
DSML-Aided Development for Mobile P2P Systems
Tihamér Levendovszky, Tamás Mészáros, Péter Ekler, Márk Asztalos

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

H-1111 Budapest
Goldmann György tér 3. IV. em.

Tel.:+36-1-463-2870

{tihamer, mesztam, ekler.peter, asztalos}@aut.bme.hu

ABSTRACT
The proliferation of Mobile P2P systems made a next generation
mobile BitTorrent client an appropriate target to compare two
different development approaches: the traditional manual coding
and domain-specific modeling languages (DSMLs) accompanied
by generators. We present two DSMLs for mobile communication
modeling, and one for user interface development. We compare
the approaches by development time and maintenance, using our
modeling and transformation tool Visual Modeling and
Transformation System (VMTS).

Categories and Subject Descriptors
D.2.2 [Software Enginering]: Design Tools and Techniques –
state diagrams, user interfaces. D.2.13 Reusable Software –
domain engineering.

General Terms
Design, Languages

Keywords
Domain Engineering, Methodologies, Graphical environments,
Interactive environments, Specialized application languages

1. INTRODUCTION
Mobile Peer-to-Peer technology is a natural demand fueled by the
appearance of Smart Phones on the market. The Applied Mobile
Research Group at our department did pioneering work in this
area. Symella, the first Gnutella client for Symbian OS, has been
downloaded by more than 400,000 users since its first public
release in the summer of 2005. SymTorrrent is the first BitTorrent
client for mobile phones. The first free public version was
available in 2006 October, as of writing the software has been
downloaded by about 300,000 clients. In order to involve
mainstream phones into P2P networks, Péter Ekler has developed
a BitTorrent client named MobTorrent for Java ME platform [1].
The original goal was to examine whether mainstream phones are
able to run such complex applications. The experiment has met
the expectations, and MobTorrent became a suitable for
communicate with the BitTorrent network. The experience
stemming from the products made MobTorrent an apt
environment where we could compare the manual coding and the
Domain-Specific Modeling Language (DSML)-aided
development.
Having developed the manually coded version, we started with
creating domain-specific languages which can be used to describe
P2P systems for mobile applications. We identified two main

functionality groups where the DSMLs are useful: processing the
protocol messages and designing the user interface. As a
DSML platform, we chose the metamodeling and model
transformation tool Visual Modeling and Transformation System
(VMTS) [2]. In VMTS, we could create the DSMLs, and we
could write the model processors that translate the models into
Java ME code.
We tried to address the following issues:

• How can Mobile P2P application benefit from DSMLs?
• Does the DSML technology pays off at all in mobile P2P

development in time?
• Do the domain-specific models require less maintenance

effort?
• Could the DSML approach accelerate the development of

the future versions?

We start with answering the first question by giving an insight of
the used DSLs, moreover, we show how we got the facts that
underpin the answers.

2. Domain-Specific Languages for Mobile
P2P Systems
In VMTS, we developed an integrated environment to visually
model different aspects of JAVA ME mobile applications, and
code generators to turn the models into executable JAVA code.
The Java Resource Editor DSL is appropriate for the rapid
development of the static components of mobile applications,
while the JAVA Network Protocol Designer can be used to model
the static components and the dynamic behavior of simple,
message-based network protocols.

2.1 Java ME Network Communication
Support
The basics of BitTorrent technology [3] are as follows. In order to
download content via BitTorrent, firstly we need a very small
torrent file. This file contains some meta-data describing the
content and the address of at least one central peer called Tracker,
which manages the traffic. After we have the torrent file, the
BitTorrent client connects to the Tracker, which sends a set of
addresses of other peers back to the client. Next the client
connects to these addresses and concurrently downloads the
content from them via a BitTorrent-specific peer-wire protocol
[2]. In BitTorrent, we can download the content simultaneously
from different peers.

We developed two DSMLs for modeling the static and dynamic
aspects of message-based network protocols, an integrated
configuration environment and code generators to support the
rapid modeling and implementation of communication through
the network. It is capable of describing the peer-wire protocol and
its processing logic. Our solution exploits the fact that numerous
well-known and widely used network protocols take a message-
based approach. This means that the entities communicating with
each other use a well-defined language, which consists of exactly
identifiable elements with a predefined structure. The
MessageStructure DSML models the messages (the static
components) of such a protocol. Furthermore, the
MessageProcessor DSML is provided to describe the logic of a
protocol. We use hierarchical state machines to define this logic:
we can declare the possible incoming messages in a state and the
messages to be sent when leaving a state.
With the help of model processors, we can generate a standalone
network library, which can be adapted to the user interface or to
business logic components. The generated network library
provides its services through a unified callback interface. Via this
interface it is possible subscribe to numerous events fired by the
library during communication.

