAVA ME mobile applications, and 
code generators to turn the models into executable JAVA code. 
The Java Resource Editor DSL is appropriate for the rapid 
development of the static components of mobile applications, 
while the JAVA Network Protocol Designer can be used to model 
the static components and the dynamic behavior of simple, 
message-based network protocols. 

2.1 Java ME Network Communication 
Support 
The basics of BitTorrent technology [3] are as follows. In order to 
download content via BitTorrent, firstly we need a very small 
torrent file. This file contains some meta-data describing the 
content and the address of at least one central peer called Tracker, 
which manages the traffic. After we have the torrent file, the 
BitTorrent client connects to the Tracker, which sends a set of 
addresses of other peers back to the client. Next the client 
connects to these addresses and concurrently downloads the 
content from them via a BitTorrent-specific peer-wire protocol 
[2]. In BitTorrent, we can download the content simultaneously 
from different peers. 



We developed two DSMLs for modeling the static and dynamic 
aspects of message-based network protocols, an integrated 
configuration environment and code generators to support the 
rapid modeling and implementation of communication through 
the network. It is capable of describing the peer-wire protocol and 
its processing logic. Our solution exploits the fact that numerous 
well-known and widely used network protocols take a message-
based approach. This means that the entities communicating with 
each other use a well-defined language, which consists of exactly 
identifiable elements with a predefined structure. The 
MessageStructure DSML models the messages (the static 
components) of such a protocol. Furthermore, the 
MessageProcessor DSML is provided to describe the logic of a 
protocol. We use hierarchical state machines to define this logic: 
we can declare the possible incoming messages in a state and the 
messages to be sent when leaving a state. 
With the help of model processors, we can generate a standalone 
network library, which can be adapted to the user interface or to 
business logic components. The generated network library 
provides its services through a unified callback interface. Via this 
interface it is possible subscribe to numerous events fired by the 
library during communication.  

2.1.1 Modeling messages 
Figure 1.a presents the metamodel of the MessageStructure 
DSML. The most important item of this language is the Message 

itself. The message is the unit of the communication of our 
approach. Each byte sent over the wire has to be the part of a 
message.  
Each message consists of several Fields. Fields are the building 
blocks of the messages. Fields have a Type attribute which 
corresponds to a simple Java type. Currently int, byte and String 
types are supported. We distinguish three different types of fields: 
ConstantField, FixedLengthField, and SeparatedField. A 
ConstantField has an additional Content attribute which is used to 
define the exact content of such a field at modeling time. In a 
protocol where a user ID (e.g.: 123) is sent in the format of 
#userid#123, the #userid# part of the message is a ConstantField. 
When reading a message from the network stream, the content of 
a ConstantField must be found at the position defined by the field 
in the model. Otherwise, the message processing fails. Thus, 
ConstantFields play an elementary role when distinguishing 
between possible incoming messages in a certain processing state. 
FixedLengthFields do not have a predefined content, but a 
predefined size (Size attribute). This means that the field 
represents a buffer for Size pieces of elements of type Type. The 
Size attribute does not have to be a constant value, instead, it can 
be contained by a field of the same message or global variable 
(see later), or an aggregated value of those.  This means that if we 
recognize a FixedLengthField in a message it is possible that the 
size of this FixedLengthField depends on the already read content 
of a previous field in this message. SeparatedFields do not have a 
predefined value or size. Their start and end are marked by a 
character sequence specified in their Separator attribute. Reading 
such a field is finished with reading the value of the Separator 
attribute from the stream. This is a useful feature for textual 
protocols (e.g FTP or POP3), where the commands are separated 
with line-break characters. 
During code generation, Java classes are created based on the 
message elements. The contained fields of the messages will 
correspond to the fields of the Java class. Based on the model and 
the order of the fields of the messages, we also generate the 
member methods to read or write the message from or to the 
network stream. With the help of modeling messages and 
generating their wrapper classes, our solution completely hides 
byte-wise network stream operations, and provides an interface 
based on Java objects to the upper layers of the application. 

2.1.1.1 BitTorrent messages 
In order to discover and filter the incoming messages described 
with the MessageStructure DSML, we have implemented a 
message discovery algorithm.  After a message is parsed, a 
callback method is being called which carries the different type of 
MessageFields as parameters. This callback method is used by 
the MobTorrent framework to execute BitTorrent-specific 
functions such as save the incoming data in a file. 
Figure 2 presents the model of the BitTorrent protocol messages. 
The green fields are the ConstantFields, whereas the grey ones 
are the FixedLengthFields. BitTorrent protocol does not use 
SeparatedFields. Usually in every message-based protocol, the 
messages have a common structure. In the case of BitTorrent we 
can separate the messages into two parts. The first part contains 
the MessageHandshake (Figure 2) only, which is used during the 
peer-wire protocol to determine whether two peers are compatible 
with each other. MessageHandshake starts with two 
ConstantFields followed by three FixedLengthFields. The most 

 
a) 

 
b) 

Figure 1 Metamodels for modeling the static and dynamic 
properties of message-driven state meachines 



important field in the MessageHandshake is the torrentInfoHash, 
which is basically the SHA-1 value of the torrent file. This value 
is used to determine whether the peers are interested in the same 
content represented by the torrent file. 
 
