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Operational Semantics
● Interpretable operational semantics

● Transition system:

● Configurations:

● Transition relation:
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Operational Semantics
● Configurations are represented as models:

● Configurations are defined by a metamodel

● Transition relation     can be defined with a 
model-to-model transformation
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Configuration Metamodel

Petri Net example
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Transition Transformation

protected void run(Net net) {
Transition t = getActivated(net);
if (t != null) {

consume(t.getSrc.get(0));

produce(t.getSnk.get(0));
}

}
}
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Part of Petri Net Java semantics
(erroneous version)



Transition Transformation

protected void run(Net net) {
Transition t = getActivated(net);
if (t != null) {

for (Place p : t.getSrc()) {
consume(p);

}
for (Place p : t.getSnk()) {

produce(p);
}

}
}
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Part of Petri Net Java semantics
(corrected version)



12/20



13/20



14/20



Undoing Operational Steps
● Undo: reverse changes
● Observer for model changes

● Execution step: single unit of work
● Composition of elementary changes

● Change history:
● Shared command stack for editor and execution
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Synchronization
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Open Issues
● Breakpoints between execution steps
● Declarative breakpoint description?

● Users can produce invalid configurations
● How to describe and implement constraints?

● Changing operational semantics can affect 
previous configurations

● How to step back to last state that is consistent 
with changed semantics?
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Conclusion
● New debug feature for DSML prototyping
● Adapting undo of editors for stepwise model 

execution

● Implementation experience: many building 
blocks available in EMF

step back
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