A Domain-Specific Approach to the Development of
Ontology-Based Document Assessment Assistants

Arturo J. Sanchez-Ruiz
School of Computing — University of North Florida
1 UNF Drive, Jacksonville, FL 32246, USA
+1-904-620-1314

asanchez@unf.edu

ABSTRACT

The second author of this paper incrementally developed, over the
years, a manual process to systematically evaluate English essays
by maintaining an ontology of comments crafted with the goal of
pinpointing the occurrence of mined negative writing patterns
(i.e., those whose use is discouraged), as well as positive ones
(i.e., those whose use is praised). In this paper we report on how
the automation of this process, using domain-specific approaches,
led to the development of an ontology-based assessment assistant
for a specific word processing system. We also report on our
approach, currently underway, to extending this solution to a
product line of ontology-based assessment assistants over a
family of word processing systems and course management
systems.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments —
integrated environments, interactive environments. D.2.11
[Software Engineering]: Software Architectures — domain-
specific architectures, patterns. D.2.13 [Software Engineering]:
Reusable Software — domain engineering, patterns.

General Terms
Management, Design, Human Factors.

Keywords

domain-specific software development; document assessment;
software assistants; ontology-based software; software product
lines.

1. INTRODUCTION

The inception of this project can be traced back to an
informal conversation between the two authors in the summer of
2006, during which the second author related an assessment
method he had developed over the years after having evaluated
hundreds of English essays. In Section 2, the second author
explains how he synthesized his method.

The first author saw the possibility of completely automating
this method by constructing a software assistant which would
enable evaluators to systematically, consistently, and efficiently
assess documents from various domains, not just English essays,
e.g., legal, governmental, medical, technical, et cetera. For
instance, the assistant would enable evaluators to maintain and
refine their knowledge of observed writing patterns used by
authors on their documents, positive and negative alike, a practice

Bart Welling
English Department — University of North Florida
1 UNF Drive, Jacksonville, FL 32246, USA
+1-904-620-1268

bhwellin@unf.edu

which promotes uniformity in assessment, and the sharing of such
knowledge.

This paper reports on three evolution stages associated
with this project. In its first stage the project was a capstone-like
course assignment. In its second stage, the project was a product
developed for a specific word processing system. Finally, in its
third stage, the project—currently underway—is to develop a
product line of ontology-based assessment assistants, over a
family of word processing products and course management
systems typically used in educational institutions, which give end-
users the feeling of working with a unified tool which assists them
in the management, delivery, and assessment of documents with
minimal context switching.

Section 3 shows the domain analysis associated with the
first stage of this project which allowed us to identify the major
components of the system and suggested strategies to
incrementally develop the project.

Section 4 discusses the software architecture associated
with the third stage of this project.

Section 5 discusses implementation details associated with
the development of an assessment assistant which targets the
Microsoft Word product.

Section 6 presents our approach to generalize this specific
solution to a software product line over various word processing
products and course management systems.

Section 7 compares our approach with others with respect
to: the original goals of the assistant as envisioned by the second
author; course management systems; and approaches to build
software product lines.

The paper ends with our conclusions and with references to
the literature we consulted.

2. User’s Story

Shortly after being hired to teach literature at the university
level, the second author realized that much of his time outside the
classroom would be spent grading student essays. Unfortunately,
too many of these essays exhibited exactly the same negative
writing patterns: weak and poorly structured arguments;
ineffective handling of primary evidence; incorrect citation of
outside sources; unclear, clichéd, or overly simplistic sentence
structures and word choices; and major, copious errors in spelling,
grammar, and punctuation. Commenting on these problems in the
traditional way, with pen in hand, proved to be not only labor-
intensive and frustrating but pedagogically inefficient as well.

Crage 1 defines
+
et
Course * gel 1
Enrolled in
1
*
O, B e 1 | Student - Jnghnucks
&
&
Fotmed to
" Leaf
Descripior
Final
Metadata — Text Evaluation
& 5
& Take
| Ontology
Static -7 o
* ' \éﬁ Comment
%
e Annotation
*
- 1
" Student Annotated * <
—* | Paper Paper D
— § Resource Comment
* -
= RzE:Fi:“l;nma]e Feferences Descriptor
= le———
g *
== T T
Quiz Tutorial
Tutorial iz Descriptor Descriptor
Q TIp TIp
*

Figure 1. Domain model as an UML class diagram.

