Towards Model-Based Testing of Domain-Specific Modelling
Languages

Janne Merilinna

VTT Technical Research Centre of Finland
P.O. Box 1000, 02044 Espoo, Finland

janne.merilinna@vtt.fi

Abstract

Domain-Specific Modelling (DSM) has evidently increased the
productivity and the quality of software development. The wit-
nessed gains are primarily caused by the three corner stones of
DSM, i.e. Domain-Specific Modelling Languages (DSML), code
generators and software frameworks. Although the DSMLs and
the code generators are the primary reason for the gains, little
attention have been paid in making sure that these work cor-
rectly. In this paper, we present a work in progress on the tech-
nique of utilizing the Model-Based-Testing (MBT) as a means
for testing the elements of the DSM basic architecture. We will
discuss how the MBT can be utilized for generating a compre-
hensive test suite of application models, in addition to how the
generated applications can be tested with the MBT. As a combi-
nation, the DSM basic architecture will be tested thoroughly. We
also present how the introduced technique can be realized by
utilizing the tools currently available for the DSM and the MBT.

Categories and Subject Descriptors D.2.5 [Testing and De-
bugging]: Testing tools

General Terms Languages, Verification.
Keywords Metamodel testing

1. Introduction

Domain-Specific Modelling (DSM) is all about raising the level
of abstraction from thinking of the software in a solution-space
into a level concerning the software in a problem-space. Al-
though, during research, there are no or only a few tiny experi-
ments [1] in comparing the benefits of DSM and traditional
software development means, cases conducted in industrial set-
tings constantly show 5-10 times productivity gains compared to
the traditional software development [2,3]. In addition to the
productivity gains, the DSM is expected to have a positive im-
pact on the software quality [3].

Productivity and quality gains are primarily caused by the
three corner stones of DSM, i.e. Domain-Specific Modelling
Languages (DSML), code generators and software frameworks
which when combined are known as the DSM basic architecture
[3]. Instead of modelling the software in solution-space, DSMLs
provide concepts that directly map the concepts found in the
problem domain. These concepts also include, in addition to

Olli-Pekka Puolitaival

VTT Technical Research Centre of Finland VTT Technical Research Centre of Finland
P.O. Box 1100, 90571 Oulu, Finland

olli-pekka.puolitaival@vtt.fi

Juha Péarssinen

P.O. Box 1000, 02044 Espoo, Finland
juha.parssinen@vtt.fi

elements found in the domain, restrictions that guide the applica-
tion developer in developing applications that function correctly.
The responsibility of the code generator is then to transform
these high-level specifications into a source code running on top
of the target platform. By automating the model to source code
transformation, a great deal of error-prone translations that oth-
erwise had to be implemented manually can be omitted.

Testing in a traditional software development is one of the
corner stones in order to raise quality. Regardless of the fact that
it is the DSML and its code generator that are the primary
sources of errors, there are not that many publications that con-
sider testing metamodels and code generators. In [4], Sadilek and
Weillleder present a technique for testing metamodels. These
models are comprised of positive and negative test models that
are utilized for evaluating the correctness of the metamodel. The
positive test models are comprised of models that should be pos-
sible to be modelled by using the metamodel, where the negative
test models are something that shouldn't be possible to model.
Stuermer et al. in [5] present a systematic code generator testing
technique, which is applicable in situations where the source and
target languages are executable. This essentially means the com-
parison of the behaviour of a model that can be simulated for an
executable run in a target environment. In [3], Kelly and Tol-
vanen consider testing DSMLs and code generators as a combi-
nation. They suggest that the language creation should be
considered incremental and test case driven. This means the
development of the language and the code generator in small
incremental steps and testing these by developing some small
applications or by rebuilding applications that have already been
developed. In this way, it is expected that the DSM basic archi-
tecture will be tested thoroughly.