According to the protocol when peers are exchanging the 
handshake message, this is the only message which can be 
accepted, thus, it is easy to discover. After a successful handshake 
every other message can be sent or received, there are no 
limitations. However we can see that the structure of these 
messages is the same. All of them start with a messageLength 
field which defines the length of the message in four bytes.  
Figure 2 shows that the messageLength field is green in all the 
messages, except for MessagePiece and MessageBitfield. The 
length of these two messages depends on the amount of data they 
carry.  
Following the messageLength, each message contains a 
messageID field which makes it easy to filter the messages. Only 
the MessageKeepAlive does not have this messageID field, 
because it contains only a messageLength constant field. 
In the BitTorrent protocol, after we have parsed the messageID 
field, we can easily determine which message has arrived, and we 
can pass the content of the incoming message as the parameters of 
the callback functions. 

2.1.2 Modeling dynamic behavior 
The core concept of our approach is that that communication 
layer performs status changes as a consequence of receiving 
specific messages from the network stream. In addition, we may 
also instantiate and send network messages during a status 
change. In our approach, the communication layer can run 
standalone, and it informs the connecting components of the 
application through a callback interface about the important 
events of the communication. The business logic can influence 
the behavior of the communication layer through the parameters 
of the layer and by sending messages directly through the network 
stream. The behavior of the network layer can be modeled with 
the help of a message-driven state machine.  
Figure 1.b presents the metamodel of the MessageProcessor DSL. 
The most elementary item of this state machine is the State. There 
are two special types of states: the Start and the Stop states. The 
Start state indicates the entry point of the state machine, while the 
Stop state indicates the exit point. As states can be nested (see the 
containment edge-loop in the metamodel), the start and end states 
may also be used as the entry/exit point of a sub-state machine. 

States can be connected with the help of Transition edges. A 
Transition edge may trigger the reception of a specific message 
from the stream: the type of the expected message is defined by 
the MessageTypeIn attribute of the edge, which references an 
already modeled message. If several outgoing transition edges are 
connected to the same state, then the transition whose triggered 
message first arrives will be chosen. If a transition is chosen, the 
state pointed by its right end will be the next active state. When 
activating a state, the instruction described in its Operation 
attribute is executed. 
An important issue in every message-based protocol is the phase 
where we have to decide which message has exactly arrived. We 
have implemented an advanced message handling algorithm 
especially for the presented MessageStructure DSL: in each state 
of the protocol we have a set of messages which can arrive in the 
state. Each message knows how many bytes it can consume to 
process its current (still not read) field. If the size of the current 
field cannot be determined (in case of a SeparatedField or a 
FixedLengthField with variable size) then this message can 
process only one byte. The key point is that we can increase the 
efficiency of message parsing, because if we have a set of 
possible in a state, the minimum amount of bytes to read can be 
determined. Thus, we do not read the stream by single bytes. 
Based on the bytes received, we can filter the set of possible 
messages by the fields with constant values. After a reasonable 
amount of incoming bytes we can restrict the number of possible 
messages to one. If neither of the existing transitions is 
compatible with the data read, we have two possibilities to handle 
this situation. Either we assume that a Protocol error has 
occurred, and handle the error with a special ErrorOccured edge, 
) or – if no ErrorOccurred edges are present and the current state 
is nested – we let the container state handle the message. We may 
also attach preconditions to the transitions so that the transition is 
selected only if the appropriate message arrives, and the condition 
(Condition attribute of the edge) is evaluated to true. In addition, 
there are two special types of transitions: non-reading and 
fallback. A transition is non-reading if it does not trigger any type 
of incoming message. These transitions are checked only for their 
Condition attribute before choosing them. Therefore they always 
have priority over the reading transitions. Fallback transitions 
(their condition attribute is set to [fallback]) are chosen when 
neither of the other transitions in a state can be selected. This 
feature is quite analogous to the handling of protocol errors, 
however, fallback edges are not to handle errors, but it is regular 
behavior. Recall that a transition may also send a message 
through the stream. The type of the message sent is defined by the 

