Evaluating the Use of
Domain-Specific Modeling in Practice

Juha Karna
Polar Electro
Professorintie 5
FI-90440 Kempele, Finland
+358 8 5202 100

Juha.Karna@polar.fi

ABSTRACT

Domain-Specific Modeling (DSM) raises the levelafstraction
beyond coding, making development faster and ea¥i#ren
companies develop their own in-house DSM solutiordemain-
specific modeling languages and code generatorshey often
need to provide evidence that it gives better testilan their
current practice. We describe an approach applieBodar to
evaluate a DSM solution for developing embeddedcgsy The
evaluation approach takes into account the objestaet for the
creation of the DSM solution and collects data e@mtrolled
laboratory studies. The evaluation proved the benef the DSM
solution: an increase of at least 750% in develgueductivity,
and greatly improved quality of the code and degwelent
process.

Categories and Subject Descriptors

D.2.2 [Software Engineerind Design Tools and Techniques
user interfaces, state diagrams D.2.6 [Software Engineering

Programming Environmentsprogrammer workbench, graphical

environments D.3.2 [Programming Language$ Language
Classifications -Specialized application languages, very high-

level languages

General Terms
Design, Economics, Experimentation, Languages.

Keywords
Domain-specific modeling, code generation, emplirgsaluation,
language design

1. INTRODUCTION

Domain-Specific Modeling (DSM) improves on curresaftware
development approaches in two ways. First, it saitbe level of
abstraction beyond programming by specifying thiitgem in

languages that directly uses concepts and rulea fospecific
problem domain. Second, it can generate fully fiomet

production code from these high-level specificagiohe most
effective DSM solutions are usually applied within single
company. The domain can then be narrowed and ttoenation
becomes easier to achieve when addressing thereawprts of
only one company.

When a company moves from coding to DSM the fundaate
guestions are: will the DSM solution provide theided benefits,
and can those benefits be measured? Developments téa

Juha-Pekka Tolvanen
MetaCase
Ylistbnmaentie 31
FI-40500 Jyvaskyla, Finland
+358 14 641 000

jpt@metacase.com

Steven Kelly
MetaCase
Ylistbnmaentie 31
FI-40500 Jyvaskyla, Finland
+358 14 641 000

stevek@metacase.com

companies, however, do not usually have the tinteragources
to conduct extensive analysis, such as buildingstimae system
twice with different development approaches, ugiatpllel teams
[2], evaluating dozens of developers [1], analyZerge numbers
of development tasks [2], or focusing on developnaetivities in

detail with video recording, speaking while workjreg observing
individual developers’ actions [6]. Many good stifo research

methods are simply too expensive and time-consuniorg
practical use in a commercial setting. Some ofdharacteristics
of good empirical research, like a large numbeparticipants to
support generalization of the results, are not yweven possible
since there may only be a handful of developersiqughe

particular language within the company.

The evaluation of the DSM solution may not evembeessary at
all if a small inspection already shows a majofedénce: “why
conduct a comparison when we can see that a taskdhlier took

days can be done with DSM during an afternoon?” The

comparison is not always so straightforward. Theetiment
team may need to present more compelling data tagament to
get resources for finalizing the DSM solution oweésting in

training and tools. The nature of the work may behsthat there
is no clear view on the current development prgcess. it is
scattered among teams. The last situation is tyjfiche DSM

solution reduces duplication and unnecessary wgrkhanging
the roles and division of work among teams or emganizations.

This paper presents the evaluation of a DSM saiuéib Polar.
The evaluation approach combines developers’ op#iwith

guantative measurements of the development prod¥ssfirst

introduce the domain for which our case’s DSM dolutwas
created: Ul applications in sports heart rate noosit4]. We
briefly describe the DSM solution and show a sammbalel to
illustrate the modeling language. Then we moveh® &ctual
evaluation and describe the evaluation criteria &odv the
evaluation was conducted. We report the findingseast a 750%
increase in productivity, with developers also raating the
quality of the code and the quality of the designcpss to be
significantly better with DSM. We conclude by prejitgy some
improvements for evaluating DSM in companies: gatige
metrics stepwise starting from initial prototypesd considering
development processes outside the typical impleatientphase.