In situations where one can not afford to release the language
and its supporting code generator prior to making sure that they
function correctly, not enough confidence can be attained without
systematic testing. Particularly, in the case where software de-
velopment is iterative and incremental, a question whether the
languages and code generators under continuous change still
function correctly in all cases is raised. In addition, there is an
issue of test suite maintenance when metamodels, code genera-
tors and application models evolve.

Model-based testing (MBT) [6] is a prominent black box soft-
ware testing method that enables the creation of a comprehensive
test suite by modelling the behaviour of a system, where the
models can then be transformed into a test suite by utilizing sev-
eral test design algorithms [7]. This enables automating the gen-
eration of a test suite from models that are easier to keep in
synch with the evolving software system. As the test suites are
based on models, the maintenance effort of the test suite also
decreases.

In this paper, we present a work in progress on applying the
MBT for testing the DSM basic architecture in the context of an


mailto:janne.merilinna@vtt.fi
mailto:olli-pekka.puolitaival@vtt.fi
mailto:juha.parssinen@vtt.fi

iterative and incremental software development process. We also
discuss the topic from the view point of how the testing tech-
nique can be realized by utilizing the existing tools for the MBT
and the DSM.

This paper is structured as follows. First, the basic principles
of MBT are briefly discussed. Second, the technique for testing
the DSM basic architecture is presented. Third, how the tech-
nique can be realized in practice is presented, followed by a dis-
cussion and conclusions. The final remarks close the paper.

2. Model-Based Testing

In the past, regression tests for test automation systems have
been developed manually [8]. When implemented manually,
there is always an extra effort in maintaining the test scripts. So-
called keyword-driven testing [9] has been seen as a prominent
method for solving the test script maintenance issue. However,
keyword-driven testing still requires manual implementation,
therefore the problem is only partially solved. MBT is seen as a
complementary approach for solving the test script maintenance
issue by automating designing and implementation of the test
suite [6].

The MBT is a black box software testing method in which the
test scripts are automatically generated from a model which de-
scribes the behaviour of the system under test (SUT) [10]. The
test scripts are generated from a model by utilizing a set of test
design algorithms [7] that traverse the model and generate test
scripts from that basis.

The MBT process can be divided into three phases, i.e. mod-
elling, test generation and test execution (Figure 1). The model-
ling stands for the modelling of system behaviour, where the test
generator then generates a test suite from these models. The test
executor then conducts the test. Next in this section, the phases
of the MBT are discussed briefly.

Modelling

Test generation

Test suite

Test execution

Figure 1. Model-based testing process.

2.1 Modelling

The functional requirements of the software systems is the pri-
mary source for developing MBT models [6 p.27]. These models
embody the externally visible behaviour of the system. As the
system requirements are also modelled with the MBT, in addi-
tion to realizing the requirements as an implementation, exist

two opinions of the behaviour of the system. The differences
between these can be viewed as errors.

The model is required to have knowledge of the input and
output data of the SUT. The input data is used for executing the
tests and the output data is for validating the tests. The model
can be made from an environmental [11] or design [12] view-
point. The viewpoints are mirror images and are equally suitable
for test generation. The design viewpoint for the MBT is similar
to the modelling viewpoint for implementation purposes, but at a
higher abstraction level. The implementation model can therefore
be reused to model design viewpoint MBT model [6]. The nota-
tion of the models can be graphical, textual or mixed, where the
notation varies from general purpose to domain-specific [10].

2.2 Test Generation

Test generation is based on a model traversal, where several
algorithms, called test design algorithms, are utilized for generat-
ing test cases from the model. There are three main categories of
test design algorithms [13]:

e Requirement-based criteria i.e. the test generator strives to
cover all the marked requirements,

e Coverage criteria, i.e. a test suite is generated on the basis
of covering a certain degree of the model, and

e Walking algorithms, i.e. an algorithm determines how the
model is traversed and the test suite is generated from that
basis.

