
SMML: Software Measurement Modeling Language

Beatriz Mora, Félix García, Francisco Ruiz, Mario Piattini
Alarcos Research Group, Department of Computer Science,

University of Castilla-La Mancha
{Beatriz.Mora | Felix.Garcia | Francisco.Ruiz | Mario.Piattini}@uclm.es

Abstract
Domain Specific Languages (DSLs) and Software Measurement
are at present increasingly important in Software Engineering
research.

Domain Specific Languages (DSLs) and Software Measure-
ment are at present increasingly important in Software Engineer-
ing research
They have, in fact, become important aspects of the software
industry. Domain languages facilitate the software development
process in a specific domain, and measurement can help to ad-
dress certain critical issues in software development and mainte-
nance by facilitating the making of decisions. This work presents
a language which allows users to define software measurement
models based on the Software Measurement Ontology. Syntacti-
cally and semantically correct models in this language conform to
a specific measurement metamodel, which is aligned with the
aforementioned ontology.

Keywords SMML, DSL, Software Measurement

1. Introduction
Software Measurement has become a fundamental aspect of Soft-
ware Engineering [1]. Measurement is proving to be highly effec-
tive in, among other things, the construction of high quality
prediction systems for large-scale data base projects [2]; in the
understanding and improvement of software development and
maintenance projects [3]; in the evaluation and guarantee of sys-
tem quality (by highlighting problematic areas) [4]; and in the
determination of better work practices with the goal of assisting
users and investigators in their work [4]. Moreover, software
measures assist in the evaluation and institutionalization of Soft-
ware Process Improvement in those organizations which develop
them. Software Measurement is, in fact, a key element in initia-
tives such as SW-CMM (Capability Maturity Model for Soft-
ware), ISO/IEC 15504 (SPICE, Software Process Improvement
and Capability dEtermination) and CMMI (Capability Maturity
Model Integration) [5]. The ISO/IEC 90003:2004 standard [6]
also highlights the importance of measurement in managing and
guaranteeing quality. Various methods and standards with which
to carry out measurements in a precise and systematic manner
exist, of which the most representative are:
• Goal Question Metric (GQM): The basic principle of GQM

is that the carrying out of the measurement must always be ori-
ented towards an objective. GQM defines an objective, refines
that objective into questions and defines measures which at-
tempt to answer those questions.

• Practical Software and Systems Measurement (PSM): The
PSM methodology [7] is based upon the experience obtained
from organizations through which the best manner in which to
implement a software measurement programme with guaran-
tees of success is discovered.

• IEEE 1992 (Methodology for Software Quality Measures):
according to the IEEE 1992 standard, software quality can be
considered as the extent to which the software possesses a
clearly defined and desirable combination of quality attributes.

• ISO/IEC 15939: this international standard [8] identifies the
activities and tasks which are necessary to successfully iden-
tify, define, select, apply and improve software measurement
within a general project or within a business measurement
structure.
The availability of a language which allows users to represent

those elements which must be taken into account in the measure-
ment processes might, therefore, be important in decision making
and in process improvement.

It is thus of interest to consider the use of Domain Specific
Languages (DSLs). DSLs appear in the context of Domain Spe-
cific Modeling (DSM). Domain-Specific Modeling raises the
level of abstraction beyond programming by specifying the solu-
tion with the direct use of domain concepts. The final products are
generated from these high-level specifications. This automation is
possible because both the language and generators need to fit the
requirements of only one company and domain. Industrial experi-
ences of DSM consistently show it to be 5-10 times more produc-
tive than current software development practices [9], including
current UML-based implementations of MDA. DSM does to code
what compilers did to assembly language. Besides this vision,
more investigation is needed in order to advance the acceptance
and viability of DSM. Selection of a domain is a first step towards
development of domain-specific languages which implies trade
offs between more general applicability of the DSL and more
specificity [10]. In other words, a trade off between the focus and
size of the language is needed. A language which represents a
larger domain can be weakly specialized to any particular aspect
of the domain. On the contrary, a language which represents a
small domain may have a limited number of target users [11].