2.1.1 Modeling messages
Figure 1.a presents the metamodel of the MessageStructure
DSML. The most important item of this language is the Message

itself. The message is the unit of the communication of our
approach. Each byte sent over the wire has to be the part of a
message.
Each message consists of several Fields. Fields are the building
blocks of the messages. Fields have a Type attribute which
corresponds to a simple Java type. Currently int, byte and String
types are supported. We distinguish three different types of fields:
ConstantField, FixedLengthField, and SeparatedField. A
ConstantField has an additional Content attribute which is used to
define the exact content of such a field at modeling time. In a
protocol where a user ID (e.g.: 123) is sent in the format of
#userid#123, the #userid# part of the message is a ConstantField.
When reading a message from the network stream, the content of
a ConstantField must be found at the position defined by the field
in the model. Otherwise, the message processing fails. Thus,
ConstantFields play an elementary role when distinguishing
between possible incoming messages in a certain processing state.
FixedLengthFields do not have a predefined content, but a
predefined size (Size attribute). This means that the field
represents a buffer for Size pieces of elements of type Type. The
Size attribute does not have to be a constant value, instead, it can
be contained by a field of the same message or global variable
(see later), or an aggregated value of those. This means that if we
recognize a FixedLengthField in a message it is possible that the
size of this FixedLengthField depends on the already read content
of a previous field in this message. SeparatedFields do not have a
predefined value or size. Their start and end are marked by a
character sequence specified in their Separator attribute. Reading
such a field is finished with reading the value of the Separator
attribute from the stream. This is a useful feature for textual
protocols (e.g FTP or POP3), where the commands are separated
with line-break characters.
During code generation, Java classes are created based on the
message elements. The contained fields of the messages will
correspond to the fields of the Java class. Based on the model and
the order of the fields of the messages, we also generate the
member methods to read or write the message from or to the
network stream. With the help of modeling messages and
generating their wrapper classes, our solution completely hides
byte-wise network stream operations, and provides an interface
based on Java objects to the upper layers of the application.

2.1.1.1 BitTorrent messages
In order to discover and filter the incoming messages described
with the MessageStructure DSML, we have implemented a
message discovery algorithm. After a message is parsed, a
callback method is being called which carries the different type of
MessageFields as parameters. This callback method is used by
the MobTorrent framework to execute BitTorrent-specific
functions such as save the incoming data in a file.
Figure 2 presents the model of the BitTorrent protocol messages.
The green fields are the ConstantFields, whereas the grey ones
are the FixedLengthFields. BitTorrent protocol does not use
SeparatedFields. Usually in every message-based protocol, the
messages have a common structure. In the case of BitTorrent we
can separate the messages into two parts. The first part contains
the MessageHandshake (Figure 2) only, which is used during the
peer-wire protocol to determine whether two peers are compatible
with each other. MessageHandshake starts with two
ConstantFields followed by three FixedLengthFields. The most

a)

b)

Figure 1 Metamodels for modeling the static and dynamic
properties of message-driven state meachines

important field in the MessageHandshake is the torrentInfoHash,
which is basically the SHA-1 value of the torrent file. This value
is used to determine whether the peers are interested in the same
content represented by the torrent file.

According to the protocol when peers are exchanging the
handshake message, this is the only message which can be
accepted, thus, it is easy to discover. After a successful handshake
every other message can be sent or received, there are no
limitations. However we can see that the structure of these
messages is the same. All of them start with a messageLength
field which defines the length of the message in four bytes.
Figure 2 shows that the messageLength field is green in all the
messages, except for MessagePiece and MessageBitfield. The
length of these two messages depends on the amount of data they
carry.
Following the messageLength, each message contains a
messageID field which makes it easy to filter the messages. Only
the MessageKeepAlive does not have this messageID field,
because it contains only a messageLength constant field.
In the BitTorrent protocol, after we have parsed the messageID
field, we can easily determine which message has arrived, and we
can pass the content of the incoming message as the parameters of
the callback functions.