Students with the most serious writing challenges seemed to feel
overwhelmed by the sheer number of comments, and given the
space constraints of handwritten comments it was frequently
possible to highlight only what was wrong with a given feature of
a student’s essay rather than how to fix it—or, better yet, how to
avoid the problem in the future.

Students also complained about what they perceived as
mixed messages from teachers in different academic departments,
and sometimes within the same department, regarding the
university’s criteria for strong student writing. It quickly became
apparent to the second author that students and faculty members
alike lacked a common critical vocabulary for evaluating, and
improving, the quality of written communication at the university.
Moreover, they lacked a method to help formalize, standardize,
streamline, and enrich the process of communicating with each
other about student writing skills. Microsoft Word’s Comment
feature presented some advantages over handwritten comments,
but in the end it still required the user to type the same comments
in paper after paper, and time constraints made it difficult to add
comments of more than a few words in length. More seriously,
Word’s Comment feature was not designed to link comments
together within a pedagogically meaningful and effective
framework of ideas regarding the nature of strong, clear writing.

The second author began developing a set of “Grading
Codes™" that could be inserted directly in students’ essays either
by hand or via a Microsoft Word comment. The codes consist of
short, simple combinations of letters and numbers which are
keyed to detailed comments on virtually every aspect of student
writing. For instance, the code “CL-1-b” corresponds to the
comment “While at one point this sentence would have been
considered debatable (i.e., a claim), it would now be accepted as
true (i.e., a fact) by the majority of scholars, and should thus be
rendered more debatable.” The codes comprise an ontology that
can be expanded every time the second author encounters a
previously unknown error in his students’ essays. Indeed, like the
Linnaean taxonomic hierarchy, the “Grading Codes” have the
potential to be infinitely expandable. However, the greatest
strength of the system is also its greatest weakness. As the list of
“Grading Codes” grows, it takes more and more time for students
to decipher the comments on their papers, and the risk that they
will simply ignore the codes increases.

After discussing the preliminary version of the “Grading
Codes” with the first author, both authors realized that an
automated assessment assistant combining the best features the
“Grading Codes,” and Microsoft Word’s Comment feature would
present the ideal solution to these problems. A software

! A sample of these codes can be downloaded from
http://www.unf.edu/~asanchez/dsm08

application that interoperated with Microsoft Word would enable
the user to add detailed pre-written comments to documents
quickly and exactly where they were needed. Precise and
transparent point values (determined and revised, as needed, by
evaluators) could be assigned to different positive and negative
writing patterns. The application, like the “Grading Codes,”
could be based on an infinitely expandable and flexible ontology,
but students—while familiar with the ontology, and thus with the
standards against which their writing was being evaluated—
would not be distracted by the need to engage in context
switching between a set of codes and the comments they stood
for.

The assessment assistant could also incentivize student
learning by means of hyperlinks to online tutorials and quizzes,
the successful completion of which could translate into a higher
grade on the essay. Not only would such an application foster
clearer communication between teachers and students vis-a-vis
student writing, but it could benefit academic departments and
entire universities by facilitating greater uniformity in grading
practices, by providing a mechanism for sharing customized
grading ontologies, and by enabling academic units to track and
respond more effectively to emerging trends in student writing.
Finally, since users would be able to revise ontologies freely, the
application could potentially streamline and enhance the
document assessment process in any number of fields beyond the
walls of academia.

3. DOMAIN ANALYSIS

The result of our initial domain analysis, using the approach
discussed in the book by Larman [5], is presented in Figure 1 as
an UML diagram [6]. Arrows with a small head represent general
association relationships (labeled); arrows with a larger head
represent "is-a" relationships (i.e., generalization/specialization);
clear diamonds represent aggregation relationships; dark
diamonds represent composition relationships; and boxes
represent relevant domain concepts. Some multiplicities are
shown.

This initial analysis allowed us to identify two major sub-
systems: document management and delivery; and document
assessment. The former interfaces with course management
systems. The latter interfaces with word processing systems and
maintains ontologies created by evaluators. In the next section we
show these components depicted as an architectural diagram.