2.3 Test Execution

A test execution can be performed either offline or online [10].
The offline testing stands for generating tests first and then exe-
cuting the tests separately, whereas with online testing, one step
at a time is generated based on the output of the SUT. The dif-
ference between the test approaches is that in the offline ap-
proach, test generation is separated from test execution and
therefore there is a possibility to utilize algorithms requiring
heavy computation without the test execution suffering. In the
case of online testing, the following test step is generated on the
basis of the previous step output values of the SUT, therefore in
order to have an immediate response to outputs, only algorithms
requiring less computation can be utilized. Online testing also
enables the ability to have infinite test suites and enables han-
dling the non-deterministic behaviour [14] of the SUT.

3.  Technique for Testing the DSM Basic
Architecture by Utilizing Model-Based Testing

Software testing, in the case of DSM, essentially means testing
the primary sources of errors, i.e. testing the metamodel and the
code generator. Although being the primary sources of errors, not
much research have taken place to address these [3, 4, 5].

In the context of iterative and incremental software develop-
ment processes, there is also concern about the test maintenance
because the applications evolve. Additionally, code generators
are under constant evolution, when the underlying platform
evolves. Changes in the metamodel will also have an impact on
the code generators, whereas changes in the metamodel and the
code generators have an impact on the existing applications.
When one of the three aspects evolve, one has to therefore have
tests in order to make sure that the evolved versions function
correctly.



In this paper, it is argued that testing application models,
metamodels and code generators cannot be performed separately
since all of the three levels are intertwined tightly together. This
is because modelling languages consist of syntax and semantics
definitions. The metamodel describes the semantics of the model,
but it cannot have an impact on how the code generator decides
to produce the code. It is therefore the code generator that makes
the ultimate decision for what is generated and how and thus the
metamodel and the code generator, as a combination, define the
semantics in practice. This speaks on behalf of the testing prac-
tice introduced in [3]. However, the presented approach does not
take into account that the code generator and the metamodel
cannot be tested thoroughly by only a couple of example applica-
tions.

MBT can be seen as a prominent method for generating com-
prehensive test suites. This statement is based on the capability
of the test design algorithms to produce a comprehensive test
suite from the MBT models. A model being easier to maintain
compared to a test suite, decreases the maintenance effort [6]. In
addition to lightening maintenance, the test suite will always be
in synch with the MBT model. Next in this section, techniques
for utilizing the MBT in testing the DSM basic architecture is
discussed.

3.1 Generating a Test Case for the DSM Basic Architecture

The MBT can be utilized for testing the applications developed
with the DSM approach. However, testing the applications dif-
fers in the case of DSM, from the traditional MBT. In the tradi-
tional MBT, models and the implementation are derived from
informal software specifications, therefore it is tested whether
the application implementation follows the specifications. In the
DSM approach, the implementation and the MBT are derived
from the same model, thus it cannot be tested whether the appli-
cation is implemented according to the specifications but it is
tested whether the code generator produces a working application
running on the software framework from the application model.
Thus, in the context of DSM, one application model can be seen
as a test case for the whole DSM basic architecture.

The technique for utilizing the MBT in developing a test case
for the DSM basic architecture is illustrated in Figure 2. The left
side of the figure follows the basic code generation process,
whereas the right side follows the MBT process. Considering the
MBT process, the difference between the introduction of the
DSM to the MBT and the traditional MBT is in the source of the
model. Whereas in the traditional MBT the model is derived
from software specifications, in this case the model is derived
from the same model that the DSM utilizes for the code genera-
tion. By doing so, both the code generator and the MBT tool
always have the same conception of the model. Errors are de-
tected if the code generator realizes the conception differently,
thus the MBT model no longer matches the generated application
when executed.

DSM MBT

Application
model

Test
generator

Code generator

Test suite

Test executor

Testing

Application
(SUT)

Figure 2. MBT utilized for testing applications.

3.2 Generating a Test Suite for the DSM Basic
Architecture

One test case does not test the whole DSM basic architecture
thoroughly. By modelling of a set of applications, test coverage
increases. However, the effort to maintain the test suite, i.e. a set
of application models, can become an issue when the DSM basic
architecture evolves.