2.1.2 Modeling dynamic behavior
The core concept of our approach is that that communication
layer performs status changes as a consequence of receiving
specific messages from the network stream. In addition, we may
also instantiate and send network messages during a status
change. In our approach, the communication layer can run
standalone, and it informs the connecting components of the
application through a callback interface about the important
events of the communication. The business logic can influence
the behavior of the communication layer through the parameters
of the layer and by sending messages directly through the network
stream. The behavior of the network layer can be modeled with
the help of a message-driven state machine.
Figure 1.b presents the metamodel of the MessageProcessor DSL.
The most elementary item of this state machine is the State. There
are two special types of states: the Start and the Stop states. The
Start state indicates the entry point of the state machine, while the
Stop state indicates the exit point. As states can be nested (see the
containment edge-loop in the metamodel), the start and end states
may also be used as the entry/exit point of a sub-state machine.

States can be connected with the help of Transition edges. A
Transition edge may trigger the reception of a specific message
from the stream: the type of the expected message is defined by
the MessageTypeIn attribute of the edge, which references an
already modeled message. If several outgoing transition edges are
connected to the same state, then the transition whose triggered
message first arrives will be chosen. If a transition is chosen, the
state pointed by its right end will be the next active state. When
activating a state, the instruction described in its Operation
attribute is executed.
An important issue in every message-based protocol is the phase
where we have to decide which message has exactly arrived. We
have implemented an advanced message handling algorithm
especially for the presented MessageStructure DSL: in each state
of the protocol we have a set of messages which can arrive in the
state. Each message knows how many bytes it can consume to
process its current (still not read) field. If the size of the current
field cannot be determined (in case of a SeparatedField or a
FixedLengthField with variable size) then this message can
process only one byte. The key point is that we can increase the
efficiency of message parsing, because if we have a set of
possible in a state, the minimum amount of bytes to read can be
determined. Thus, we do not read the stream by single bytes.
Based on the bytes received, we can filter the set of possible
messages by the fields with constant values. After a reasonable
amount of incoming bytes we can restrict the number of possible
messages to one. If neither of the existing transitions is
compatible with the data read, we have two possibilities to handle
this situation. Either we assume that a Protocol error has
occurred, and handle the error with a special ErrorOccured edge,
) or – if no ErrorOccurred edges are present and the current state
is nested – we let the container state handle the message. We may
also attach preconditions to the transitions so that the transition is
selected only if the appropriate message arrives, and the condition
(Condition attribute of the edge) is evaluated to true. In addition,
there are two special types of transitions: non-reading and
fallback. A transition is non-reading if it does not trigger any type
of incoming message. These transitions are checked only for their
Condition attribute before choosing them. Therefore they always
have priority over the reading transitions. Fallback transitions
(their condition attribute is set to [fallback]) are chosen when
neither of the other transitions in a state can be selected. This
feature is quite analogous to the handling of protocol errors,
however, fallback edges are not to handle errors, but it is regular
behavior. Recall that a transition may also send a message
through the stream. The type of the message sent is defined by the

Figure 2 Message objects used by the BitTorrent protocol

MessageTypeOut attribute, and the initial value of the fields of the
message can be set through the MessageOutParameter attributes
of the edge.
As already mentioned, the ErrorOccured edge is used to handle
the errors (either Protocol or I/O) of the network layer. I/O errors
occur, when the reading or writing to the stream fails. I/O errors
can be handled with ErrorOccured edges whose Type attribute is
set to I/O. If none of the outgoing transitions are applicable in a
state, and an ErrorOccured edge is present whose Type is set to
Protocol, then – regardless of possible container states – we treat
this situation as a protocol error. An ErrorOccured edge always
points to an Error state. Error states are special in the sense that a
callback method is assigned to each of them on the callback
interface. In case of I/O errors, the callback method receives the
last exception as well. A special form of Error nodes is the Abort
node, which immediately finishes the execution of the network
layer.
The state machine may be customized with Variables. Each
variable has a name, a type and a default value. Variables can be
considered as global parameters, which can be accessed by all
states and edges. Variables can be used in the conditions for
transitions, during the instantiation of a new message and also in
the Operation attribute of states. The code generator generates a
member variable for each Variable node in the model, along with
their getter and setter methods. The member variables are
initialized with the content of the DefaultValue attribute of the
corresponding model element.
Recall that a callback method is generated on the callback
interface for each error node. Furthermore, a method is generated
for each stop state as well. However, one may extend the callback
interface arbitrarily, and call its methods from any point of the
state machine. For this purpose we have invented the Callback
node, which symbolizes on method stub on the interface. The
generated method can be parameterized with the help of the
Parameter attribute of that node. Callback methods on the
interface can be invoked in two ways: either through a
DoCallback state, or with the transition edges, as a method invoke
can be assigned to each transition. The parameters of the method

