
Use of a Domain Specific Modeling Language for Realizing
Versatile Dashboards

Ulrich Frank
ulrich.frank@uni-due.de

David Heise
david.heise@uni-due.de

Heiko Kattenstroth
heiko.kattenstroth@uni-due.de

Chair of Information Systems and Enterprise Modeling
University of Duisburg-Essen

Universitaetsstr. 9, 45141 Essen, Germany

ABSTRACT
In order to make performance indicators a useful instrument
to support managerial decision making, there is need to thor-
oughly analyse the business context indicators are used in
as well as their mutual dependencies. For this purpose, it is
recommended to design indicator systems that do not only
include dedicated specifications of indicators, but that ac-
count for relevant relationships. In this paper, a DSML is
proposed that enables the convenient design of consistent in-
dicator systems at type level, which supports various kinds
of analyses, and can serve as conceptual foundation for cor-
responding performance management systems, such as dash-
board systems. Furthermore, indicator systems may also be
used during run-time at the instance level to promote the
distinguished interpretation of particular indicator values.

Keywords
Domain-Specific Modeling Language, Enterprise Modeling,
Performance Management, KPI

1. MOTIVATION
In recent years, the increasing appreciation for performance
indicators has promoted the idea of systems that provide
users with performance related data. These systems, which
we refer to as ’Performance Management Information Sys-
tems’ (PMIS), are supposed to inform the individual user at
a quick glance about the performance of entities such as an
entire firm, specific business units, business processes, re-
sources, and IT services. Inspired by technical metaphors
such as ’cockpit’ or ’dashboard’, PMIS are more and more
considered as a general instrument to foster managerial ac-
tion, especially with respect to supporting, measuring, and
monitoring decisions. The design of a PMIS implies the con-
ception of indicators and systems of interrelated indicators
(’indicator systems’). Indicator systems are usually defined
by (top) management – with no regard of how they could
be represented in an information system.

Current PMIS, such as dashboards, predominantly focus on
the visualization of indicators that are considered to be rel-
evant for certain decision scenarios. For this purpose, dash-
board systems provide generic visualization ’gadgets’, e.g.,
speedometers, traffic lights, or bar charts, that are usually
applied to data originating from databases or files. However,
to design PMIS that effectively support mangerial decision
making, focusing on visualization only is not sufficient [3].
Instead, there is need to analyze what concepts are required
to structure and effectively support a targeted decision.

Moreover, the design of indicator systems is not trivial. Al-
ready the specification of an indicator does not only require
a profound understanding of the corresponding decision sce-
nario and the relations to other indicators, but also recom-
mends taking into account how an indicator affects manage-
rial decision making [16, 19]; if managers regard an indicator
as an end in itself, it will result in opportunistic actions that
are likely not compliant with the objectives of a firm. This
is even more important, because managers and other stake-
holders are incited to predominantly align their behavior
with specific (maybe mandatory) indicators and associated
target values only [12, 17, 20]. If PMIS do not adequately
address these challenges, they are likely to fail their purpose.

In this paper, we present an approach for PMIS that incor-
porates a domain-specific modeling language (DSML) for de-
signing expressive and comprehensible indicator systems as
core element. The DSML, called ScoreML, aims at promot-
ing transparency, especially with regard to counter dysfunc-
tional effects of indicators such as opportunistic behaviour.
Also, indicator systems created with the ScoreML serve as
a conceptual foundation for developing corresponding soft-
ware. In addition to this use at build-time, our approach
makes use of indicator systems at run-time as well, for ex-
ample, as a front end to instance level performance data.

The approach is based on a comprehensive method for en-
terprise modeling and consists of the following components:

• a domain-specific modeling method comprising a lan-
guage for modeling indicator systems – the ScoreML
– and a corresponding process model that guides its ap-
plication;

• a modeling environment implementing a ScoreML ed-
itor that is integrated with further editors for domain-
specific modeling languages that are part of the enter-
prise modeling method;

• a software architecture for PMIS, in which the modeling
environment constitutes the core component and that
allows for integration with existing information systems.

Figure 1 illustrates the components of the PMIS. In this pa-
per, we focus on the modeling language and its utilization
in the context of the envisioned systems architecture. The
other components are briefly discussed. The remainder is
structured as follows: We derive domain-specific require-
ments for PMIS in Section 2. The prospects of our approach
are illustrated in Section 3. The conceptual foundation, i.e.,

Figure 1: Components of the PMIS

meta-model and language architecture of the ScoreML, are
presented in Section 4; the architecture for a model-based
PMIS is envisioned in Section 5. Related work is discussed
in Section 6. The paper closes with an evaluation, conclud-
ing remarks, and an outlook on future work in Section 7.