These aspects constitute the main interest of this paper, whose
objective is to propose the Software Modeling Measurement Lan-
guage (SMML) which will permit software measurement models
to be created in a simple and intuitive manner. This language has
been done by using the Software Measurement Metamodel
(SMM) [12] (for greater detail see [13]) as the Domain Definition
Metamodel (DDMM). This language belongs to the Software
Measurement Framework (SMF) presented in [14] and also dis-
cussed in Section 3 of this paper. SMF allows stakeholders to

obtain generic measurement through transformations by using two
initial models as a starting point: that of software measurement
and that domain. The task of the SMML is to facilitate the defini-
tion of software measurement models, which is the starting point
of generic software measurement processes.

The remainder of the paper is organized as follows. Section 2
provides an overview of related works and Section 3 briefly de-
scribes SMF. In Section 4 SMML is explained, including the
definition of the abstract syntax, concrete syntax and semantics.
Section 5 illustrates the use of SMML in the context of a case
study. Finally, conclusions and future work are outlined in Sec-
tion 6.

2. Related Work
There are numerous works related to the development of DSLs.
On the one hand we can find publications which present method-
ologies, proposals, tools and patterns with which to facilitate the
development of DSLs [15-20].

In [15] is proposed that the next step towards developing a
technology for software manufacturing is the development of
DSLs.

In order to aid the DSL developer, [16] identifies patterns in
the decision, analysis, design, and implementation phases of DSL
development. These patterns improve and extend earlier work on
DSL design patterns. They also discuss domain analysis tools and
language development systems which may help to speed up DSL
development.

In [17] is presented a partial requirements analysis for DSLs in
general, focusing on relevant stakeholders, the system boundary
(i.e., where DSLs end and general purpose languages start), and a
core set of requirements which are relevant for any DSL. They
then discuss open questions, focusing particularly upon require-
ments refinement, in which more specific domain information
needs to be used. Their discussion is intended to be generic: they
do not distinguish between domain-specific modeling and pro-
gramming languages (except where noted). They therefore refer
to descriptions as the construct produced by using a DSL. Specific
instances of descriptions may be models or programmes.

A study of the literature available on the topic of DSLs as used
for the construction and maintenance of software systems is pre-
sented in [19]. The authors list a selection of 75 key publications
in the area, and provide a summary for each of the papers. More-
over, they discuss terminology, risks and benefits, example do-
main-specific languages, design methodologies, and
implementation techniques.

Numerous works presenting DSL exist: ATL (ATLAS Trans-
formation Language) [21], a QVT-like model transformation lan-
guage [22] and its execution environment which is based on the
Eclipse framework; KM3 (Kernel MetaMetaModel) [23] which is
a DSL for describing metamodels; etc.

With regard to DSLs for Software Measurement, Guerra et al.
[24] present a framework for the creation of domain specific vis-
ual languages (DSVL). In this work a language called SLAM-
MER was developed as a case study. This language is part of the
suite of model management tools that Guerra et al. have defined
using graph grammars and graph transformations, in which the
evaluation and measurement of software artefacts is an essential
element. The goal is to facilitate the task of defining measure-
ments and redesigns for any DSVL.

The Software Metrics Meta-Model [25] developed by the
OMG also exists. The Software Metrics Meta-Model, promotes a
common interchange format which allows interoperability be-
tween existing modernization tools, services and their respective
models. This common interchange format can be applied equally

well to development and maintenance tools, services and models.
In spite of the existence of this Metamodel, we have opted to
define our own language owing to the fact that the Software
Measurement Ontology [26] exits. This ontology permits us to
establish and clarify the elements (concepts and relationships)
involved in the software measurement domain. We have, there-
fore, based the definition of SMML on this ontology. We have
verified that the use of this ontology provides important advan-
tages, particularly given the importance of the solid conceptual
base that the problem domain (ontology) provides with which to
be able to tackle the solution domain (metamodel). The ontologies
are, moreover, potentially useful when developing DSLs during
the analysis phase in which knowkedge capture and knowledge
representation are the key elements [27].