invoke can be set with the CallbackParameter attributes in both
cases.
Network connection handling is also modeled with Connection
edges. Depending on their Type property, such an edge either
opens or closes the network connection. The target host for the
connection is specified by the Host attribute. However, the
parameters of the connection (connection type, direction, timeout
handling etc.) can be customized during code generation.
Figure 3 illustrates the model we have created for the BitTorrent
protocol. The yellow boxes represent the global variables of the
state machine: (i) peerAddress – the address of the peer we are
connected to, (ii) torrentInfoHash – the hash of the downloaded
torrent, (iii) peerId – the unique identifier of the connected peer
and (iv) ownPeerId- our own identifier. The blue boxes with a
small yellow lightning denote the callback methods created on the
callback interface.
The protocol works as follows. After the start state (1), we call the
Initialize callback (2) to instruct the framework to perform
initialization steps. Then the protocol tries to connect to the target
host (the Connect edge is parameterized with the peerAddress
variable). If the connection succeeds, we get to the Connected
state (3), otherwise an I/O error occurs (4). On error, we perform
an IncreaseErrorCounter callback, and disconnect the stream.
Moving from (3) to (5) a MessageHandshake (Figure 2) message
is sent to the remote peer. Edges (6) and (7) trigger the answer-
MessageHandshake message, and check if the parameters of the
answer are valid. On an invalid handshake answer, either the
IncreaseErrorCounter or the DeletePeer state will be active, and
the communication is closed with the current peer. Edge (8) is a
fallback edge meaning that edge (8) is chosen if neither of error
transitions (6-7) can be selected. The state PWConnected can be
considered the default state of the protocol: almost any type of
messages can be received at this state (that is why there are so
many loop edges around it), and each message arrival performs
the appropriate callback invocation. As you can see in Figure 3,
the edge parameters (and also other model parameters) can be
changed with the help of smart tags. They appear when the mouse
is hovered over an item. State PwConnected can be left only if a

Figure 3 BitTorrent client protocol model

protocol error occurs, or the business logic over the network layer
changes the current state.

2.2 Mobile DSL for User Interface
Development
Having generated code from the network model and integrated it
with the MobTorrent framework, we started to work on the user
interface of our new mobile BitTorrent client. With UI DSMLs,
we can model the static structure of user interfaces, and generate
the platform-specific source code according to the models. The UI
DSML also has a metamodel, but its detailed explanation is
irrelevant. Instead, we are focusing on the models we have
created for the BitTorrent application. VMTS supports [4] all the
Screens, Commands and Controls available in Java ME both on
the modeling and the generator level. Besides the general
elements we also provide additional controls which are not part of
the Java ME API, but are used in numerous scenarios, such as the
FileSelectDialog. In P2P applications we usually download
multiple contents at the same time and these downloads are
displayed in a list where the icon of the list item represents the
status (downloading, finished, error, etc.) of the download. With
the help of an ImageList we can easily access image resources and
use them in other components, for example in a List.
In Figure 4, the four screens of the application can be seen both at
modeling time (a), and when executing the application on a real
hardware (b). Screen (1) is used to present the torrents being
processed (TorrentList). It is modeled with a simple JList item
which is replaced with a class derived from Java ME List during
code generation. Screen (2) is the FileSelectDialog itself, with
which one can browse for a torrent file to be processed. Screen (3)
is used to show the download state of the selected torrent. Screen
(3) is built from a JForm item, which contains three StringItems
for presenting the name of the torrent file, the size of the
downloaded data, and the actual transfer rate. A JGauge element
represents a progress bar which shows the progress of the
download. Finally, screen (4) is used to modify the application
settings such as the download path. It is also based on a JForm
element, which contains a JTextField item. (JTextField
corresponds to the TextField Java ME class).

With the VMTS UI DSML, we can also set the commands
(menus) for the screens. The TorrenList contains commands for
torrent handling such as add torrent file, start download, pause

download, and commands responsible for navigating to another
screen like Settings or Download state. Thus, we can also
describe the high-level UI logic. The model also contains an
ImageList (5) with three icons. This list represents the icon set
used by Screen (1). Finally, after modeling and generating the
network layer and the user interface, one task remains: integrating
the generated components with the MobTorrent framework. The
integration is not supported with visual techniques in the current
release of VMTS, the glue-code has to be written manually.
In order to integrate the UI with the MobTorrent framework we
have applied the Observer design pattern. The framework
provides an interface which we have to implement in the UI code.
This interface contains functions that are called from the
framework when the status of the download changes, such as
download speed changed, download progress increased. When we
initialize the framework we have to set which object implements
the observer interface in the UI. By using this observer the
framework can notify the UI if something changes and the
relevant information can be displayed on the screen of the mobile
phone easily.