4. SOFTWARE ARCHITECTURE

Figure 2 presents a view of how the major subsystems
identified by our domain analysis interact, from the perspective of
end-users: document authors and document evaluators. The
acronym ISA stands for Integrated Software Assistant.

We refer to the encircled numbers in Figure 2 to illustrate a
typical use case. Authors prepare their documents using some
word processing system, which we abbreviate as WPS (1).
Authors submit their documents to the evaluators via the course
management system, which we abbreviate as CMS (2). When
evaluators launch the ISA on their computers, it connects to the
CMS and determines whether documents are ready to be
downloaded to their computers (e.g., if the current date is past the
deadline associated with this coursework). In this case, documents

are downloaded, typically as a single archive—e.g., zip, rar, flex,
etc—uncompressed and stored in a well-defined place from
which ISA can retrieve them. At this point ISA is also keeping
track of who submitted what, e.g., in connection with a
coursework. The main user interface metaphor associated with
ISA is that of a “dashboard” which contains icons suggesting
various tasks evaluators can perform (3).

When evaluators are ready to start assessing the documents,
they interact with ISA through the dashboard and additional
dialog boxes, shown as needed. For a single document, the flow
of activities is as follows. ISA opens up the document to be
evaluated in the WPS. As evaluators identify the occurrence of a
writing pattern, they select the text, and then the corresponding
comment from the ontology. Evaluators can use multiple
ontologies and update them in the middle of the evaluation
process at will (4).

Word

Processing
Authors System

Y
. <) @ Course
= =) Management
@ g System
ey O

fo

Quinzes.
?&W I.S.A.
| 2

I Delivery IIManagementI &

Dashboard

Figure 2. Software architecture: end-users’ view.

When evaluators let ISA know they have finished evaluating
all documents, ISA packs them as a whole, and sends them to the
CMS. The final effect of this interoperation between ISA and the
CMS is that documents are stored in pre-defined places in the
CMS from which authors can retrieve them, and document grades
(e.g., in the case of a course) are recorded as per the CMS’s
conventions, which become available for students to browse (5).

Authors connect to the CMS and retrieve their documents.
To them the retriecved WPS document is just the original
submitted document augmented with comments—inserted by ISA
as per the evaluator’s actions—and an extra page at the end with a
summary of the evaluation, which includes the grade associated
with this document, when applicable (6).

Since comments in the evaluated documents can contain
embedded hyperlinks, ISA knows (for instance): if an author
visited a website with a learning instrument (e.g., tutorial, quiz,
and test); the author’s identity; if the author completed the
instrument; and a summary of the author’s attempt (7). This is
recorded by ISA as an assessment activity, which is transferred to

the CMS, and is therefore part of the author’s assessment record,
when applicable (8).

Various important design decisions were derived from the
analysis of this software architecture:

[DD.1] The graphical user interface (GUI) exists in its own
layer.

[DD.2] ISA interacts with the CMS via an interoperation layer.

[DD.3] ISA interacts with the WPS via an interoperation layer.
This implies the solution should not be implemented as
an add-in or plug-in to the WPS.

[DD.4] Ontology maintenance is independent of GUI, CMS,
and WPS.

5. THE ONTOLOGY-BASED
ASSESSMENT ASSISTANT FOR MS WORD

The first developed product is a specialization of the
architecture in Figure 2 such that: WPS is Microsoft’s Word
(MSW), and ISA is just the Assessment component. The next two
sections discuss implementation details associated with the
Ontology Manager and the Interoperation Layer with MSW. The
last section shows some screen shots of the product we developed.

5.1 Ontology Manager

Writing pattern ontologies are implemented as taxonomies.
A taxonomy has a root which names the whole artifact. Under the
root there are nodes which are either internal or terminal. Nodes
are related by the category-subcategory relationship. Internal
nodes must have descendants, which can be either internal or
terminal nodes. Terminal nodes do not have descendants. The
information associated with internal nodes is: the name of the
category and references to descendants. The information
associated with terminal node includes, but is not limited to: the
name of the final category, the comment associated with the
pattern, its weight, and URL’s to external instructional resources.