2. PMIS: REQUIREMENTS
An analysis of the current practice of dealing with indicators
reveals a number of shortcomings. Based on these deficien-
cies, requirements for the domain-specific modeling language
as well as for the envisioned architecture of a PMIS, which
implements the DSML and integrates it with existing tools,
can be derived.

First, currently there is hardly support for systematically
creating and maintaining indicator systems available – indi-
cators or indicator systems that are suggested in pertinent
literature are usually described by informal concepts (e.g.,
[11, 15]). Hence, there is no linguistic support for guiding the
construction of coherent indicator systems. This is a severe
shortcoming: If an indicator system is partially inconsistent
– e.g., includes incomplete indicator descriptions, undocu-
mented dependencies, or even contradicting indicators – it
jeopardizes its very purpose.

Req. 1 – Design of Indicator Systems: The design of
consistent indicator systems should be promoted – if not
enforced.

Second, the interpretation of indicators is crucial for well-
founded decision-making. An adequate use of an indicator
system implies a knowledgeable interpretation of the num-
bers that represent an indicator. Otherwise, a focus on
’meeting the numbers’ (cf. [17]) may result in opportunistic
behaviour, promote misleading conclusions and unfortunate
decisions that – in the worst case – impede the overall en-
terprise performance.

Req. 2 – Business Context: To support the user with an
appropriate interpretation of indicators, the indicator sys-
tems should be enriched with relevant context information
to enhance the interpretation of indicators. This requires
not only offering concepts that represent indicators, but
also allowing for associating them with concepts that rep-
resent the business context (such as business processes).

Third, the utilization of indicator systems affects an enter-
prise and its employees at various – if not all – organizational
levels, e.g., from executives at the strategic level to business
units or IT experts at the operational level. The specific per-
spectives and levels of expertise vary among these groups of
stakeholders. For instance, a process manager will have ex-
pectations that are different from those of an IT manager or
an executive with respect to the types of indicators as well
as the levels of detail and abstraction.

Req. 3 – Stakeholders: Meaningful presentations at dif-
ferent levels of abstraction are required to satisfy the needs
of the multiple groups of prospective users. To foster an
intuitive use of the language, concepts should be provided
that these groups are familiar with.

Fourth, indicators used at different organizational levels are
usually interrelated in that an indicator at a higher organi-
zational level (e.g., strategic level) is often calculated from
indicators at lower organizational levels (e.g., operational
level). If not interrelated directly, indicator types can still
be related indirectly, especially if the objects they meaa-
sure are interrelated. Indicators, for instance, that measure
the performance of business processes might be dependent
on indicators measuring the performance of an information
system underlying these processes, and thus are indirectly
interrelated.

Req. 4 – Cross-Disciplinary Analyses: It should be pos-
sible to analyze interdependencies between indicators as-
sociated with different perspectives. This allows for mak-
ing decisions on a more profound information base and
for considering dependencies that go beyond the indica-
tor system itself. Note that this request corresponds to
the idea of the Balanced ScoreCard [12].

Fifth, supporting decisions requires particular indicator val-
ues, i.e., instance level data. There is a wide range of tools
that aim at preparing and presenting these values, e.g., from
dataware house to monitoring to reporting tools. However,
they usually do not support users in interpretation and as-
sessment of the presented values. Associating indicator val-
ues with the corresponding conceptual level – i.e., with the
indicator system they are instantiated from and that are
integrated with the relevant business context (cf. Req. 2) –
contributes to a more sophisticated appreciation of indicator
values.

Req. 5 – Instance Data: Tools for modeling indicator
systems should be integrated with systems that manage
corresponding instance level data (or integrate a corre-
sponding component). It should be possible to navigate
from the instance level to the conceptual level – and vice
versa.

Sixth, PMIS usually visualize indicators in various ways.
However, the cognitive styles of the involved users differ.
Furthermore, different decision scenarios require different vi-
sualizations [2, 4]. In some cases, already the fact that an
indicator is over (or below) a pre-defined threshold matters.
In other cases, the focus is on performance over time, or
the measured indicator needs to be compared to pre-defined
thresholds.