 
Figure 2 Message objects used by the BitTorrent protocol 



MessageTypeOut attribute, and the initial value of the fields of the 
message can be set through the MessageOutParameter attributes 
of the edge. 
As already mentioned, the ErrorOccured edge is used to handle 
the errors (either Protocol or I/O) of the network layer. I/O errors 
occur, when the reading or writing to the stream fails. I/O errors 
can be handled with ErrorOccured edges whose Type attribute is 
set to I/O. If none of the outgoing transitions are applicable in a 
state, and an ErrorOccured edge is present whose Type is set to 
Protocol, then – regardless of possible container states – we treat 
this situation as a protocol error. An ErrorOccured edge always 
points to an Error state. Error states are special in the sense that a 
callback method is assigned to each of them on the callback 
interface. In case of I/O errors, the callback method receives the 
last exception as well. A special form of Error nodes is the Abort 
node, which immediately finishes the execution of the network 
layer. 
The state machine may be customized with Variables. Each 
variable has a name, a type and a default value. Variables can be 
considered as global parameters, which can be accessed by all 
states and edges. Variables can be used in the conditions for 
transitions, during the instantiation of a new message and also in 
the Operation attribute of states. The code generator generates a 
member variable for each Variable node in the model, along with 
their getter and setter methods. The member variables are 
initialized with the content of the DefaultValue attribute of the 
corresponding model element. 
Recall that a callback method is generated on the callback 
interface for each error node. Furthermore, a method is generated 
for each stop state as well. However, one may extend the callback 
interface arbitrarily, and call its methods from any point of the 
state machine. For this purpose we have invented the Callback 
node, which symbolizes on method stub on the interface. The 
generated method can be parameterized with the help of the 
Parameter attribute of that node. Callback methods on the 
interface can be invoked in two ways: either through a 
DoCallback state, or with the transition edges, as a method invoke 
can be assigned to each transition. The parameters of the method 

invoke can be set with the CallbackParameter attributes in both 
cases. 
Network connection handling is also modeled with Connection 
edges. Depending on their Type property, such an edge either 
opens or closes the network connection. The target host for the 
connection is specified by the Host attribute. However, the 
parameters of the connection (connection type, direction, timeout 
handling etc.) can be customized during code generation. 
Figure 3 illustrates the model we have created for the BitTorrent 
protocol. The yellow boxes represent the global variables of the 
state machine: (i) peerAddress – the address of the peer we are 
connected to, (ii) torrentInfoHash – the hash of the downloaded 
torrent, (iii) peerId – the unique identifier of the connected peer 
and (iv) ownPeerId- our own identifier. The blue boxes with a 
small yellow lightning denote the callback methods created on the 
callback interface.  
The protocol works as follows. After the start state (1), we call the 
Initialize callback (2) to instruct the framework to perform 
initialization steps. Then the protocol tries to connect to the target 
host (the Connect edge is parameterized with the peerAddress 
variable). If the connection succeeds, we get to the Connected 
state (3), otherwise an I/O error occurs (4). On error, we perform 
an IncreaseErrorCounter callback, and disconnect the stream. 
Moving from (3) to (5) a MessageHandshake (Figure 2) message 
is sent to the remote peer. Edges (6) and (7) trigger the answer-
MessageHandshake message, and check if the parameters of the 
answer are valid. On an invalid handshake answer, either the 
IncreaseErrorCounter or the DeletePeer state will be active, and 
the communication is closed with the current peer. Edge (8) is a 
fallback edge meaning that edge (8) is chosen if neither of error 
transitions (6-7) can be selected. The state PWConnected can be 
considered the default state of the protocol: almost any type of 
messages can be received at this state (that is why there are so 
many loop edges around it), and each message arrival performs 
the appropriate callback invocation. As you can see in Figure 3, 
the edge parameters (and also other model parameters) can be 
changed with the help of smart tags. They appear when the mouse 
is hovered over an item. State PwConnected can be left only if a 
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protocol error occurs, or the business logic over the network layer 
changes the current state.  

2.2 Mobile DSL for User Interface 
Development 
Having generated code from the network model and integrated it 
with the MobTorrent framework, we started to work on the user 
interface of our new mobile BitTorrent client. With UI DSMLs, 
we can model the static structure of user interfaces, and generate 
the platform-specific source code according to the models. The UI 
DSML also has a metamodel, but its detailed explanation is 
irrelevant. Instead, we are focusing on the models we have 
created for the BitTorrent application. VMTS supports [4] all the 
Screens, Commands and Controls available in Java ME both on 
the modeling and the generator level. Besides the general 
elements we also provide additional controls which are not part of 
the Java ME API, but are used in numerous scenarios, such as the 
FileSelectDialog. In P2P applications we usually download 
multiple contents at the same time and these downloads are 
displayed in a list where the icon of the list item represents the 
status (downloading, finished, error, etc.) of the download. With 
the help of an ImageList we can easily access image resources and 
use them in other components, for example in a List. 
In Figure 4, the four screens of the application can be seen both at 
modeling time (a), and when executing the application on a real 
hardware (b). Screen (1) is used to present the torrents being 
processed (TorrentList). It is modeled with a simple JList item 
which is replaced with a class derived from Java ME List during 
code generation. Screen (2) is the FileSelectDialog itself, with 
which one can browse for a torrent file to be processed. Screen (3) 
is used to show the download state of the selected torrent. Screen 
(3) is built from a JForm item, which contains three StringItems 
for presenting the name of the torrent file, the size of the 
downloaded data, and the actual transfer rate. A JGauge element 
represents a progress bar which shows the progress of the 
download. Finally, screen (4) is used to modify the application 
settings such as the download path. It is also based on a JForm 
element, which contains a JTextField item. (JTextField 
corresponds to the TextField Java ME class). 