From the perspective of the user, taxonomies can be directly
manipulated via operations on categories which include: insert,
delete, edit, and move. They can also be imported and exported.
Taxonomies can be in two states: design, and publish. The first
mode characterizes a work in progress. The second mode
characterizes a finished product. Taxonomies can be transitioned
from one mode to the other. They are presented to the user as a
hierarchical structure with nodes that can be expanded,
contracted, and moved.

Internally, taxonomies are represented as XML files with an
associated schema. Imported taxonomies are checked against such
a schema. Finally, schema well-formedness is the criterion used to
determine whether taxonomies can be transitioned from design to
publish mode.

5.2 Interoperation Layer with MS Word
Visual Studio Tools for Office (VSTO), currently in its 2005
version?, enhances the popular MS Integrated Development

2 Visit the VSTO Developer Portal at
http://msdn.microsoft.com/en-us/office/aa905533.aspx

Environment (IDE), Visual Studio®, by enabling the seamless run-
time interoperation between MS Office* applications and
solutions built with the IDE.

The so-called Primary Interop Assemblies (PIA) act as the
interoperation layer between our Assessment Assistant and the
MS Word application. The PIA exposes the MS Word application
itself and its run-time object model through .NET managed code.
We decided (c.f. Design Decision [DD.3] on Section 4) to
implement the Assessment Assistant as a separate application
from MS Word, which interoperates with it via the PIA. The book
by Carter and Lippert, as well as the book by Bruney discuss
other viable programming models [1, 2]. The existence of the PIA
for MS Word implied we did not need to implement the
interoperation layer ourselves.

5.3 Screen Shots of our Assessment Assistant

We built a self-contained installer that checks whether the
host computer has the correct versions of MS Word (2003
Professional or newer), .NET framework (version 1.1 and newer),
and the PIA which correspond to these two components. The
installer sets up specific folders where design/publish ontologies
are kept.

Figure 3 shows the first interaction dialog the user sees when
the application is launched. Figure 4 shows the options made
available to the user after s/he has chosen “Manage Taxonomy”.

d Assessment Assistant [2][B][X]

@ Manage Taxonomy

O Assess Papers

Ok Cancel

Figure 3. Initial options.

| /T, E— Ex

() Design Taxonomy
© Transition

© Delete Taranomy
©) Import Taxonomy

) Export Taxonomy

Lol (o]

K Cancel

UNF | gt

Figure 4. Manage Taxonomy options.

Figure 5 shows what the user sees after s/he has selected to
continue working on an existing ontology in design mode, and has
chosen the desired one. Notice the nodes can be expanded and
contracted. Also notice the various options available.

3 Visit the Visual Studio Developer Center at
http://msdn.microsoft.com/en-us/vstudio/default.aspx

* Visit the MS Developer Center at http://msdn.microsoft.com/en-
us/office/default.aspx?PHPSESSID=388057524368e3818e5a18
783b5bd3fc

/ AEH
= Weling's Essay Grading Taxonamy -
= PHYSICAL STANDARDS aND "VISU

& 12-poirt font should have been

© Add Category

This font is much laiger than Times
Always double-space
Na eslia spaces between paragra)
The margin are excessively nide
Dan't justify the right margin - lzave
Save a tivel - include pourWorks
TITLE (TI)
GENRE (GE)
= INTRODUCTION (IM)
BODY PARAGRAPHS (BF)
CONCLUSION [C0)

) Add Final Category

O Edit Category

) Delste Category

O save CLAIMS [CL)
REASONS (RE]
- WARRANTS [Wa)
@ % EVIDENCE [EV)
0K Cancel ACKNOWLEDGMENT AND RESPON
STYIFIST1 o
< kS

.
£y

UNF | S5ttt

Figure 5. Working with an ontology in design mode.

When the user is ready to start assessing a document, s’he
must first select the ontologies that will be used. After that, if the
user chooses the “Assess Paper” option, then s/he can open as
many documents as needed, and the ontologies dialog box
remains open (see Figure 6, which shows two open ontologies).

Le] (=]

oK Cancel

.
Y

- Cotigeat Campuaing
ety i
UNF | e

Figure 6. Ontologies to be used by the evaluator.

The user can switch back and forth among open documents,
and close them at will. Only one document has the focus at any
moment. Suppose the evaluator is now assessing the document
with the focus, and s/he identifies a pattern. The user then selects
the portion of the text with the mouse (left-click-hold-and-drag),
goes to the ontologies dialog box to locate the appropriate pattern,
clicks on it, and then the assistant automatically inserts a
comment which contains all the information associated with the
chosen terminal node in the ontology (see Figure 7).