Req. no. Description of Requirement

Req. 1 Promote design of consistent indicator systems
Req. 2 Offer concepts for business context
Req. 3 Provide abstractions for different stakeholders
Req. 4 Enable cross-disciplinary analyses
Req. 5 Integrate type and instance level
Req. 6 Enable user-specific visualizations

Table 1: Summary of Requirements

Req. 6 – Visualization: Different stakeholders and differ-
ent decision scenarios demand for versatile graphical rep-
resentations of indicators. Therefore, it should be possible
to adapt graphical visualisations to the individual needs of
stakeholders without compromising the semantics of the
represented concepts.

Table 1 summarizes the requirements for a performance man-
agement information system.

3. PROSPECTS OF THE APPROACH
The requirements pose the demand for an approach that
supports the design and utilization of indicator systems in a
systematic and structured manner. Conceptual models seem
to be suitable, since they promise to reduce complexity by
focusing on those aspects that are essential – and abstract
from other. In this regard, the ScoreML promises more
consistent indicator systems and allows for various analy-
ses that – without such a support – a user can hardly per-
form. In the following, we illustrate the envisioned use of
the DSML for designing and utilizing indicator systems at
build-time as well as its potential for being leveraged as a
’dashboard’ during run-time.

3.1 Focus on Build-Time
Users design indicator systems with the ScoreML by choos-
ing indicators they consider relevant and adquate to support
the targeted decision. At first, these indicators will be de-
scribed on a more abstract level that is usually hardly quan-
tifiable, e.g. “competitiveness”. They can then refine these
high-level indicators until they get down to a set of indica-
tors that allow for expressive quantifications. By associating
them to the objects they refer to, i.e., the reference objects
they measure, the indicators are enriched with additional
context information (cf. Req. 2). Once the indicator system
is designed, (yet undiscovered) interdependencies among in-
dicators can be elicited.

Figure 2 exemplifies this procedure for an IT Manager. It
shows an indicator system model (top) and an excerpt of
integrated IT resource/business process models (bottom).
In the indicator system model, a few indicator types (at-
tributes are omitted) for an IT-related indicator system are
displayed. The indicator type efficiency of IT department is
calculated from IT costs and IT operations efficiency (calcu-
lation rule is omitted, too). Some indicator types are asso-
ciated to reference objects (an IT resource and two business
process types). Here, different perspectives on an enterprise
are accounted for: Two indicator types that are not directly
interrelated (IT costs from an IT perspective and average
throughput time from an operations perspective’s indicator

IT costs [€]

IS
 &

 B
us

in
es

s
In

di
ca

to
r S

ys
te

m

Efficiency of IT
department [%]

Average throughput
time [minutes]

< Business Process A >

IT operations
efficiency [%]

OperationsIT

IT

< Business Process B >
uses

Business Process IT Resource:
Desktop PC

Legend

Computed-from Relationship Measures Relationship

IT costs [€] Indicator (Type)

uses

Figure 2: Short example including notation

system) are indirectly related; hence, an IT manager focus-
ing on improving (e.g., reducing) IT costs only might, in the
end, impede the performance of a related business process
type’s throughput time. If a timely execution of the process
is more important than the IT costs of this resource, the ad-
ditional business context information (cf. Ref. 2) and the ca-
pability to navigate through the other models (e.g., business
process or IT resource models; cf.Req. 4) fosters decision-
making (in this case of the IT manager). With regard to the
ScoreML, the IT Manager could establish a specific asso-
ciation type between IT costs and average throughput time
(e.g., ’influences’) that visualizes the potential cause and ef-
fect relationship between these indicator types for further
utilizations of the indicator system.1

3.2 Focus on Run-Time
Besides using models of indicator systems and the related
models of the business context at build-time, they can also
be used at run-time. A simplified example of an application
scenario is illustrated in Figure 3.

A process owner, who is responsible for an online sales pro-
cess, uses his personal dashboard to monitor the perfor-
mance of the process. While the daily revenue corresponds
to his expectations, the average throughput time (time be-
tween ordering and notification of the customer that the
order has been approved) is exceeding its threshold. As a
consequence, the currently running (active) instances of this
process are affected, which are depicted in the lower section
of Figure 3a.

To get a better understanding of the reasons for the dis-
satisfactory performance, he investigates (’drill-down’) the
indicators on which the critical indicator average throughput
time depends, i.e., is calculated from. An example model of
a business process Online Sales along with the required IT
resources is displayed in Figure 3b.

The process payment activity is not functioning properly be-
cause the required part of the ERP-system is not available.
The process owner escalates the problem to the IT staff, e.g.,

1Further, more extensive examples of indicator system mod-
els by means of ScoreML can be found in [7] and at
http://openmodels.org/node/190.