3. Software Measurement Framework
The Software Measurement Framework (SMF) (for greater detail
see [14]) permits us to measure any type of software entity. In this
framework, any software entity in any domain can be measured
with a common Software Measurement metamodel and QVT
transformations. SMF has three fundamental elements: conceptual
architecture, technological aspects and method. These elements
have all been adapted to the MDE paradigm and to MDA tech-
nology, taking advantage of their benefits within the field of soft-
ware measurement. The Software Measurement Framework
(SMF) is the evolution of the FMESP [28], but is adapted to the
MDE paradigm and uses MDA technology.

Figure 1. Elements of the SMF.

In Figure 1 the necessary elements for the adaptation of

FMESP to MDA are presented according to MOF levels.

4. Software Measurement Modeling Language
(SMML)
SMML is a language which permits software measurement mod-
els to be built in a simple and intuitive manner. The SMML de-

velopment requires both domain knowledge and language devel-
opment expertise [16].
Feilkas [29] cites the tasks which must be carried out to make a
DSL usable: Definition of an abstract syntax, Definition of a con-
crete syntax and Definition of semantics. The following subsec-
tion describes how these stages have been used to develop the
Software Measurement Modeling Language (SMML) [30].

4.1 Definition of an abstract syntax (Domain definition
metamodel)

One of the defining entities of a DSL is a Domain Definition
MetaModel (DDMM) [30]. This introduces the basic entities of
the domain and their relationships. This base ontology plays a
central role in the definition of the DSL. Such a DDMM plays the
role of the abstract syntax for a DSL.

In order to develop SMML, a Domain Definition Metamodel
is therefore necessary. The Software Measurement Metamodel
(SMM) exists, which is derived from the Software Measurement
Ontology (SMO). This metamodel is the Domain Definition
Metamodel used to define the abstract syntax of SMML.

The Software Measurement Metamodel includes the packages
which are alignments with the sub-ontologies of SMO (Basic,
Characterization and Objectives, Measures Software, Measure-
ment Approaches and Measurement Action). However, for the
development of the Language, all the packages are of interest,
with the exception of Measurement Action. This has been ex-
cluded as it contains the elements which are relative to measure-
ment but not to the problem domain. Figure 2 shows the structure
of the packages upon which the SMML language is based.

Figure 2. Structure of the packages in the Software Measurement
Metamodel.

As shown in Figure 2, the metamodel is made up of a basic

package which represents the general characteristics of the basic
constructors of the measurement models, and three other packages
(Characterization and Objectives, Measurement Approaches and
Measures), in accordance with the three sub-ontologies of the
SMO. The conceptualization established in the Software Meas-
urement Ontology has been taken into account in the construction
of this metamodel, but the specific constructors have been added
from the point of view of implementation.

All of the elements identified in the ontology (Measure, In-
formation need, Measurable concept, etc.) are potential elements
of the Software Measurement Metamodel on which the SMML

language is based. On the other hand, the relationships which
exist in the ontology do not correspond with the relationships
which are necessary for the language. All of the Measurement
Metamodel packages maintain the original definition of [12] with
the exception of the basic package, which has had to be adapted
to represent the measurement relationships in SMML.

In [13] is given a detailed description of the relationships of
the Software Measurement Metamodel which correspond with the
relationships in the SMO ontology. As [13] shows, all the types of
relationships which are identified in the ontology, and which have
been defined for the metamodel, have been studied. The elements
involved (a source and a target) are indicated for each relation-
ship. In total, 4 types of Measurement Associations have been
identified: association, nonnavigable association, aggregation and
dependency. These relationships have been defined in the Basic
package.

In the following table a selection of relationships in the “soft-
ware measurement characterization and objectives” package are
shown. Note that for each relationships in the SMO we have re-
lated a new Measurement Association (see Table 1).

Table 1. A selection of the SMML elements and icons

Relationships Description Source
Includes

An entity class may in-
clude several other entity
classes. An entity class
may be included in sev-
eral other entity classes,

UML
Aggregation

Defined for

A quality model is de-
fined for a certain entity
class. An entity class may
have several quality mod-
els associated

UML
Dependency

Relates

A Measurable concept
relates one or more at-
tributes. An Attribute is
related with one or more
measurable concepts.

UML
Association

Has

An entity class has one or
more attributes. An at-
tribute can only belong to
one entity class.

