

A Common Meta-Model for Data Analysis based on DSM R&D Division Health





# 2 Agenda

- **▶** Introduction
- ► Brief overview of our research activities
  - Model Driven MUSTANG
  - **▶ Visual MUSTANG**
- ► A common Meta-Model for data analysis
- **▶** Conclusion



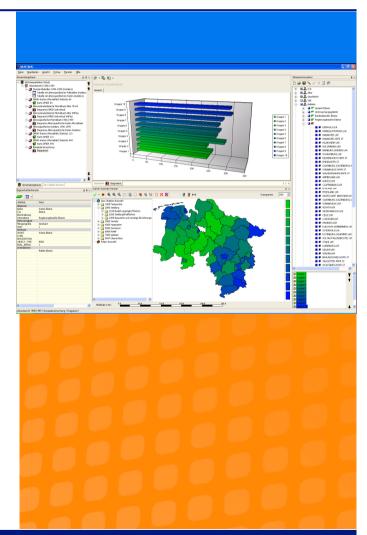
### 3 Brief Overview of our Research Activities

### **MUSTANG Multidimensional Statistical Data Analysis Engine**

#### ▶ Goal

- Data supply and decision support
- Integration of geo data
- Statistical functions

### Approach


- Modelling of multidimensional data
- Integration of domain-specific analytical procedures
- Integration of GIS technologies

#### Application area

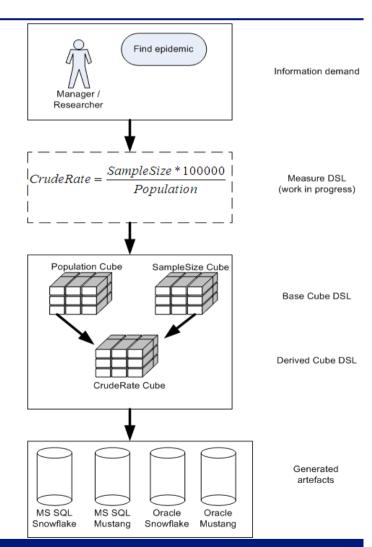
- Cancer- and infection-epidemiology
- Health report

### New fields of application

- Decision support systems for SMEs (small and medium-sized enterprise)
- Demand Driven approach



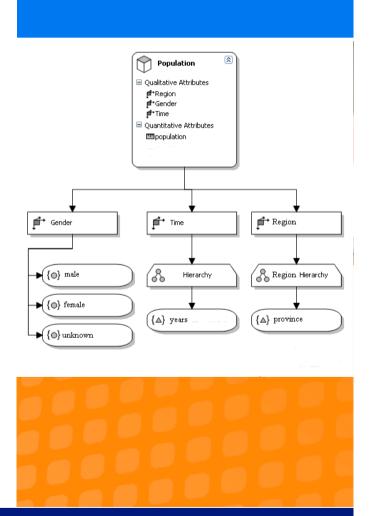



# 4 Current Data Integration in MUSTANG

- Use "standard" ETL-process
- Infrastructure creation:
  - Define multidimensional structure (Dimension and facts)
  - Write SQL script that represents structure
  - Execute and check written SQL
- Data integration:
  - Write programs/scripts to manipulate and integrate given data
  - Write application for data integration
- Challenges:
  - Complex but schematic work
  - Error-prone
  - Data quality
  - Cost extensive for SME



## 5 Model Driven MUSTANG I

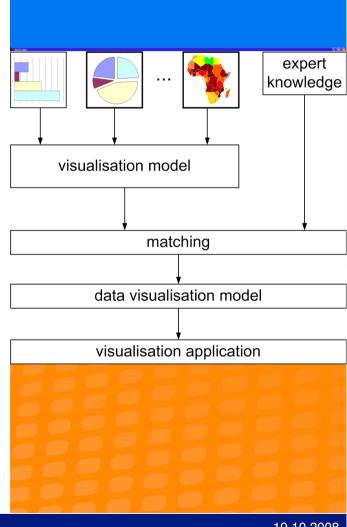

- Goal: Demand driven DWH process based on DSM
- Common approach: Data driven
- Our approach:
  - Integrate Top Down approach
  - More demand driven
- Integrate of different aspects:
  - Data Quality
  - Dimension Modeling
  - Security Aspects