0
50
100
150
200
250
300
350
400
450

09
:5
5

10
:0
0

10
:0
5

10
:1
0

10
:1
5

10
:2
0

10
:2
5

10
:3
0

10
:3
5

10
:4
0

10
:4
5

10
:5
0

10
:5
5

10 8 9 5 10 8

5 3 2 10 5 3
2

1 0
5 10

2

0

10

20

30

CW
28

CW
29

CW
30

CW
31

CW
32

CW
33

Database Server

Bu
si

ne
ss

In
di

ca
to

r
Sy

st
em

Average throughput
time [minutes]

Operations

depends on

In
st

an
ce

s

Daily Renue [$]

Finance

#147‐090810‐10:53:58#145‐090810‐10:49:23

#148‐090810‐10:55:01
#146‐090810‐10:52:11

Online Sales

319800
302088

246000

186960
221400

3.8 4.8 5.8 6.8 7.8

60
30

Bu
si

ne
ss

process ordercheck availability process payment

product in stock

shopping
completed

order processed

ERP System

...

IS

Average throughput
time [minutes]

Operations

In
di

ca
to

r
Sy

st
em

0

10

20

30

40

50

60

70

80

09
:5
5

10
:0
0

10
:0
5

10
:1
0

10
:1
5

10
:2
0

10
:2
5

10
:3
0

10
:3
5

10
:4
0

10
:4
5

10
:5
0

10
:5
5

IS
Bu

si
ne

ss
In

di
ca

to
r

Sy
st

em

Response Time [ms]

Operations

Incidents [#/week]

Operations

Online Sales CRM

Credit Card
Checking
(external)

Application Server

Backup

Network

Service

Firewall

ERP System

depends on

(a

(b

(c

0
10
20
30
40
50
60

0

10

20

30

40

50

Figure 3: Dashboard for an Online Sales Process

through a ticket that refers to the particular business process
and the malfunctioning IS. A member of the IT staff receives
a notification about the incident. Hence, he uses his dash-
board to assess the business impact (e.g., how many business
processes are impacted? What is the loss of revenues to be
expected in case of an outage?) of the incident. An ex-
cerpt of a model of the ERP system is displayed in Figure 3c
along with corresponding indicators. The service credit card
checking is offered by an external partner and securely ac-
cessed through a firewall. Obviously, the connection is not
stable, i.e., has a high response time. Furthermore, the fire-
wall was subject of several severe problems (’incidents’) in
the past weeks. Based on the information available, the user
can decide what to do next, e.g., contact the vendor of the
firewall and demand for a satisfactory solution.

4. MODEL-BASED PMIS
The ScoreML is based on a formal syntax and precise
semantics, which provides two advantages over non-formal
or general purpose approaches: First, it effectively supports
and constrains users to build consistent and syntactically
correct models (cf. Req. 1) as well as it facilitates conve-
nient, intuitive, and secure modeling. Second, a DSML
enables various kinds of analyses and transformations in-
cluding code generation for corresponding software (cf.[13]).
Furthermore, the ScoreML comprises a graphical notation
with specialized, interchangable icons, which fosters com-
munication between stakeholders with different professional
backgrounds (cf.Req. 3).

4.1 Language Architecture
The approach we chose to develop the DSML is to enhance
an existing method for enterprise modeling (EM) – the multi-
perspective enterprise modeling (MEMO)-method [5] – by
concepts and further components for designing and utilis-
ing indicator systems. MEMO consists of an extensible set
of domain-specific modeling languages meant to model dif-
ferent aspects of an enterprise, such as corporate stratetgy
(with the Strategy Modeling Language, SML; [8]), business
processes (Organization Modeling Language, OrgML; [5]),
resources (Resource Modeling Language, ResML; [10]), or
IT resources (IT Modeling Language, ITML; [14]). MEMO
is multi-perspective since it provides different views on var-
ious aspects of an enterprise. The MEMO languages are
integrated in two ways (cf. [6]): First, they are integrated by
a common meta meta model (M3), so that the DSMLs are
based on the same language specification (meta language).
Second, they share common concepts at the meta level (M2),
which enables the integration of different perspectives (and
models) addressed by each DSML (e.g., a meta concept
’business process’ in OrgML and ITML).