UML
nonnavigable
Association

We shall now describe the packages of which the Software Meas-
urement Metamodel is made up (for greater detail see [13]):
• Basic Package: this basic package has been defined in order

to identify and to establish the general features of the construc-
tor necessary to define measurement model. With regard to the
Software Measurement Metamodel defined in [12], 4 types of
Measurement Association have been added: association, non-
navigable association, aggregation and dependency. Figure 3
shows the UML diagram which displays the structure of this
package.

Characterization and
Objectives

Basic

Measurement
Approaches

Measures

Description
name : String
content : String

Measurement Element
name : String

Measurement
Association

name : String

source

target

DependencyAggregation Association Association no
navigable

Figure 3. Basic package.

As can be observed in Figure 3, the general element from
which measurement models are constructed is the “Measurement
Element” constructor, and the general element from which the
relationships of the models are constructed is the “Measurement
Association” constructor. A measurement element has a name and
can be described through elements of the “Description” type,
which give additional information about the measurement ele-
ments, and this facilitates a better understanding of the measure-
ment models developed. The measurement element is used as a
starting point from which to specialize the measure’s fundamental
constructors, obtained from the Software Measurement Ontology
concepts. A Measurement Element relates two measurement ele-
ments, a source element and a target element. The Measurement
Association is used to specialize the relationship constructors
defined for the metamodel: Association, Nonnavigable associa-
tion, Aggregation and Dependency.

Entity ClassAttribute

Quality
Model

Information
Need

Measurable
Concept

Measurement Element

name : String
(from Basic)

Figure 4. Characterization and objectives Package.

• Characterization and objectives Package: this package in-
cludes the constructors required to establish the scope and ob-
jectives of the software measurement process. Figure 4 shows
the UML diagram which displays the structure of this package.

• Software Measures Package: this package includes the con-
structors needed to establish and to clarify the key elements in
the definition of a software measure. Figure 5 shows the UML
diagram which displays the structure of this package.

Attribute
(from Characterization and Objectives)

Measure
scale
unit Of Measurement

Base Measure Derived Measure Indicator

Measurement Element

name : String
(from Basic)

Figure 5. Software Measures Package.

• Measurement Approaches Package: this package includes

the constructors needed to generalize the different ‘ap-
proaches’ used by the three kinds of measures to obtain their
respective measurement results. Figure 6 shows the UML dia-
gram which displays the structure of this package.

Measurement Approach
(from Measurement Action)

Deriv ed Measure
(from Software Measures)

Measurement
Function

Base Measure
(from Software Measures)

Measurement
Method

Decision
Criteria

Analysis Model Measure

scale
unit Of Measurement

(from Software Measures)

Indicator
(from Software Measures)

Information Need
(from Characterization and Objectives)

Measurement Element

name : String
(from Basic)

Figure 6. Measurement Approaches Package.

4.2 Definition of a concrete syntax

In order to make the language usable, a concrete syntax must be
defined. All of the elements are defined in the basic package (see
Figure 3).

Each of these elements of the language must be associated
with a graphical icon which represents the element of the abstract
model. Each language element and relationship has been associ-
ated with a representative icon in the SMML. Icons which are

familiar to software engineers have been used in order to facilitate
its use. For example, the Description element is very similar to
the UML note element, the difference being that the former in-
cludes a ruler icon while the latter does not (as a symbol of meas-
urement) in its top right-hand corner. In a similar manner, the
Entity element is taken from the Entity Class in an E/R Diagram.

Table 2 shows a selection of the language elements. For fur-
ther information, see [13]:

Table 2. A selection of the SMML elements and icons

Information need Entity Base Measure Scale Description

____________ ??

Quality Model Attribute Derived Measure Unit Measurable Concept

Measurable
Concept

Measurement Method Measurement
Function Analysis model Decision Criteria Indicator

4.3 Definition of semantics

The most important aspect of language specification is possibly
the definition of its semantics. An informal description of the
language must be given in a natural language which describes its
domain. The semantics of the language have been defined by
using OCL constraints on the metamodel. These constraints de-
fine the cardinality and the elements involved in the associations.
These constraints are considered too as being part of the abstract
syntax because they are part of the metamodel. An example of
OCL Constraints relating to Measures is shown in Table 3:

Table 3. A selection of SMML OCL Constraints.