2. DOMAIN

The study was conducted at Polar, the leading biratite sports
instruments and heart rate monitoring categoryivelehg state-
of-the-art training technology and solutions. Thiady focused
on heart rate monitors. Figure 1 illustrates thygecal products

in this product category. The features in theselpcts depend on
the product segment and the type of sports theugtdd designed
for, such as running, cycling, fithess and croasing, team
sports or snow sports. Some possible featuresesetiproducts
include:

* Heart rate measurement, analysis and visualization

. Calorie calculation, e.g. current, cumulative, exiture
rate, active time

e Speed: current, average, maximum

. Distance, based on interval, trip, recovery

e Altimeter, vertical speed, altitude alarms, slopsurtter,
graphical trend

e Cycling information, e.g. pedaling rate and cyclpaver

« Barometer, pressure drop alarm, graphical trend

¢ Compass

e Temperature

e Odometer

e Logbooks

« Exercise diaries

e Sensor connectivity (heart rate, speed, cadeneep&GPS)
« Data transfer for web and other applications

« Date and weekday indicator

e Localization with different display texts

e Visual and audible alarm in target zones

Depending on the features there are also varidtiag® starting
from age and weight to bicycle wheel size adjustragial various
exercise settings and plans. These products atse thme with
various time related applications, such as dualetizone,
stopwatch, alarm, countdown timer and lap time.

Figure 1. Sample products

Software development for these devices is consdaiby the
limited resources they contain, such as the amotimhemory,
processor speed and battery life. The actual dresesest — the
domain — reported in this study is the Ul applicat: how the
various capabilities and features are availablgéhto user. The
sample products in Figure 1 give some indicationwbfat Ul
applications can look like as they show the disgiag its content
in different applications. Ul applications, howevedo not focus
on (G)UIl elements alone. They also cover contraVigation, and
connectivity to other devices, such as to sensord ather
applications to transfer the data. The design amgiementation
of the Ul applications is heavily constrained byide capabilities
such as display size, type, and user interactioirals. It is worth
mentioning that as these devices are used in $periditions —
users may have little time and concentration cdipabivhile
exercising — the usability of Ul applications isicial.

3. THE DSM SOLUTION

When implementing the DSM solution Polar decidedous on
Ul applications for two main reasons. First, the apiplications
form the single largest piece of software, typicadtquiring 40—

50% of the development time. Improvements to Ulligppon
development would therefore have the greatest impaoverall
development times. Second, the analysis of the dosteowed
that 70% of Ul applications would be easy to autemaith
DSM, while a further 25% could probably also be diad with
DSM. This left only 5% of the Uls that would befditlt to cover
with DSM, indicating that the domain was understoedll
enough to specify the languages and code generators

Polar set a number of requirements for the DSMtemiu These
included:

1. Fundamentally improve
application development

2. Significantly reduce the manual work needed to copy
data from specifications into code

3. Beindependent of the target environment

the productivity of Ul

4. Be independent of the programming language, but
languages such as C and

support currently used
Assembler

5. Make the introduction of new developers easier

6. Be usable for both experienced and novice devetoper

7. Improve the quality and maintainability of the code

8. Be easy to modify to meet new and changing

requirements, e.g. when resources in the devicegeha

At Polar, one Ul application developer defined tmedeling
language, along with the generators that transfdnmedels made
with that language into the artifacts the compaegded (e.g.
code, configuration files, links to simulators, daowent
generation). The modeling language was supported tmol [5]
that provided the functionality needed to work efffeely with
models, such as reusing models, refactoring anidaieg model
elements, organizing and handling large modelstirasér access
— as well as usual modeling operations like copy paste.