Figure 4 illustrates the language architecture of MEMO and
the interrelations between the DSMLs and the correspond-
ing models at type level (M1). Integrating the proposed
DSML with the MEMO framework allows to benefit from a
variety of existing modeling languages. Thereby, it is possi-
ble to associate indicator systems with models of the busi-
ness context (cf.Req. 2) and representations different groups
of stakeholders are familiar with (cf. Req. 3). Furthermore,
the integration of the models provides a foundation to en-
able cross-disciplinary analyses that span various perspec-
tives (cf. Req. 4).

Figure 4: MEMO Language Architecture

4.2 Language Specification: ScoreML
The DSML is specified in a meta model using the Meta
Modeling Language MML (cf. [6]). Figure 5 shows an ex-
cerpt of the ScoreML’s meta model and depicts its main
concepts. The specification of the language faced a number
of challenges. Three important issues are addressed below.

First, ScoreML has to provide the users with a precise
conception of indicators. From a modeling perspective, an
indicator can be an attribute of an object, e.g., ’IT costs’ of
a piece of hardware; an aggregation of attributes of a collec-
tion of objects, e.g., the sum of ’IT costs’ of all IT resources;
or it can represent a snapshot of certain states over time,
e.g., ’Average monthly IT costs’. In order to provide the
user with convenient modeling concepts, we decided to intro-
duce a specific abstraction rather than regarding indicators
as attributes of objects or object collections. Such a concep-
tion includes core attributes and a differentiated conception
of relationships between indicator types. This is realized by
the meta type Indicator that comprises predefined attributes
(e.g., name and description, purpose, potential bias) and a
set of self-reflexive association types (e.g., computed from or
similar to). We further introduced the association type Cus-
tomizedRelationship that enables users to qualify additional
relations between indicators – for instance, an indicator can
have an effect on another indicator (cf. Section 3.1). Addi-
tional customized attributes and non-’1..1’-associations can
be realized by the meta types ’IndicAttributes’ and ’Indi-
cLink’.2

The second decision pertains to the flexibility and adapt-
ability of indicators. The ScoreML has to allow users for
adapting indicators to their individual needs and, further-
more, enrich indicators with additional semantics concern-
ing the context they are used in. The former is addressed by
distinguishing the concept indicator into the meta types In-
dicator and SpecificIndicator : While instances of Indicator
represent generic information about an indicator type, Speci-
ficIndicator allows users to assign this indicator type to spe-
cific reference object types, e.g., an indicator type ’average
throughput time’ assigned to ’business process type A’ and
to ’business process type B’, including different values in the
attributes benchmark, (avg.) value etc. In this context, the
meta type Threshold allows for defining user-specific thresh-

2Note, the meta model at hand is a simplification due to
the given restrictions of this paper. The full version can be
found at http://openmodels.org/node/190.

olds and corresponding notifications for a SpecificIndicator.
This enables users to develop their individual ’performance
dashboard’ that includes indicators, thresholds, correspond-
ing notifications and visualizations, and that fits to their
personal cognitive style (cf. Req. 6). The latter – the need
for additional semantics – is tackled by the meta types Ref-
erenceObject, which is a surrogate for meta types like Busi-
nessProcess, Resource, Product etc., and DecisionScenario,
which enables the mapping of indicator types to scenario
types (e.g., ’assessment of IT resources’). Note, the surro-
gate serves to illustrate the integration of ScoreML with
the other MEMO languages: An indicator can be assigned
to each (reasonable) meta type in one of the other DSMLs,
which is the foundation for performing cross-disciplinary
analyses. The re-use of concepts from other languages is
denoted in the meta model with a rectangle at the con-
cepts headers, including information about the origin (see
the color legend in Figure 5).

Third, it is required to differentiate between types and in-
stances of indicators: An indicator system contains types
of indicators, while indicators that actually measure perfor-
mance are instances. Especially with regard to Req. 5, it
would not be satisfactory to neglect such instance level fea-
tures. For example, a specific indicator type has a ’value’
applying to a business process type (e.g., an average over
all instances of this business process type); instances of this
specific indicator type have a particularValue, describing the
concrete value of a (projection of) process instance(s), e.g.,
at a certain time. To address this challenge, we make use
of the concept ’intrinsic feature’ [6]. An intrinsic feature
– marked in the meta model with an ’i’ printed white on
black – is a type, an attribute or an association defined on
meta level, but that reflects a characteristic we associate
only to the instance level. Hence, although defined in the
meta model this feature is not instantiated at type level but
at instance level.

5. CORRESPONDING ARCHITECTURE
The outlined vision – designing and utilizing indicators in
an versatile dashboard based on a DSML – requires an ar-
chitecture for the PMIS that conforms to the requirements
identified in Section 2.