2 IRE[E D 0 -6 st P o
ion B -w aAY-l g Al

o sufE

10

oo 7 et ¥
TemplateHelp g
o e
e een s Rfdzm;banﬂwle;\lh/
e

ey a2

l. DYV IYIYY JE VY

Figure 7. Pattern from the ontology inserted by the assistant.
When the user decides s/he has finished assessing the paper,

the assistant generates a summary page and appends it to the
document (See Figure 8). The user can revisit any evaluated paper

at any moment if, for instance, s/he decides to change some of the
comments and/or the associated weights.

|3

e VDI Pgrgpey

-g‘-‘|-‘-1--‘I---Z--‘I‘--3-‘-I‘-‘4-‘-|‘-‘

Summary Page:

Your points earned: a0
Qut of a kotal of: 100
Your grade is: 0%

Summary Camments: wery good job!

___“__H“’ Ry e at Y N SV Y

Figure 8. Summary page generated by the assistant.

6. TOWARDS A SOFTWARE PRODUCT
LINE OF ONTOLOGY-BASED
ASSISTANTS

A software product line is defined by Clements and Northrop
as “a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from
a common set of core assets in a prescribed way” [3].

From the perspective of the user, the common core of our
product line is constituted, on the one hand, by a consistent user
interface, hiding implementation details associated with desired
features; and on the other hand, by the management of ontologies
used in the assessment process. This common core is
implemented, fundamentally, through a language of gestures—
e.g., highlighting, pointing-and-clicking, clicking-and-dragging,
et cetera—which allows users to directly manipulate ontologies
and documents.

The variability of this product line can be projected onto two
orthogonal axes, namely: that which characterizes the kind of
word processor used by authors to compose their documents, and
that which characterizes the course management system that
frames the whole compose-assess-return document lifecycle.

We are therefore interested in assembling a family of
ontology-based document assessment assistants as instances of
the architecture discussed in Section 4. The targeted word
processing systems (WPS) are OpenOffice and Acrobat. The
targeted course management systems (CMS) are Blackboard®, and
Moodle®.

To build the WPS interoperation layer (c.f. Section 4), we
follow a reverse engineering approach. Namely, we first extract
the calls to the Microsoft Office PIA (c.f. Section 5.2) and then
build implementations of these calls against the Application

> Visit the Blackboard Developer Center at
http://www.blackboard.com/extend/dev/

8 Visit the Moodle portal at http:/moodle.org/

Programming Interfaces (API) for OpenOffice’ and Acrobat®. To
build the CMS interoperation layer we follow a forward approach,
namely we first define the appropriate interfaces and then
implement them against the API’s for the corresponding systems.
This is because the operations associated with this layer are easy
to understand as extensions of input/output services.

7. RELATED WORK

From the perspective of the Assessment Assistant’s original
goals as envisioned by the second author, we compared our
approach with products from different educational technology
companies to compile the information presented in a table (not
shown here). We spoke directly with representatives from
Vantage Learning (product: IntelliMetric “intelligent” Automated
Essay Scoring System), Pearson Knowledge Technologies
(product: Knowledge Analysis Technologies—KAT—Engine),
and Idea Works (product: SAGrader). We also contacted
Educational Testing Services (products: Criterion, E-Rater,
Critique, and C-Rater), but they did not respond to our requests
for more information.

The rubric used to compose the table is the following: (a) the
tool automatically evaluates a document based on such criteria as
strength of argument, structure, style, grammar, and/or spelling;
(b) comments are added directly to the document; (c) evaluator’s
comments are distinguished from writer’s text using a word
processing system’s comment tool (when available); (d) the tool
fully interoperates with a word processing system; (¢) the tool is
potentially or currently applicable in a wide range of academic
disciplines and business environments; (f) individual comments
can be customized by the evaluator without outside help; (g)
comments can be inserted quickly in documents; (h) comments
are part of a larger ontology; (i) users can create a new ontology
without outside help; (j) users can automatically import an
ontology created by other users; (k) preexisting ontologies can be
customized by the user; (1) an ontology can be exported to other
users; (m) the tool employs an assessment metaphor that shows
users how many texts have been evaluated, and in general it
shows the progress of the evaluation process for a large set of
documents; (n) the tool assigns point values to different patterns
in the document; (o) the tool provides writers with an assessment
page and/or grade; (p) the tool provides evaluators with a
statistical analysis of assessed texts; (q) the tool implements its
own unique Graphical User Interface (GUI); (r) the tool
accommodates multiple languages; (s) the tool attempts to
eliminate human-introduced errors, biases, and inconsistencies;
and (t) the tool flags “problem essays,” i.e., essays that cannot be
scored by computer.

