
8th DSM Workshop

Undoing Operational Steps of
Domain-Specific Modeling Languages

Tim Hartmann, Daniel A. Sadilek
Humboldt-Universität zu Berlin

Outline
● Introduction

– Development of executable DSMLs
– Animated execution
– Operational semantics

● Undoing operational steps
● Open issues
● Conclusion

2/20

Use Case: DSML Development

Draft

Prototype

Evaluation

Carl Adam Petri

● Metamodel
● Graphical editor
● Operational
 semantics

Language engineer

Iterative
development cycle

Error
3/20

4/20

5/20

2nd Iteration of DSML Development
Example

Prototype

Evaluation

Carl Adam Petri Language engineer

Draft

● Metamodel
● Graphical editor
● Corrected
 operational semantics

Iterative
development cycle

6/20

Operational Semantics
● Interpretable operational semantics

● Transition system:

● Configurations:

● Transition relation:

〈 ,〉

⊆×



7/20

Operational Semantics
● Configurations are represented as models:

● Configurations are defined by a metamodel

● Transition relation can be defined with a
model-to-model transformation

.∈{ , , ...}



8/20

Configuration Metamodel

Petri Net example

9/20

Transition Transformation

protected void run(Net net) {
Transition t = getActivated(net);
if (t != null) {

consume(t.getSrc.get(0));

produce(t.getSnk.get(0));
}

}
}

10/20

Part of Petri Net Java semantics
(erroneous version)

Transition Transformation

protected void run(Net net) {
Transition t = getActivated(net);
if (t != null) {

for (Place p : t.getSrc()) {
consume(p);

}
for (Place p : t.getSnk()) {

produce(p);
}

}
}

11/20

Part of Petri Net Java semantics
(corrected version)

12/20

13/20

14/20

Undoing Operational Steps
● Undo: reverse changes
● Observer for model changes

● Execution step: single unit of work
● Composition of elementary changes

● Change history:
● Shared command stack for editor and execution

15/20

Configuration

ExecutionEditor
1

Configuration

2

perform step

user input

3

undo
step

Command Order

Configuration

X

undo
step

undo
input

16/20

Synchronization

Configuration

ExecutionEditor
1

Configuration

2

user input

perform step

visualize

read values

X

transition
transform

ation

17/20

Open Issues
● Breakpoints between execution steps
● Declarative breakpoint description?

● Users can produce invalid configurations
● How to describe and implement constraints?

● Changing operational semantics can affect
previous configurations

● How to step back to last state that is consistent
with changed semantics?

18/20

Conclusion
● New debug feature for DSML prototyping
● Adapting undo of editors for stepwise model

execution

● Implementation experience: many building
blocks available in EMF

step back

19/20

8th DSM Workshop

Undoing Operational Steps of
Domain-Specific Modeling Languages

Discussion

Tim Hartmann, Daniel A. Sadilek
Humboldt-Universität zu Berlin

20/20

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