First, there is need for a modeling environment that sup-
ports the user in designing and maintaining consistent indi-
cator systems and, thus, implements the ScoreML. Figure 6
illustrates the modeling environment in the context of the
PMIS architecture. It comprises a modeling editor for the
ScoreML as well as – with regard to the integration with
an enterprise modeling method – modeling editors for the
other modeling languages.

Although the editors are separate, the underlying meta mod-
els are integrated (cf. Section 4). Thereby, the modeling en-
vironment maintains just a single model (’common model
repository’), and the editors act on a defined set of concepts
– i.e., parts – of this model. Hence, the ’surrogates’ for ref-
erence objects in Fig. 5 are replaced by concrete meta types
of other (MEMO) languages, like meta types for business
processes or resources as indicated in the short example in
Figure 2. This facilitates, e.g., cross-model integrity checks,
since reference objects in the indicator system model refer-

SpecificIndicator
benchmark : Decimal
value : Decimal
availability : String
datasource : String
 particularValue : Decimal
 measuredAt : Date

BusinessProcess

IndicatorCategory
name : String
description : String

Indicator
name : String
description : String
purpose : String
examples : String
presumptions : String
preferredVisualisation : String

ReferenceObject

Resource Product

OrganizationalRole
name : String
responsibility : String

i
i

computed from

1,1

of kind

similar to

us
ed

 in

surrogate for

in charge ofpart of

pa
rt

of

valid for

measures
0,1

0,1

1,1

context SpecificIndicator inv:
self.decisionScenarios->forAll (d |
self.indicator.decisionScenarios->includes: d)

C1
used in

CustomizedRelationship
name : String
relationSpecification : String
presumptions : String 1,1

affecting via

DecisionScenario
name : String
triggeredBy : String
challenge : String
successFactors : String

affected by

1,1

measuresi

notifies

OrgML

ResML and ITML

ProdML

Color legend for concepts reused
from other MEMO languages:

i
Further symbols:

’Intrinsic Feature’

0,*

0,10,*

1,10,*

0,*

0,*

0,*0,*

0,*

0,*

0,*

0,*

0,*

0,*

0,10,*

0,1

0,*

0,*

0,*

1,1

Threshold
thresholdValue : String
action : String
severity : String

i

Figure 5: Excerpt of the ScoreML’s meta model

ence to existing types in the model repository. Besides this
model-based support during build time, the architecture also
encourages using the models during run time. For instance,
the language architecture of MEMO allows for navigating
between different models (cf.Req. 4). Based on associations
between concepts – i.e., instantiations of the associations
between the corresponding meta types – it is possible to
navigate from one model (e.g., an indicator system) to an-
other (e.g., a resource model) by following the association
between an indicator type and its reference object (in this
case a resource type). The different modeling editors and the
depicted language architecture are implemented in a model-
ing environment – called MEMO Center NG.3

Second, the tool requires a specific component for visualizing
instance values of indicators (cf. Req. 5), e.g., by using the
typical visualizations such as bar charts or traffic lights. In
the architecture, it is represented by the ’dashboard’ com-
ponent. This component can be seen as visualization layer
on top of the models (cf. [1, 4]). The proposed architecture
poses one pivotal challenge that has to be addressed: The
retrieval of instance values that are to be visualized on top of
the models requires a connection to the information systems
that manage the instance values.

On the one hand, the dashboard component can revert to
historical data (e.g., for trend analysis) that are often stored
in a data warehouse (DW). This data access requires to en-
rich an indicator type with a reference to the data source
(e.g., tables in the DW) that contains its instance informa-
tion. An example for a such a reference could be

’Select * from Database1.ITCosts

where DateTime between <BeginDate> and <EndDate>’

which retrieves the IT costs of a certain time period.

On the other hand, the instance data can be retrieved from

3More details on MEMO Center NG can be found
in [6] and at http://www.wi-inf.uni-duisburg-
essen.de/fgfrank/memocenter-en

operational information systems such as a Workflow Man-
agement Systems (WfMS), which contain information about
process instances, an Enterprise Resource Planning (ERP)
System, which holds information about the business ob-
jects such as orders, or a Configuration Management Data-
base (CMDB) that is used to manage information of the IT
resources in an enterprise.