OCL Constraint
Element: Nonnavigable Association
self.source.oclIsTypeOf(EntityClass) and
self.target.oclIsTypeOf(Attribute)
Element: Association
self.source.oclIsTypeOf(MeasurableConcept) and
self.target.oclIsTypeOf(Attribute) or
self.source.oclIsTypeOf(DerivedMeasure) and
self.target.oclIsTypeOf(MeasurementFunction) or
self.source.oclIsTypeOf(BaseMeasure) and
self.target.oclIsTypeOf(MeasurementMethod) or
self.source.oclIsTypeOf(Indicator) and
self.target.oclIsTypeOf(AnalysisModel)
Element: Agregation
self.source.oclIsTypeOf(EntityClass) and
self.target.oclIsTypeOf(EntityClass)
Element: Dependency
(self.source.oclIsTypeOf(QualityModel) and
self.target.oclIsTypeOf(EntityClass)) or
(self.source.oclIsTypeOf(QualityModel) and
self.target.oclIsTypeOf(MeasurableConcept)) or
(self.source.oclIsTypeOf(MeasurableConcept) and
self.target.oclIsTypeOf(InformationNeed)) or
(self.source.oclIsTypeOf(AnalysisModel) and
self.target.oclIsTypeOf(DecisionCriteria)) or
(self.source.oclIsTypeOf(Indicator) and
self.target.oclIsTypeOf(InformationNeed)) or
(self.source.oclIsTypeOf(Measure) and
self.target.oclIsTypeOf(Attribute))

As can be observed, the preceding table (Table 3) contains the

OCL constraints which verify whether the Measurement Elements
involved in each Measurement Association (source and target) are
correct.

5. Case Study
To illustrate the benefits of the SMML, consider the following
two case studies: the development and maintenance of database
applications in a software company and the definition of a Data
Quality Model for Web Portals.

The first case of study is detailed in [31]. This paper presents
the results and lessons learned in the application of the Frame-
work for the Modeling and Measurement of Software Processes
(FMESP) [28] in a software company dedicated to the develop-
ment and maintenance of software for information systems.

All the information concerning the problem is defined in each
Software Measurement Package: Characterization and Objectives,
Software Measures and Measurement Approaches. This case will

only show the modeling of the Characterization and Objectives
package.

In this example, we wish to illustrate how a measurement
model would be represented with SMML. Figure 7 shows all the
information that is needed to represent the Characterization and
Objectives Instance. The Measurement Elements used are: Infor-
mation Need, Quality Model, Measurable Concept, and Attribute.
This model has been defined by using diagrams of UML objects.

We shall, furthermore, present how the same example would
be defined with SMML (Figure 8).

Size :
Attribute

Complexity :
Attribute

Length :
Attribute

ISO 9126 :
Quality Model

To Know the Relational Schemes Maintainability :
Information Need

Maintainability :
Measurable Concept

Relational Scheme :
Entity Class

relates
relates

relates

has
has

has

evaluates

defined for

is associated with

Figure 7. Characterization and Objectives Instance with UML.

As will be observed from the following figure, the representa-

tion is easier and more intuitive with the SMML language. More-
over, during the measurement model definition, no issues were
found in the constructors metamodel, and no lacks were detected
in the Language.

____________ ??

Figure 8. Characterization and Objectives Instance with SMML.

The second case study is shown in [32]. This paper shows how

the SMO can be instantiated to define a Data Quality Model for
Web Portals, and can also be used to define a DSL for measuring
software entities.

Figure 9 shows all the information that is needed to represent
the Measurement Model of PDQM. The Measurement Elements
used are: Information Need, Quality Model, Measurable Concept,
Attribute, Base Measure, Derived Measure, Indicator, Measure-
ment Method, measurement Function and Analysis Model.

____________ ??

Figure 9. Measurement Model of PDQM represented with SMML.

In this case study, in spite of having to define numerous Meas-

urement Elements, the representation continues to be easy and
intuitive. What is more, it is easier to identify Measurement Ele-
ments by using this model than by using another General Purpose
Language such as UML
With regard to expected requirements [17], we shall now show
the requirements which are valid in our Language:
• Conform: the language constructs correspond to important

domain concepts.
• Orthogonal: Each language construct is used to represent

exactly one distinct concept (Attribute, Base Measure, etc.) in
the domain.