Ul application developers can thus use this modelanguage

and tool to create high-level models, such as Ei@uiThis model
shows a small sample feature for selecting a fexadiink: a

E‘ESenings: Example, 21. helmikuu 2009, 16:02

selection state along with two views (‘Water', Rjilas well as
various navigation paths within the applicationeThagram uses
a small portion of the modeling language: the $ell of modeling
concepts are shown in the toolbar. These concejgmate from

the problem domain and thus the modeling languaiges the
abstraction from coding, while also providing sugipfor reuse

when developing multiple products. The diagram isoa
executable, in that full code can be automaticgéiyerated from
it.

While the application in Figure 2 illustrates theseuof the
language, it is about the smallest possible moldeteal cases
there may be dozens of elements in a diagram, dazfetiagrams
in an application, and dozens of applications fallaproduct. An
element in one diagram can be linked, referrednit eused in
other diagrams, or can be linked to a subdiagraseifyping it in
more detail. Applications too can be reused betwmeducts.

Graph Edit View Types Format Help
& ¥ l-‘b m XD ¢‘ Q0O [j' > | Com Gen
<> B B 8 g == <>- — == — VieC
=+ Commentlist A A
“-First version - 2009-02-21 11:10:14: First version
> Condition
&= Confirmation
E3 Jump State ExampleState_01
~ExampleState_20
‘-ExampleState_30
= Menu State R ——
= Message State view_ExampleState_01 L Examplestate 30 |
=0 Select State T e i = ok e -~
ExampleText.01 Water : 3 Next example =
e View = 3
b kS w
\ | P
i g 0000000000 > g
w " : .
*a view | ate_02
JProperty | Value Rak h ExampleState M,-
Graph type | Settings . ' :
name Example e Milk i) o
Product
L
¥ =5
ExampleState_20
Previous example =
v
< > < >
Active: None Subgraph(s): None Grid: 10@10 [¥] Snap [] Show | @ 100% ~ @
Figure 2. Sample model of a Ul application.
While the whole lifecycle of product development swa In addition to serving Ul application implementatjogenerators

acknowledged and known, the DSM solution focusetecohnical

design and implementation. In other words, the annusers of
the language and generators described in the papéhe current
Ul application developers. This means that the etqeeoutcome
of the generators was the full code of the Ul aggtions, which
earlier had to be written by hand. Other artifatt@n code can
also be generated from the same models, e.g. dotatios,

build scripts and material for review meetings, isgvthe Ul

developers further time.

could also be created to support other roles andegses in the
life cycle: Generators can provide input for tegtiparts of the
user manuals, or rapid prototyping as part of userface and
interaction design, typically carried out before tmplementation
phase. Limited space does not allow us to go imésé details and
the evaluation reported in this paper addressesthel technical
design and implementation tasks.

4. EVALUATING THE DSM SOLUTION

With their evaluation Polar wanted to find out hawell, if at all,
the requirements set for the created DSM solutierewnet. The

evaluation was made by using the DSM solution indpct
development, covering the application design angléementation
phases. Development tasks were carried out usiagnibdeling
language to create models and the generator toupeodhe
application code. The starting point for DSM userimy the
evaluation was a Ul specification, as used in theremt
development process. The evaluation therefore didtest the
possible scenario of using the DSM solution furtbpstream at
the Ul specification phase. Similarly links to attdevelopment
phases, like testing, localization, documentatiowl g@roviding
user manuals, were excluded from the evaluatiadhoagh DSM
could help there too, the current DSM solution fat least the
same output to those phases as earlier manualgcodin

Before the evaluation, the creator of the DSM soituthad
already used it to build example models during ditsation.
During a pilot project he had also implemented ritegority of a
whole product’s Ul applications, including somegkiones.