Figure 6: Proposed Software Architecture

The approach is complemented by an extensible set of refer-
ence indicator systems (’reference models’) that are recon-
structions of existing indicator systems (e.g., the ’DuPont’
indicator system), and an indicator library that provides def-
initions of typical business performance indicators. Both
can be loaded into the modeling environment as ’indicator

systems building blocks’, which serve as a basis for an en-
terprise specific adaption. More details on the purpose of
reference indicator systems and the indicator library can be
found in [7].

6. RELATED WORK
There are various information systems to support perfor-
mance management. However, these tools often focus on
the presentation of quantitative data, and they do not pro-
vide the user with additional information about indicators or
their semantics (like their business context or effect-relations
to other indicators; cf. Req. 1 & 2). In this regard, data
warehouses store data that is extracted, transformed, and
loaded from operational information systems to enable var-
ious analyses with respect to certain dimensions (like time,
region, product) [9]. Thus, data warehouses provide a valu-
able data source for indicator instances (cf. Fig. 6). Unfor-
tunately, data in data warehouses remain on a low level
of semantics. Few approaches exist that try to augment
data warehouses with additional context information. For
instance, extensions of the EERM [21] or DSMLs [22] exist
that allow for modeling dimensions for multi-dimensional
structure of data and the navigation between these dimen-
sions, e.g., roll-up or drill-down; hence, they complement
our approach with respect to creating and maintaining the
data warehouse underlying the PMIS architecture.

There are some commercial tools available (e.g., ARIS4,
ADOscore5) that also offer concepts for specifying indica-
tors and – to some extent – allow for assigning them to con-
cepts that represent the business context. However, their
language specification is usually not available, and thus the
concepts underlying the tool (i.e., the meta models) have to
be reconstructed. As far as we can assess those tools, only
ADOscore contains a more elaborate conception for indica-
tors with respect to Req. 1. Unfortunately, this software is
not (fully) integrated with the other ADO-modeling tools
(esp., ADONIS), so it still lacks the integration of indicator
systems with the business context.

When we developed the indicator modeling method in the
context of MEMO, we built upon approaches that focus on
indicator modeling (like [18, 23]) and extended those by (1)
additional concepts for indicators (e.g., relations) and (2)
concepts for the business context (cf. [7] for a more extensive
description of these approaches).

7. EVALUATION & FUTURE WORK
In this paper, we outlined the domain-specific modeling lan-
guage ScoreML for designing and utilizing indicator sys-
tems. The language is part of a PMIS that enables using
the DSML not only at build-time, but also as versatile front
end to instance-level performance data at run-time.

The PMIS consists of several components: a method for
indicator modeling, which comprises the DSML and a cor-
responding process model, a modeling environment that im-
plements the modeling languages, and a software architec-
ture to enable the design and realization of versatile dash-
boards. In this paper, we focused on the modeling language

4http://www.ids-scheer.com
5http://www.boc-group.com

and its utilization in the context of the envisioned systems
architecture (the other parts are introduced in [7]). The de-
sign of the language and the corresponding architecture for
PMIS were guided by six requirements:

The concepts of the ScoreML have been reconstructed from
an existing technical language. Hence, the ScoreML pro-
vides its users with an elaborate linguistic structure that
guides them with designing transparent and consistent indi-
cator systems (Req. 1). By embedding the ScoreML into a
method for enterprise modeling that also supports modelling
of, e.g., processes, resources, and goals, the indicator models
can be enriched with information about the relevant business
context (Req. 2). Due to the integration of the ScoreML
with other modelling languages (here: the family of MEMO
languages), different perspectives on indicator systems are
supported, e.g., from IT management and business manage-
ment. This fosters collaboration and communication among
the different stakeholders involved (Req. 3), as well as it fa-
cilitates the analysis of interdependencies between indicators
associated with different perspectives (Req. 4). We further
introduced means in language specification and architecture
to integrate the indicator system models with tools that
manage corresponding instance level data (Req. 5) and that
enable the design and utilization of individual performance
dashboards (Req. 6). Compared to the prevalent practice
of creating indicator systems, the ScoreML is promising
clear advantages. However, further studies are required to
analyze factors such as acceptance and further conditions of
successful use in practice.

In our future work we focus on further refining the language.
This includes research on the technical integration between
the modeling environment and the operational information
systems. Also, we will enhance an existing library of ref-
erence indicator systems. We will also continue our work
on model-driven development of versatile early-warning sys-
tems.

Acknowledgments
This research was partially funded by CA Inc. We thank our
project partners for their support and valuable comments on
preliminary versions of our research results.