 
With the VMTS UI DSML, we can also set the commands 
(menus) for the screens. The TorrenList contains commands for 
torrent handling such as add torrent file, start download, pause 

download, and commands responsible for navigating to another 
screen like Settings or Download state. Thus, we can also 
describe the high-level UI logic. The model also contains an 
ImageList (5) with three icons. This list represents the icon set 
used by Screen (1). Finally, after modeling and generating the 
network layer and the user interface, one task remains: integrating 
the generated components with the MobTorrent framework. The 
integration is not supported with visual techniques in the current 
release of VMTS, the glue-code has to be written manually.  
In order to integrate the UI with the MobTorrent framework we 
have applied the Observer design pattern. The framework 
provides an interface which we have to implement in the UI code. 
This interface contains functions that are called from the 
framework when the status of the download changes, such as 
download speed changed, download progress increased. When we 
initialize the framework we have to set which object implements 
the observer interface in the UI. By using this observer the 
framework can notify the UI if something changes and the 
relevant information can be displayed on the screen of the mobile 
phone easily. 

3. Conclusions 
So far we have shown how mobile P2P development can benefit 
from DSML technology. We found well-separated functionality 
groups, and supported them by DSMLs and code generators. 
Table 1 depicts the development times with manual coding and 
with DSMLs taking one developer into account who had previous 
experience of this sort of application. 

Table 1. Development time with and without DSMLs 
 
Additionally, there were functions, which we did not support with 
DSMLs. These required the following amount of time: 

• File and database handling: 8 days 
• BitTorrent specific functions: 13 days 
• Tracker communication: 5 days 
• Download for other clients: 8 days 
The DSML infrastructure, i.e. the languages and the generators, is 
developed by an engineer with extensive DSML and tool 
experience. The time spent per person is the following: 

• MessageStructure and MessageProcessor DSMLs: 4 days 
• MessageStructure and MessageProcessor generators: 5 days 
• UI DSML: 9 days 
• UI generator: 10 days 

So the development effort for the functions supported by DSMLs 
is as follows: 

• With DSMLs: 6 days 
• Without DSMLs: 29 days 

Functionallity Time with manual 
coding 

Time with DSL 

User interface 5 days 2 day 

Peer network 
connection 

8 days 1 day 

Peer-wire protocol 6 days 1 day 

Message handling 10 days 2 days 

    
a)model         b)real 

Figure 4 UI model of the mobile BitTorent client in VMTS 



The development time without the time for the DSML 
development: 

• With DSMLs: 40 days 
• Without DSMLs: 63 days 

Including the DSML infrastructure development: 

• With DSMLs: 68 days 
• Without DSMLs: 63 days 

These numbers shed a light on the fact that DSML technology is a 
generative technique: a generator is much harder to develop than 
the generated code once. Therefore, the more times you run the 
generator, the more the DSML approach pays off. From the 
second time on, the DSML and generator development does not 
appear as an additional cost. Our intention was to support UI 
changes, protocol changes and updates in the forthcoming version 
of a P2P application. That is why we support these functions and 
not others. As a matter of fact, our figures look better: we 
inherited the UI DSML from another project targeting cross 
platform UI development. Thus, we can subtract it from the total, 
and we have 47 days for the MobTorrent project. 
As long as only the models need to be modified, DSMLs increase 
the maintainability. If the generator must also be modified, the 
necessary effort can arbitrarily increase. We expect that we need 
to modify the models for the next versions because of the 
generality of the DSMLs, and subtle generator modifications if 
the Java ME UI changes. These DSMLs can be reused for any 
Java ME mobile development where UI or network support is 
required, but the approach is not limited to the Java ME platform, 
since it can be extended to other platforms by modifying the code 
generators. The proposed case study can be used as well in other 
solutions where BitTorrent technology is used for content 

distribution. Since our department is involved in developing such 
applications on a regular basis, we have a rational expectation to 
have the return of our investment in the DSMLs and the 
supporting generators as it happened in the case of the UI models. 
We tested the generated code, and decided to include it in the first 
release of MobTorrent. Thus, MobTorrent is expected to be 
publicly available in January 2010 on its website, as the first 
mobile P2P client developed with the extensive help of DSMLs. 
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