As in the case of the DSM, all applications of a certain do-
main are based on a metamodel, the test suite for the DSM basic
architecture should also be based on this metamodel. In this pa-
per, it is argued that the MBT can be utilized for generating a
comprehensive test suite of application models for the DSM ba-
sic architecture from a metamodel. This claim is based on the
capability of the MBT to generate a test suite from models, of
which metamodels essentially are. If the test suite is generated
from a metamodel, it will also always be in synch with the evolv-
ing language, thus decreasing the maintenance effort of the test
suite.

An overview of the technique for generating a test suite for
the DSM basic architecture is depicted in Figure 3. It must be
noted that it is the application models that are generated from the
metamodel by the MBT tool. As the MBT tool utilizes the meta-
model for generating the test suite, the metamodel has to be
strictly defined, i.e. the metamodel should be defined in such a
way that only legal applications can be modelled. If not, the
metamodel test suite also includes test cases, i.e. application
models, that are not legal for the target platform. With enough
application models, the errors in the DSM basic architecture can
be noticed.



DSM MBT

Metamodel

Application
generator

ppptication
moc\e\s

Application
models

Test

Code generator
generator

Test suite

Application

(SUT) Test executor

A

Figure 3. Testing the metamodel.

4. Test Suite Generation for the DSM Basic
Architecture — Illustration with the Existing Tool
Support

The technique for generating a comprehensive test suite for the
DSM basic architecture requires an extensive tool support. The
DSM requires a language workbench that provides modelling,
metamodelling and code generation facilities, whereas the MBT
requires an environment that takes, as an input, a model that is
utilized for the test suite generation. Additionally, an extensive
collaboration between the tools is also required. The way the
tools can collaborate has an impact on how the test suite genera-
tion can be realized in practice. Thus, in this section, the test
suite generation technique is illustrated from the view point of
the currently available tool support. First, currently available tool
support for the MBT and the DSM are discussed and two of the
most suitable tools have been chosen for this illustration. Second,
the technique is discussed from the view point of the selected
tools.

4.1 Tools for Domain-Specific Modelling and Model-Based
Testing

Enabling the test suite generation requires a DSM tool providing
facilities for exporting the metamodel into a format required by
the MBT tool. In addition, the DSM tool has to enable importing
models generated by the MBT tool, whereas the MBT tool has to
enable exportation of the test suite, i.e. a set of application mod-
els, to the DSM tool, in addition to providing facilities for gener-
ating the test suite for the imported application models.

4.1.1 Tools for the Model-Based Testing

Tool support for the MBT is extensive [6, p.401-403] [15]. How-
ever, many of the MBT tools are still immature but there also
exists commercial tool vendors providing more mature tools and

support when required. MaTeLo from All4Tec! is for control
oriented MBT. Reactis from Reactive Systems® and T-Vec® pro-
vides tools focused in embedded MBT testing. Test Designer
from Smartesting® and Conformiq Qtronic from Conformiq® are
general-purpose solutions for the MBT. Scrutinizing the MBT
tool evaluation, presented in [13], reveals the Qtronic to be ma-
ture enough and provides open data formats for importing and
exporting the models.
The Qtronic expects the input model to be either in

e asimilar format as the UML state machine diagram extended
with a variant of Java, which is called QML, or

e a textual representation, where the programming language is
QML.

Both of the model types represent a model where the input
and output pairs are defined. In addition, special requirements
can be defined for the inputs and outputs that guide the test de-
sign algorithms in generating the test suite. The test suite genera-
tor can be implemented by utilizing the provided plug-in
interface.

4.1.2 Tools for the Domain-Specific Modelling

The Generic Modeling Environment 6 from Vanderbilt Univer-
sity® and Metaedit+ 4.5 from Metacase’ are probably the most
well-known language workbenches. Microsoft also provides a
DSM tool with Microsoft Visual Studio 2005 SDK®, There are
also open source tools available, such as the Generic Eclipse
Modeling System”.