3. Conclusions
So far we have shown how mobile P2P development can benefit
from DSML technology. We found well-separated functionality
groups, and supported them by DSMLs and code generators.
Table 1 depicts the development times with manual coding and
with DSMLs taking one developer into account who had previous
experience of this sort of application.

Table 1. Development time with and without DSMLs

Additionally, there were functions, which we did not support with
DSMLs. These required the following amount of time:

• File and database handling: 8 days
• BitTorrent specific functions: 13 days
• Tracker communication: 5 days
• Download for other clients: 8 days
The DSML infrastructure, i.e. the languages and the generators, is
developed by an engineer with extensive DSML and tool
experience. The time spent per person is the following:

• MessageStructure and MessageProcessor DSMLs: 4 days
• MessageStructure and MessageProcessor generators: 5 days
• UI DSML: 9 days
• UI generator: 10 days

So the development effort for the functions supported by DSMLs
is as follows:

• With DSMLs: 6 days
• Without DSMLs: 29 days

Functionallity Time with manual
coding

Time with DSL

User interface 5 days 2 day

Peer network
connection

8 days 1 day

Peer-wire protocol 6 days 1 day

Message handling 10 days 2 days

a)model b)real

Figure 4 UI model of the mobile BitTorent client in VMTS

The development time without the time for the DSML
development:

• With DSMLs: 40 days
• Without DSMLs: 63 days

Including the DSML infrastructure development:

• With DSMLs: 68 days
• Without DSMLs: 63 days

These numbers shed a light on the fact that DSML technology is a
generative technique: a generator is much harder to develop than
the generated code once. Therefore, the more times you run the
generator, the more the DSML approach pays off. From the
second time on, the DSML and generator development does not
appear as an additional cost. Our intention was to support UI
changes, protocol changes and updates in the forthcoming version
of a P2P application. That is why we support these functions and
not others. As a matter of fact, our figures look better: we
inherited the UI DSML from another project targeting cross
platform UI development. Thus, we can subtract it from the total,
and we have 47 days for the MobTorrent project.
As long as only the models need to be modified, DSMLs increase
the maintainability. If the generator must also be modified, the
necessary effort can arbitrarily increase. We expect that we need
to modify the models for the next versions because of the
generality of the DSMLs, and subtle generator modifications if
the Java ME UI changes. These DSMLs can be reused for any
Java ME mobile development where UI or network support is
required, but the approach is not limited to the Java ME platform,
since it can be extended to other platforms by modifying the code
generators. The proposed case study can be used as well in other
solutions where BitTorrent technology is used for content

distribution. Since our department is involved in developing such
applications on a regular basis, we have a rational expectation to
have the return of our investment in the DSMLs and the
supporting generators as it happened in the case of the UI models.
We tested the generated code, and decided to include it in the first
release of MobTorrent. Thus, MobTorrent is expected to be
publicly available in January 2010 on its website, as the first
mobile P2P client developed with the extensive help of DSMLs.
ACKNOWLEDGMENTS

The found of “Mobile Innovation Centre” has supported, in part,
the activities described in this paper. Infragistics has supported, in
part the activities described in this paper.

4. REFERENCES
[1] P. Ekler, J. K. Nurminen, A. J. Kiss “Experiences of
implementing BitTorrent on Java ME platform”, CCNC’08. 1st
IEEE International Peer-to-Peer for Handheld Devices Workshop,
pp. 1154-1158, 2008, USA
[2] Visual Modeling and Transformation System Website:
http://vmts.aut.bme.hu
[3] BitTorrent specification, Oct. 13, 2008. [Online].
http://wiki.theory.org/BitTorrentSpecification
[4] I. Madari, L. Lengyel, T. Levendovszky “Modeling the
User Interface of Mobile Devices with DSLs”, Proc. of the
Computational Intelligence and Informatics 8th International
Symposium of Hungarian Researchers, pp. 583-589, 2007,
Hungary

http://vmts.aut.bme.hu/�
http://wiki.theory.org/BitTorrentSpecification�

	INTRODUCTION
	Domain-Specific Languages for Mobile P2P Systems
	Java ME Network Communication Support
	Modeling messages
	BitTorrent messages

	Modeling dynamic behavior

	Mobile DSL for User Interface Development

	Conclusions
	REFERENCES