## 6 Model Driven MUSTANG II

- DSM based approach on cube modelling
  - ▶ Models DWH cubes
  - ▶ Based on ADAPT
- ► Infrastructure generation
  - ▶ Different multidimensional view
  - ▶ Different deployment server
- Integration application
  - ▶ Web Application
  - XML WebServices

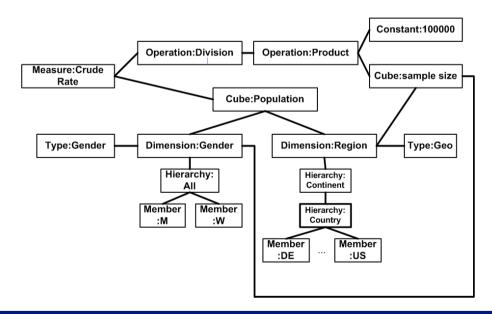


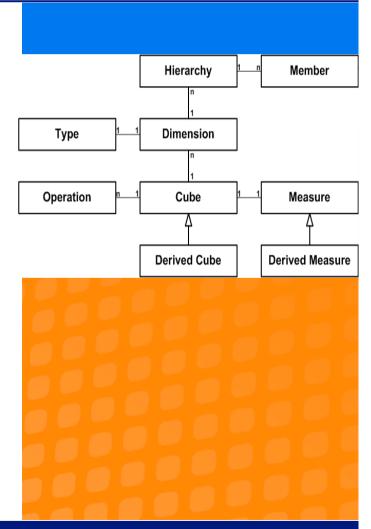



## 7 Visual MUSTANG

#### Semi-Automatic Data Visualization

- ► Task: Choose appropriate Visualization for given data
- Problem:
  - ► Large variety of visualizations applicable
  - Expert with knowledge about analysis need to choose a matching visualization
- ▶ Idea:
  - ▶ Gather expert knowledge
  - ▶ Formalize expert knowledge
  - ► Enrich visualization model with expert knowledge
  - Matching process to match visualization to given set of data
- Challenge:
  - Semantic information about data model



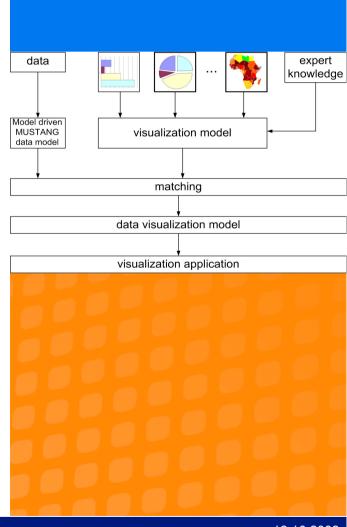




# 8 A Common Meta-Model for Data Analysis

**Semi-Automatic Data Visualization** 

- Idea: Use a Common meta model for both approaches
- ► Why
  - ▶ Meta-model is needed
  - ► Reuse of concepts








# 9 A Common Meta-Model for Data Analysis

#### **Benefits for Visual MUSTANG**

- Knowledge about data
- Presentable characteristics for
  - Dimensions
    - Numbers
    - Types
  - Hierarchies
  - Domains
  - **...**
- Generate appropriate visualizations
- Benefits for MD Mustang
  - Easy to integrate suitable visualizations
  - Higher customer satisfaction





## ▶10 Conclusion

- ► Cost effective realization of demand driven decision support systems
- **▶** Enhanced visualization
- ► Reduced realization time
- ► Higher user satisfaction
- ▶ → Usable for SMEs