8. REFERENCES
[1] S. Buckl, A. M. Ernst, J. Lankes, F. Matthes, C. M.

Schweda, and A. Wittenburg. Generating
Visualizations of Enterprise Architectures using Model
Transformation. Enterprise Modelling and Information
Systems Architectures – An International Journal,
2(2):3–13, 2007.

[2] W. W. Eckerson. Performance Dashboards:
Measuring, Monitoring, and Managing Your Business.
Wiley & Sons, Hoboken, NJ, 10 2005.

[3] S. Few. Dashboard Design: Taking a Metaphor Too
Far. DMReview. com. March, 2005.

[4] S. Few. Information Dashboard Design: The Effective
Visual Communication of Data. O’Reilly, Beijing,
2006.

[5] U. Frank. Multi-Perspective Enterprise Modeling
(MEMO): Conceptual Framework and Modeling
Languages. In Proc. of the 35th Hawaii International

Conference on System Sciences (HICSS-35).
Honolulu, 2002.

[6] U. Frank. The MEMO Meta Modelling Language
(MML) and Language Architecture. ICB-Research
Report 24, Institut für Informatik und
Wirtschaftsinformatik (ICB), University of
Duisburg-Essen, 2008.

[7] U. Frank, D. Heise, H. Kattenstroth, and H. Schauer.
Designing and Utilising Business Indicator Systems
within Enterprise Models – Outline of a Method. In
P. Loos, M. Nüttgens, K. Turowski, and D. Werth,
editors, Modellierung betrieblicher
Informationssysteme (MobIS 2008), volume 141 of
Lecture Notes in Informatics, pages 89–106, 2008.

[8] U. Frank and C. Lange. E-MEMO: a method to
support the development of customized electronic
commerce systems. Inf. Syst. E-Business
Management, 5(2):93–116, 2007.

[9] W. Inmon. Building the data warehouse. John Wiley
& Sons, Inc. New York, NY, USA, 1996.

[10] J. Jung. Entwurf einer Sprache für die Modellierung
von Ressourcen im Kontext der
Geschäftsprozessmodellierung. Logos, Berlin, 2007.

[11] R. Kaplan and D. Norton. Strategy Maps. Harvard
Business School Press, 2003.

[12] R. Kaplan and D. P. Norton. The Balanced Scorecard:
Measures That Drive Performance. Harvard Business
Review, 1992.

[13] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley, New
York, 2008.

[14] L. Kirchner. Eine Methode zur Unterstützung des
IT–Managements im Rahmen der
Unternehmensmodellierung. Logos, Berlin, 2008.

[15] R. L. Lynch and K. F. Cross. Measure Up!: Yardsticks
for Continuous Improvement. Wiley, Blackwell, 1991.

[16] A. D. Neely, M. Gregory, and K. Platts. Performance
measurement system design. a literature review and
research agenda. INT J OPER PROD MAN,
15(4):80–126, 1995.

[17] B. Perrin. Effective Use and Misuse of Performance
Measurement. American Journal of Evaluation,
19(3):367–379, 1998.

[18] A. Pourshahid, P. Chen, D. Amyot, M. Weiss, and
A. Forster. Business Process Monitoring and
Alignment: An Approach Based on the User
Requirements Notation and Business Intelligence
Tools. 10th Workshop of Requirement Engineering.,
pages 80–91, 2007.

[19] V. F. Ridgway. Dysfunctional Consequences of
Performance Measurements. Administrative Science
Quarterly, 1(2):240–247, 1956.

[20] J. M. Rosanas and M. Velilla. The Ethics of
Management Control Systems: Developing Technical
and Moral Values. Journal of Business Ethics,
57(1):83–96, 2005.

[21] C. Sapia, M. Blaschka, G. Höfling, and B. Dinter.
Extending the E/R Model for the Multidimensional
Paradigm. In ER ’98: Proceedings of the Workshops
on Data Warehousing and Data Mining, pages
105–116, London, UK, 1999. Springer-Verlag.

[22] Y. Teiken and S. Floering. A common meta-model for
data analysis based on dsm. In J. Gray, J. Sprinkle,
J.-P. Tolvanen, and M. Rossi, editors, The 8th
OOPSLA workshop on domainspecific modeling
(DSM), 2008.

[23] B. Wetzstein, Z. Ma, and F. Leymann. Towards
measuring key performance indicators of semantic
business processes. In W. Abramowicz and D. Fense,
editors, BIS, volume 7 of LNBIP, pages 227–238,
Innsbruck, Austria, 2008. Springer.