Our Assessment Assistant is fundamentally different from
the programs produced by Vantage Learning, Pearson Knowledge
Technologies, Idea Works, and Educational Testing Services in
that it (1) does not attempt to evaluate the content of texts
automatically; (2) uses word processing system’s comments

7 Visit the OpenOffice Developer’s Wiki at
http://wiki.services.openoffice.org/wiki/Main_Page#Getting_sta
rted_with_ OOo_development

8 Visit the Adobe Developer Connection at
http://www.adobe.com/devnet/acrobat/

feature to directly add customizable comments to texts produced
in said word processing system; (3) allows users to create, import,
export, and customize ontologies without outside help; (4)
employs an assessment metaphor that shows users how many
texts have been evaluated; (5) does not attempt to eliminate
human-introduced errors, biases, and inconsistencies; and (6) does
not attempt to flag “problem essays,” i.e., essays that cannot be
scored by computer.

Notice that criteria (a), (s), and (t) require tools to deal with
the semantics of submitted text, which our tool does not attempt
to deal with. Our Assessment Assistant is a true “assistive tool” in
the sense that it enables evaluators to perform their task faster in a
consistent and systematic way. Our tool does not attempt to usurp
evaluators and their expertise in the identification of used patterns
and anti-patterns, an approach which has been the target of heated
debates among members of the educational community.

From the perspective of features provided to end-users by
course management systems, Blackboard (Bb) and Moodle do
offer functionality that supports the management and delivery of
document-centric coursework. However, the use of this
functionality imposes an artificial context-switching on its users.
It also potentially imposes the need to manually perform
mechanical chores such as connecting to Bb/Moodle in order to
download coursework, disconnect, do the preparation needed to
start grading, grade, and finally connect again to upload the
papers and also to upload the grades. With ISA, the user only
needs to deal with one friendly and intuitive application for the
assessment, management and delivery of the coursework in
cooperation with the same tools students used to create and
deliver it. The whole roundtrip, which starts with the submission
of a paper and ends with a student receiving the graded paper and
potentially taking advantage of additional learning instruments
associated with the submitted paper, can be done with virtually no
context-switching.

Bb also supports the development of assessment instruments
such as tests and quizzes with the corresponding tracking of
attempts made by students, by itself or by cooperating with other
tools such as “Respondus”g. However, it currently does not
support the tracking of attempts initiated from outside Bb. In this
case ISA acts as a middleware between the users (teachers and
students) and Bb as a provider of assessment instruments,
therefore minimizing the context-switching for these users. This
means users will continue using the features Bb provides and ISA
will act as the mediator that helps users take advantage of these
resources with minimal context-switching. In conclusion, the
intention of this project is not to supplant existing WPS or CMS,
but to build a software assistant that cooperates with them to offer
end-users an extended, integrated, more powerful, friendlier, more
efficient, and more effective tool.

We identify our approach to building a software product line
of ontology-based assessment assistants, currently under
development, with the ‘“Product Parts” and “Assembly Lines”
patterns documented in [3]. The first pattern is used in the
building of core assets and the second is used when assembling
core assets to produce an Assessment Assistant for specific
variability choices. We also identify common points with the “use
case development strategies” labeled as “forward evolutionary

? See http:/www.respondus.com/

engineering” and “reverse evolutionary engineering” by Gomaa
[4], as described in Section 6.

8. CONCLUSIONS

This paper has presented an evolutionary approach to the
building of a product line of ontology-based assessment software
assistants. The first stage of the evolution used a domain-specific
approach to identify the suite of concepts, their relationships, and
operations with which end-users are familiar: documents,
assessment ontologies, and an assessment process which directly
manipulates documents and ontologies through gestures such as
highlighting, pointing-and-clicking, clicking-and-dragging, et
cetera. At this stage we designed a software architecture with
clearly separated concerns: user interface, ontology management,
document assessment, and document management.