Metaedit+ is our choice among the tools since, as far as we
know, it is the only language workbench providing code genera-
tor facilities with a language dedicated only for developing code
generators. This enables a rapid development of generators com-
pared to a situation where the code generators are developed by
utilizing the APIs of the modelling tools. In addition, Metaedit+
enables importing models in an XML format.

4.2 Test Suite Generation in Practice

In order for Metaedit+ to export its metamodel to QTronic, a
metamodel has to be modelled with the included GOPPRR mod-
elling language. Exporting the metamodel requires a Metamodel-
to-QML (Met2QML) code generator that takes a metamodel as
an input and generates QML out of it. Now, the Qtronic imports
the generated metamodel. By utilizing the means of the MBT,
the Qtronic traverses the metamodel extensively and stores the
traversed paths as lists of visited concepts. The traversed paths
then form a test suite of application models. The test suite of
application models is then utilized for generating application

! http://www.all4tec.net/

2 http://www.reactive-systems.com/index.msp

3 http://www.t-vec.com/solutions/products.php

4 http://www.smartesting.com/

5 http://www.conformig.com/gtronic.php

6 http://www.isis.vanderbilt.edu/projects/gme/

7 http://www.metacase.com/mwb/

8 http://msdn2.microsoft.com/fr-fr/vstudio/aa718368(en-us).aspx
o http://www.eclipse.org/gmt/gems/


http://www.all4tec.net/
http://www.reactive-systems.com/index.msp
http://www.t-vec.com/solutions/products.php
http://www.smartesting.com/
http://www.conformiq.com/qtronic.php
http://www.isis.vanderbilt.edu/projects/gme/
http://www.metacase.com/mwb/
http://msdn2.microsoft.com/fr-fr/vstudio/aa718368(en-us).aspx
http://www.eclipse.org/gmt/gems/

models in a XML format required by the Metaedit+. The test
suite of application models is then imported by the Metaedit+,
which then generates a source code from the models. As a result,
there is a set of applications ready to be executed and tested.

In order to test the generated applications, the application
model of each application has to be imported back to the Qtronic.
This requires a model-to-QML (Mod2QML) code generator that
generates application models into a format required by the
Qtronic. The Mod2QML now generates application models in a
format required by the Qtronic, which then generates a test suite
for each application. The test suites for applications are then
forwarded to the test executor, which then conducts the test. An
overview of the workflow is depicted in Figure 4.

Metaedit+ Conformiq Qtronic

QWL

Metamodel

Met2QML

Metamodel

Application
generator

XML

Application
models

Code
generator

\

Application
model

Test generator

Mod2QML

Test suite

Y

Test executor

Testing

Application

Figure 4. Overview of the workflow for generating a test suit for
the DSM basic architecture.

5. Discussion

Test automation has decreased the cost of testing, but there is
still an issue of test maintenance. MBT strives to ease the main-
tenance by test suite generation. A technique for generating a test
suite for the DSM basic architecture merely brings another set of
entities that have to be tested. This also causes, in addition to
more things to test, more aspects to maintain. It is a justifiable
question whether this worth for it. Currently, there is no answer
to the question. It is not known how much extra effort it takes to
have this test and what are the benefits of it compared to rather
adhoc DSML testing. In addition to these, a few open questions
exist.

e Can all metamodels be transformed into a format required
by the MBT tools, i.e. are there any special cases where the
metamodel cannot be transformed into a MBT model,

e s it feasible to generate application models from the meta-
model by an approach of MBT,

e are there special cases where the MBT cannot be utilized
for generating a test suite for the applications from the
DSML models, and

e how to automate the whole process.

In order to deal with the open questions, we will continue the
development of 1) a generator for generating a test suite from
DSML maodels for applications and 2) a generator for generating
a test suite of application models from the metamodel.