• Supportable: The SMML language is supported by tools such
as MS/DSL Tools or GMF [33].

• Simple: the DSL is simple in order to express the domain con-
cepts and to support its users.

• Usable: DSL constructs are expressive and easy to understand.

6. Conclusions and Future Work
SMML permits software measurement models to be defined in a
manner which is easy and intuitive for the user. The set of icons
which form a part of the language have been selected in order for
them to be as familiar as possible to Software engineers. These
engineers will thus be able to use the language to define meas-
urement models with ease. The use of general purpose languages
to define domain measurement models is thus avoided. Until this
moment, no graphic representation permitting a better representa-
tion of the model was available.

SSML is a complete language, with a clear syntactic and se-
mantic definition and a solid ontological base. It, moreover, fulfils
the following requirements of a DSL: it is usable, it conforms, and
it is orthogonal, supportable and simple.

SMML allows users to represent measurement models in vari-
ous domains.

This language plays a fundamental role in SMF [14] as it al-
lows users to define the measurement models which are the input
for the software measurement process. The visual representation
of the measurement models mean that SMF is a more usable and
intuitive framework for the user. In other words, it makes the
measurement process more comfortable.

Among related future works, one important work is that of the
extension of SMMM with the Measurement Approach package
hierarchy included in the Software Metrics Meta-Model [25].

We shall, moreover, test the usability of the language through
a series of experiments based on the ISO 9126 standard. Our
study will focus on usability and maintainability. Our idea is to
select a group of modeling experts and to test the usability of this
new language on them in order to define measurement models.

 Finally, we shall apply SMF to real complex environments in
order to obtain further refinements and validation.

Acknowledgments
This work has been partially financed by the following projects:
INGENIO (Junta de Comunidades de Castilla-La Mancha and
Consejería de Educación y Ciencia. PAC08-0154-9262) and ES-
FINGE (Ministerio de Educación y Ciencia, TIN2006-15175-
C05-05).

References
[1] N. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous & Prac-

tical Approach, Second Edition: PWS Publishing Company, 1997.
[2] S. G. MacDonell, M. J. Shepperd, and P. J. Sallis, "Metrics for Data-

base Systems: An Empirical Study," in Proceedings of the 4th Inter-
national Symposium on Software Metrics. IEEE Computer Society,
Albuquerque, 1997.

[3] L. C. Briand, S. Morasca, and V. R. Basili, "An Operational Process
for Goal-Driven Definition of Measures," IEEE Trans. Softw. Eng,
vol. 28, pp. 1106-1125, 2002.

[4] D. Champeaux, Object-oriented Development Process and Metrics:
Prentice- Hall, 1997.

[5] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI: guidelines for
process integration and product improvement, vol. 1: Pearson, 2006.

[6] ISO/IEC, "Software and Systems Engineering - Guidelines for the
application of ISO/IEC 9001:2000 to Computer Software," Interna-
tional Standards Organization, 2004.

[7] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, and F.
Hall, Practical Software Measurement. Objective Information for De-
cision Makers: Addison-Wesley, 2002.

[8] ISO/IEC, "ISO 15939: Software Engineering - Software Measure-
ment Process.," 2002.

[9] "DSM (Domain-Specific Modeling) Forum Main Page", 2007,
http://www.dsmforum.org/.

[10] M. Völter, "A categorization of DSLs", 2006,
http://www.voelterblog.blogspot.com/2006/10/categorization-of-
dsls.html.

[11] N. A. Allen, C. A. Shaffer, and L. T. Watson, "Building modeling
tools that support verification, validation, and testing for the domain
expert," in Proceedings of the 37th conference on Winter simulation,
pp. 419-426, Orlando, Florida, 2005.

[12] F. García, M. Serrano, J. Cruz-Lemus, F. Ruiz, and M. Piattini,
"Managing Software Process Measurement: A Metamodel-Based
Approach," Information Sciences, vol. 177, pp. 2570–2586, 2007.

[13] B. Mora, F. Ruiz, F. Garcia, and M. Piattini, "SMML: Software
Measurement Modeling Language," Department of Computer Sci-
ence. University of Castilla - La Mancha Technical Report UCLM-
TSI-003, 2008.