The evaluation focused on three factors: develg@peductivity,

product quality and the general usability of thelittg. These
factors also formed the major requirements for@i$M solution

as outlined in Section 3. The measures for thestrfa were
selected so that they could be easily understoddeatimated by
the developers. To calculate the return on investme when the
effort to define the language and generators isrézed — the
application development time was recorded in additdo asking
developers opinions on the possible influence tapctivity. The

evaluation did not evaluate if the requirementsidépendency of
target environment (#3) and of generated programr@nguage
(#4) were met as the generators were made onlyrfertarget and
programming language applied in the company. Asstigport of
customizable code generators for different targeisd

programming languages is well attested, these meqpeints were
not further analyzed.

The evaluation was set up to find credible and atgi#e results
with reasonable costs. Rather than developing denvpmduct,
Polar set up a laboratory experiment to develop typ&al Ul
application: the setup for sporting exercises. Erpee from the
pilot project allowed the size and complexity akthapplication to
be chosen such that it was expected to be completitdthe
DSM solution within a few hours. Results of the gbn Ul
application development were then compared to gweldpment
approach currently in use, and to the experienta®mdeling on a
larger scale in the pilot project.

In the laboratory experiment the same Ul applicatiovas
developed separately by 6 developers. The developare
selected so that they all had experience of makingpplications.
They could then compare the DSM approach with theeat
development approach. Four of the developers had twee
years’ experience in Ul application development tither two
had less than one year's experience. Only one efdtvelopers
had previous experience with the modeling tool used

4.1 Evaluation process

The evaluation process had four phases: trainiogducting the
laboratory experiment, evaluating the correctnesshe results
and reporting experiences. Training covered intotida to the
modeling language and to the modeling tool. Simeelanguage
concepts were taken directly from the problem domand hence

already familiar to the developers, training tooldur. In this
time the basic modeling features of the tool wése taught.

The input for the development task in the labosaxperiment
was the specification of the desired exercise sEfugpplication.
The developers were each timed separately as tloeleled the
application. They were asked to finish the taslcasmpletely as
possible, and the completeness and correctnes$® oksult were
checked together with the developer. If there vearers or data
was missing the specification or the modeling lagg was
explained so that the developer could finish thelé@mentation.

Finally, the developers’ experiences and opinioesewcollected
with a questionnaire and with interviews. The resulre
described in the following sections.

4.2 Development time and productivity

The influence on productivity (requirement #1) viaspected in
two ways: by measuring the development time anddiiecting
developers’ opinions after having used both apgresc the
current development method and the DSM approactl fssethe
first time.

Development time for the Ul application varied amothe
developers from 75 minutes to 125 minutes, witheamof 105
minutes. Implementing the same Ul application wvifie current
development approach would take about 960 minuteéshours).
The productivity improvement for the mean time ligid over
900%. Even for the slowest completion time, thedpmtivity
increase is over 750%.

The pilot project had produced Ul applications whos
implementation time with the current developmerprapch was
estimated to have taken 3 weeks (120 hours). Tdeedfithe Ul
application models in the experiment was measwdukt16% of
the total size of the pilot project, based on thenber of states
and views in the models. This gives us a secondtwastimate
the time to code this Ul application, 16% of 12Quis= 1152
minutes. Taking the mean of the two estimates, 1®ftutes,
gives a mean productivity increase over the 6 dgpers of over
1000%.

The influence on productivity was also measuredabking the
developers’ opinions — after all, they now had eig@ee of
using both approaches. As shown in Figure 3, thvene almost
no differences among developers’ opinions: all fbuhe DSM
approach to be significantly faster than currentactice.
Developers’ opinions were asked on a scale frora %, twith 5
being the best. Although the laboratory experindidtnot cover
maintenance (new features and error correctiorskldpers were
also asked if the DSM solution would support maiatece better
than the current approach: 5 developers thought D&MId be
better and one could not say.

Grade

5
4
g B DSM
3 O current approach
, | |
1
0 1 2 3 4 5 6
Responses

Figure 3. Perceived productivity
(scale 1-5, 5=best productivity).