6. Conclusion

Industrial cases constantly reveal 5-10 productivity gains when
utilizing DSMLs in the software development. Although the
gains witnessed so far are great, a concerned question raised is
how to make sure the languages, i.e. metamodels and code gen-
erators, are correct especially in the cases where the languages
are provided for the masses and for mission critical systems.
Iterative and incremental software development processes bring
an additional question of test suite maintenance. Although testing
is an important means to detect errors in the traditional software
engineering, it is not well known how to test the DSM basic
architecture thoroughly.

Our contribution is a technique for utilizing the MBT for gen-
erating a test suite for the DSM basic architecture. The presented
technique does not strive for the testing of the layers of the DSM
basic architecture in isolation, but to test the whole architecture.
The test technique is based on generating a comprehensive test
suite of application models by utilizing the means provided by
the MBT plus generating test suites for the generated applica-
tions. As a combination, the DSM basic architecture will be
tested thoroughly. The presented technique is also discussed
from the tool support point of view, in order to enable further
discussion on the feasibility of the introduced technique.

References

[1] Merilinna, J. and Parssinen, J., "Comparison between different abstrac-
tion level programming: experiment definitions and initial results", The
7th OOPSLA Workshop on Domain-Specific Modeling, Montreal,
Canada, 2007

[2] Hammond, J. L., "Domain-specific modeling significantly reduces

development time", URL:
http://mww.metacase.com/papers/ece_april2008.pdf [Visited at
18.6.2008]

[3] Kelly, S. and Tolvanen, J-P, “"Domain-Specific Modeling: Enabling full
code generation”, John Wiley & Sons, ISBN 978-0-0470-03666, 427
p., 2008

[4] Sadilek, D. A. and WeiRleder, S., "Testing Metamodels”, Fourth Euro-
pean Conference on Model Driven Architecture Fondations and Appli-
cations, Berlin, Germany, 2008

[5] Stuermer, I., Conrad, M., Doerr, H., and Pepper, P., "Systematic Test-
ing of Model-Based Code Generators", IEEE Trans. Softw., pp. 622-
634, 2007

[6] Utting, M. and Legeard, B., "Practical Model Based Testing: A Tools
Approach”, Morgan Kaufmann 1st ed., ISBN: 978-0123725011 ,
456p., 2006

[7] Utting, M., Pretschner, A. and Legeard, B., "A taxonomy of model-
based testing”, Working papers series. University of Waikato, Depart-
ment of Computer Science, Hamilton, New Zealand, University of
Waitako, 2006

[8] Wahl, N., "An overview of regression testing”, ACM SIGSOFT Soft-
ware Engineering Notes, VVolume 24 Issue 1, ISSN:0163-5948, pp. 69-
73,1999

[9] Mosley, D. and Posey, B., "Just Enough Software Test Automation”,
Yourdon Press. Prentice-Hall, ISBN:0130084689, 300p., 200


http://www.metacase.com/papers/ece_april2008.pdf

[10] Hartman, A., Katara, M. and Olvovsky, S., "Choosing a test modeling
language: A survey", Haifa Verification Conference, pp. 204-218,
2006

[11] Auguston, M., Michael, J. and Shing, M., "Environment Behavior Mod-
els for Scenario Generation and Testing Automation”, ACM SIGSOFT
Software Engineering Notes, Volume 30 Issue 4, Advances in Model-
Based Testing (A-MOST 2005), 2005

[12] Schulz, S., Honkola, J. and Huima, A., "Towards Model-Based Testing
with Architecture Models", Engineering of Computer Based Systems
(ECBS "07), pp. 495-502, 2007

[13] Puolitaival, O.-P., Luo, M. and Kanstren, T., "On the Properties and
Selection of Model-Based Testing tool and Technique"”, 1st Workshop

[14]

[15]

on Model-based Testing in Practice

(MoTiP 2008), Berlin, Germany, 2008

Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N. and Gri-
eskamp, W., "Optimal strategies for testing nondeterministic systems",
ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 55-64, 2004

Hartman, A., "Model Based Test Generation Tools", Agedis Consor-
tium, URL:
http://www.agedis.de/documents/ModelBased TestGenerationTools_cs.
pdf, 2002


http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.