The second stage of the evolution implemented an instance
of this architecture by focusing on word-processing-system-
neutral components, i.e., user interface and ontology
management, and a word processing system interoperation layer
specifically aimed at MS Word.

The third stage of the evolution, currently underway,
implements the software architecture by taking into account the
variability axes introduced by classes of word processing systems,
and classes of course management system; via a combination of
reverse and forward engineering. The target result is a family of
ontology-based assessment assistants.

With respect to our application of domain-specific
techniques to the development of this project, we would like to
highlight the following. First, since our end-users—evaluators—
directly manipulate objects naturally occurring in their domain of
application—documents and ontologies—through a language of
gestures, the elicited Domain-Specific Language (DSL) has
therefore a non-textual syntax, which we did not formally define
simply because we did not consider it a crucial contribution to the
development of the project.

Second, this DSL is supported by two meta-models: the
ontology meta-model (OMM) and the document meta-model
(DMM). The OMM has been defined in Section 5.1 as a family of
taxonomies with the category-subcategory relationship, and also
illustrated as an instance of the Composite Design Pattern in
Figure 1 (see the portion which contains “Ontology”, “Leaf”, and
“Component”). Interestingly enough, the DMM is the MS Word
Object Model [2].

Third—and final, the semantics of these models, i.e., what
give meaning to a gesture such as “left-click-hold-and-drag” on a
portion of a document—for instance, are given by the Primary
Interop Assemblies in the case of DMM, and our implementation
of the ontology manager in the case of OMM.

With respect to the level of generality of our approach, from
the perspective of the domain of expertise associated with the
documents to be assessed, our main argument is this: since the
ontologies are created by domain experts—e.g., lawyers,
accountants, physicians, et cetera—it is incumbent upon these
experts, not upon our tool, to make sure the ontologies capture the
appropriate writing patterns and anti-patterns. Experts are assisted
by the tool, not substituted by it. This is why, in our opinion, the
current state of the art of the area referred to as “Ontology

Learning from Text”'® is not applicable to the problem of

automatically mining writing pattern ontologies from actual
documents produced by authors. However, we do agree such an
approach is worth exploring.

ACKNOWLEDGEMENTS

The development of this project was the subject of study in
the sequence of graduate courses Engineering of Software I and
II, offered by the School of Computing, University of North
Florida, in the fall semester of 2006 and spring semester of 2007,
respectively. We thank the students of this course for their
contribution to the project (in alphabetical order): Lucas
Downard, Swapna Mekala, David Scott, Sweta Shah, and Smitha
Thomas. David Scott implemented the current version of the
Assessment Assistant for Word as part of his MS project. The
University of North Florida's Board of Trustees has registered a
copyright in connection with this project.

The authors would also like to thank the anonymous
reviewers of this paper for their valuable comments.

9. REFERENCES
[1] Bruney, A. 2006. Professional VSTO 2005: Visual Studio
2005 Tools for Office (Programmer to Programmer). Wrox.

[2] Carter, E., Lippert, E. 2006. Visual Studio Tools for Office:
Using C# with Excel, Word, Outlook, and InfoPath (First
Edition). Addison-Wesley. Note: A second edition of this
book will be published in 2009.

[3] Clements, P., Northrop, L. 2002. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineering.
Addison-Wesley.

[4] Gomaa, H. 2004. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Addison-Wesley.

[5] Larman, C. 2004. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design and
Iterative Development (3rd Edition). Prentice-Hall.

[6] Rumbaugh, J., Jacobson, I. and Booch, G. 2005. The Unified
Modeling Language User Guide (2"d Edition). Addison-
Wesley Professional.

19 We are referring here to the books “Ontology Learning and
Population from Text”, by Philipp Cimiano (Springer); and
“Ontology Learning from Text: Methods, Evaluations, and
Applications”, edited by Paul Buitelaar, Philipp Cimiano, and
Bernardo Magnini (IOS Press). We look forward to reading the
proceedings of the 3™ Workshop on Ontology Learning and
Population, held in July of this year.