4.3 Quality of process and resulting code

When studying the influence on quality, both praecaad result
were evaluated (requirement #7). The influence lmn process
was evaluated by asking developers’ opinions on @l the

development approaches — current and DSM — predente

errors. As with the results of the productivity segement there
was a clear difference in DSM’s favor, although teswers
varied more (Figure 4). The piloting of the DSM w@n also
showed that the DSM solution’s support for erroevantion
could be further improved. For example, the DSMusoh did
not check that values entered as text met a spewifitax (using
regular expressions in MetaEdit+ [5]), and somkel§ieised string
entries when selection lists would better ensuresctness. Also,
model checking did not inspect all relevant parfs nwodel
completeness and errors. These areas for improvewiéinbe
taken into account in future versions of the DSMiSon, and the
error prevention grades are expected to improverasult.

Grade

5
4

] B DsSM
3 | Ocurrent approach
2
1

; ;
0 1 2 3 4 5 6

Responses

Figure 4. Error prevention

The quality of the outcome was measured by inspgcthe
generated code and comparing it with the manuadiitem code.
Code quality is particularly relevant for embedgedducts like
heart rate monitors. The results show that the rg¢e@ code was

considered to be of better quality: a smaller, btil clear,
difference between the approaches (Figure 5).

Grade
5
4
3

- |
2 W DSM

] O current approach
1

-
0 1 2 3 4 5 6

Responses

Figure 5. Code quality.

4.4 Usability and learning

To assess the usability (requirement #6) developere asked
how usable they found the resulting modeling t@wid how easy
it was to learn and use the modeling language.afssvers were
then compared to the evaluation of the currenteggr. Figure 6
shows the results on usability. Here the opiniohslevelopers
differed the most, but the created DSM tooling (age 4.5) was
still considered clearly better than current tqalerage 2.5).

Grade

5
4
3 B DSM
2 | O current approach
1]
0 1 2 3 4 5 6

Responses

Figure 6. Tool usability.

Since none of the developers was a beginner thiy stid not
directly measure how well new developers couldrngae DSM
approach (requirement #5). Introducing new deve®pest for
the sake of DSM evaluation was not considered jgactnstead,
developers estimated the ease of learning. Thdtseimdicated
that learning the Ul application design and implatagon with
DSM would be much easier than with the current apggh. As
Figure 7 indicates this opinion was quite clear.

Grade
5
4

1 B DSM
3 O current approach
2
1

] !
0 1 2 3 4 5 6
Responses

Figure 7. Ease of learning.

5. RETURN ON INVESTMENT

The benefits of DSM do not come for free: first tm@deling
language and generators, the DSM solution, mustdveloped.
Depending on the tooling used, time may also nedxtallocated
to tool creation and maintenance.

At Polar, creation of the DSM solution took 7.5 kiog days,
covering the development of the modeling languagkthe code
generator. Both of these were implemented usingaBluit+
Workbench [5]. MetaEdit+ automatically provides ratidg tools
based on the modeling language, so no extra tiredateto be
spent on tool building. It is worth noting that tle5 days also
included the creation of example models specifyitlj
applications, along with related code. This wasiratsince the
best way to test a DSM solution under developmemd iapply it
immediately on real examples.

When we compare the time to implement the DSM gmiub the
productivity improvements when creating Ul applicas, it is
evident that the investment would pay back veryckjyj as
illustrated in Figure 8. The pilot project was estted to be about
64% of a whole product, so a whole product wouldtaver 23
days to build with the current development methatth DSM,
after the 7.5 days’ metamodeling, the first whoteduct would
take 2.3 days to build, making DSM over twice & s coding
even for the first product. Each subsequent proeaild take
another 2.3 days, so in the time it took to buité evhole product
by coding, Polar could build several whole prodwetsi DSM.

The time required to build the Ul applications farcomplete
product may seem to become almost trivial. Howenereality,

the problem domain is not completely static. Tharefafter the
pilot project it is essential to evolve the DSMudan further to
maintain the measured benefits. From our expergeiiteother
languages [3], after the first few products theoefto maintain
the DSM solution becomes a small fraction of tineetio develop
each product.