[14] B. Mora, F. García, F. Ruiz, M. Piattini, A. Boronat, A. Gómez, J. Á.
Carsí, and I. Ramos, "Software Measurement by using QVT Trans-
formation in an MDA context," in Proceedings of the 10th Interna-
tional Conference on Enterprise Information Systems - ICEIS 2008,
vol. DISI, pp. 117-124, Barcelona (Spain), 2008.

[15] S. Cook and D. S. Frankel, "Domain-Specific Modeling and Model
Driven Architecture," MDA Journal, 2004.

[16] M. Mernik, J. Heering, and A. M. Sloane, "When and how to develop
domain-specific languages," ACM Computing Surveys (CSUR), vol.
Volume 37, pp. 316-344, 2005.

[17] D. S. Kolovos, R. F. Paige, T. Kelly, and F. A. C. Polack, "Require-
ments for Domain-Specific Languages," in Proceedings of the First
ECOOP Workshop on Domain-Specific Program Development
(ECOOP'06), Nantes, France, 2006.

[18] V. Pelechano, M. Albert, M. Javier, and C. Carlos, "Building Tools
for Model Driven Development comparing Microsoft DSL Tools and
Eclipse Modeling Plug-ins," in Proceedings of the Desarrollo de
Software Dirigido por Modelos - DSDM'06 (Junto a JISBD'06), Sit-
ges (Barcelona) España, 2006.

[19] A. v. Deursen, P. Klint, and J. Visser, "Domain-Specific Languages:
An Annotated Bibliography," SIGPLAN Notices, vol. 35, pp. 26-36,
2000.

[20] T. Özgür, "Comparison of Microsoft DSL Tools and Eclipse Model-
ing Frameworks for Domain-Specific Modeling In the context of the
Model Driven Development," in School of Engineering. Ronneby,
Sweden: Blekinge Institute of Technology, 2007, pp. 56.

[21] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, "ATL:
a QVT-like Transformation Language," 2006.

[22] OMG, "QVT Standard Specification," 2005.
[23] F. Jouault and J. Bézivin, "KM3: a DSL for Metamodel Specifica-

tion," 2006.
[24] E. Guerra, J. d. Lara, and P. Díaz, "Visual specification of measure-

ments and redesigns for domain specific visual languages," Journal of
Visual Languages and Computing, 2008.

[25] OMG, "Architecture-Driven Modernization (ADM): Software Met-
rics Meta-Model (SMM). OMG Document: dmtf/2007-08-01," Ob-
ject Management Group 01-08-2007 2007.

[26] F. García, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruíz, M. Piattini,
and M. Genero, "Towards a consistent terminology for software
measurement," Information and Software Technology vol. 48 (8), pp.
631-644 2006.

[27] M. Denny, "Ontology building: A survey of editing tools", 2003,
http://www.xml.com/pub/a/2002/11/06/ontologies.html.

[28] F. García, M. Piattini, F. Ruiz, G. Canfora, and C. A. Visaggio,
"FMESP: Framework for the modeling and evaluation of software
processes," Journal of Systems Architecture - Agile Methodologies
for Software Production, vol. 52, pp. 627-639, 2006.

[29] M. Feilkas, "How to represent Models, Languages and Transforma-
tions?," in Proceedings of the Proceedings of th 6th OOPSLA Work-
shop on Domain-Specific Modeling (DSM'06), pp. 204-213, 2006.

[30] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, "Model-based
DSL Frameworks," 2006.

[31] G. Canfora, F. García, F. Ruiz, and C. A. Visaggio, "Applying a
framework for the improvement of software process maturity," Soft-
ware: Practice & Experience, vol. 36, pp. 283-304, 2006.

[32] F. García, F. Ruiz, C. Calero, M. F. Bertoa, A. Vallecillo, B. Mora,
and M. Piattini, "On the Effective Use of Ontologies in Software
Measurement," The Knowledge Engineering Review (in press), vol.
0, pp. 1-24, 2008.

[33] Eclipse, "Eclipse Graphical Modeling Framework (GMF) Main
Page", 2007, http://www.eclipse.org/gmf/.