O Creating DSM

solution
V\g th M Product 1
coding i.+Product 2
1 I*Product 3
With

DSM i.'Product 4
i ' T ' ' ‘‘Product5

0 5 10 15 20 25
Days ' Product 6
.+Product 7

Figure 8. Return on investment: comparison.

6. CONCLUDING REMARKS

We described an approach and results to evalugtartecular
DSM solution. The evaluation showed that the DSNitsan for

developing Ul applications for heart rate monit@sapplicable
for its domain. The applicability was inspected hwia pilot

project, laboratory experiment and questionnaire.the pilot
project the majority of a whole product was develpvith the
DSM solution. In the laboratory experiment, the DSblution

was found to be at least 7.5 times and on averfgdnmies as
productive as the current development approach. the

questionnaire, the DSM solution was considered ffer detter
productivity, quality and usability, and be eas@tearn. Figure 9
summarizes the questionnaire findings by compaittiregcurrent
approach and DSM based on the average gradinglai@difrom
developers’ opinions.

Average
B DSM
grade
5 O current approach
4
3 -
2 -
1
0 -
productivity error code usability ease of
prevention quality learning

Figure 9. Comparing approaches based on average ghes.

While the actual evaluation focused on the laboyagxperiment
and questionnaire, the DSM solution was also evatliduring its
construction and in the pilot project, which deysld a large
portion of a whole product. The collection of datauld already
have been started with those initial prototypes, that
development time statistics could be measured feorwider
variety of modeling tasks. A further point of evation would be
to extend the scope of the DSM solution to coviarger part of
the development processes, from requirements
specification steps to build automation and testifigis would
allow the same domain concepts to be applied peelgsvithin

and Ul

the company through the modeling languages. Pattese steps
could also be automated with generators, savinge tiamd

avoiding manual errors when copying data from otep g0

another (requirement #2). The DSM solution evalddtere is
thus not final and complete, but can be extenderementally in

the future. One obvious way is to extend the laggua include
future new Ul concepts. This need for extensibiitgs actually
one requirement (#8) that was not evaluated hereause of the
focus on a single product and its set of Ul coneePine way to
evaluate the extensibility would be to apply theMDSolution to

model older generation products and study if tldeivelopment
could be supported.

Since companies have limited resources to evaluze
approaches in practice, the evaluation approactridesl strikes
a balance between the effort expended on the di@uand the
credibility of the results achieved. It was consade particularly
important to have several developers involved m ¢lialuation,
as this improved the visibility of the DSM solutiamithin the
company and the credibility of its evaluation. Isahelped to
train the developers and offered the possibilitptain feedback
for further improvements. While the results are statistically
significant or generalizable, they are highly reletvand credible
for the company performing the evaluation. The eatbn
approach itself can be used to evaluate other kfd®SM

solutions and in other companies. In that case, miEn
foreseeable changes would be adaptations to th&tigueaire to
ensure it covers the issues most relevant to toatpany’s
development.

7. REFERENCES

[1] Cao, L., Ramesh, B., Rossi, M., Are Domain Specific
Models Easier to Maintain Than UML Models?, IEEE
Software, July/August, 2009

[2] Kieburtz, R. et al., A Software Engineering Expesirhin
Software Component Generation, Proceedings of 18th
International Conference on Software Engineeriray)iB,
IEEE Computer Society Press, 1996

[3] Kelly, S., Tolvanen, J-P., Domain-Specific Modeling
Enabling Full Code Generation, Wiley-IEEE Societgd3,
2008

[4] Karna, J., Using DSM for embedded Ul development (i
Finnish), Master’s thesis, University of Oulu, 2009

[5] MetaCase, MetaEdit+ Workbench 4.5 SR1 User’s Guide,
http://www.metacase.com/support/45/manuals/, 2008

[6] Wijers, G., Modeling Support in Information Systems
Development, Thesis Publishers Amsterdam, 1991

