

A Family of Languages for Architecture Description

Markus Voelter
Independent Consultant, Grabenstrasse 4, 73033 Goeppingen, Germany

voelter@acm.org, http://www.voelter.de

Abstract
In this paper I describe how product line engineering and variant
management can be applied to domain-specific languages. I intro-
duce concepts and a tool prototype for describing a family of
DSLs used for architecture description. I want to make two points
in this paper: First, I want to introduce the idea of product line
engineering for domain-specific languages, and second, I want to
illustrate why and how this approach is especially useful for DSLs
that describe software architectures. The paper is based on prac-
tical experience and not on academic research.

Categories and Subject Descriptors D.2.2 Design Tools and
Techniques, D.2.11 Software Architectures, D.2.13 Reusable
Software, D.3.3 Language Constructs and Features

General Terms Documentation, Design.

Keywords software architecture; domain-specific languages;
variability management; product line engineering

1. Overview

Architecture DSLs

Architecture is typically either a very non-tangible, conceptual
aspect of a software system that can primarily be found in Word
documents, or it is entirely driven by technology (“we use an
XML architecture”). Both are bad: the former makes it hard to
work with, and the latter hides architectural concepts behind tech-
nology hype.

What can be done? As you develop the architecture, evolve a
language that allows you to describe systems based on this archi-
tecture. Based on my experience in a number of real-world
projects, this makes the architecture tangible and provides an un-
ambiguous description of the architectural building blocks as well
as the concrete system while still staying away from technology
decisions (which then can be made consciously in a separate step).

In other words, I am advocating the use of DSLs to describe
the architecture of a specific system or product line.

The beauty of textual languages

I like to use textual languages for this endeavor, for the following
reasons:

• First of all, languages as well as nice editors are much
easier to build compared to custom graphical editors (e.g.
those built with Eclipse GMF)

• Textual artifacts integrate much better with existing de-
veloper tooling compared to graphical models based on

some kind of repository. You can use the well-known
diff/merge tools, and it is much easier to ver-
sion/tag/branch models and code together.

• Model evolution (i.e. the adaptation of the models in cas-
es where the DSL evolves over time, something you’ll
always have in practice) is much simpler. While you can
use the standard approach – a model-to-model transfor-
mation from the old version to the new version – you can
always use search/replace or grep as a fallback, a tech-
nology familiar to basically everybody.

• Lastly, textual DSLs are often more appreciated by de-
velopers, since “real developers don’t draw pictures”.

Graphical notations are useful, of course. Whenever you want to
show the relationship between entities a graphical notation is po-
tentially better suited. Also, whenever you want to communicate
to non-technical people, graphical languages are typically prefer-
rable because they are perceived to be “easier to understand”.

However, there is a different between graphical notation and
graphical editing! Using tools like Graphviz [13] or Prefuse [14],
you can easily render a textual model in a graphical way – without
being able to edit in the graphical environment. Since the model
contains the relevant data in a clear and unpolluted form, you can
easily transform the model data into a form that tools like Graph-
Viz or Prefuse can process.

The following is an example of a graphviz-generated diagram.
It shows namespaces, components, interface, datatypes as well as
the dependencies between those.

Figure 1. Visualization via Graphviz

The challenge of reuse

I argue above that it is essential that the architecture DSL is de-
veloped as you understand your architecture, i.e. that it is specific
to the system at hand. Just using an existing, generic architecture
description language (such as UML or one of the many ADLs)
does not reap the same benefits because you have to shoehorn
your domain’s architecture into the existing modeling language.

However, that does not mean that there aren’t a number of arc-
hitectural features that are found in many different systems or
projects. It is not sensible to put all of them into a “generic archi-
tecture DSL”, but it is sensible to make it trivially simple to add
the respective feature to the DSL once you’ve identified it as be-
ing relevant to your architecture.

Enter product lines: I advocate building a product line of archi-
tecture DSL where we use feature modeling to capture the varia-
tions. So, instead of doing feature model-based variability
management on the concrete system level, we do it on language
(grammar) level.

Note that the approach to variant management for languages is
of course not technically limited to architecture DSLs. However,
specifically in case of software architecture there’s a high degree
of similarity between different systems, hence the potential and
need for reuse is especially high.

Code Generation

Once we have defined a modeling language that accurately re-
flects the architecture of a software system, and once we have
described actual systems with this language, we have to decide
what to do with the models. Generally it is my firm belief that if
you don’t do something with your formal models, they are pretty
useless (actually, in this case, the process of describing the archi-
tecture and the systems has a value in itself, since it helps you
understand your own systems much better).

Hence, we will generate two kinds of code models: API code
is used by developers to implement manually written business
against. Glue code adapts the API code and the manually written
code to some kind of implementation/middleware platform.

A central point of this paper is that we describe variants of the
architecture DSL. Consequently we also need to vary the code
generator, typically based on the same configuration features that
are used to define variants of the language.

openArchitectureWare includes a number of features useful to
this end. For example, you use aspects for code generation tem-
plates, model transformations and workflow specifications to
define variants of code generators. The deployment of the aspects
can be made to depend on configuration features, too, making the
language as well as it’s processors depend on the same configura-
tion model. I don’t describe this any further in this paper, but you
can read more about it in [15].

The structure of this paper

The rest of the paper is structured as follows. Section 2 contains a
discussion of how to build an architectural meta model for com-
ponent-based architectures and also shows a set of typical varia-
tions that I came across over the years. It is those variations we’ll
capture in the feature model. Section 3 looks at how language
tooling can be implemented to be able to express the variability
discussed in section 2. Section 4 then looks at how users use this
variability to configure and customize their own language. Section
5 looks at the current state of the prototype, and section 6 contains
an evaluation as well as directions for future work.

2. A Product Line for Component Meta Models
This section introduces a set of typical features of a component
DSL. I’ll start with defining a set of basic viewpoints and their
meta models. The rest of the section then looks at variations of
those viewpoints/meta models. These have been extracted from
years of work building component-oriented architectures, most of
them using formal modeling as a basis.

Viewpoints

A viewpoint describes a specific aspect or concern of a system. It
has a limited number of connections to other viewpoints, making
each of the viewpoints reusable and well modularized. We use
three viewpoints as the foundation for component architectures:
type viewpoint, composition viewpoint and system viewpoint.
Again, those viewpoints are based on experience gained in many
projects over the years. They can also be found in various industry
standards (such as EJB or SCA), even if they are not necessarily
explicitly distinguished and given names.

Type Viewpoint

The type viewpoint describes component types, interfaces, and
data structures. A component provides a number of interfaces and
references a number of required interfaces. An interface owns a
number of operations, each with a return type, parameters, and
exceptions. Alternatively, for message oriented systems, an inter-
face can also be a collection of messages, where a message is
named and has a number of parameters. In this case, the interface
also defines the direction (in/out) of messages, or even message
interaction patterns (oneway, request-reply, publish-subscribe)

Figure 2. Type viewpoint, components

To describe the data structures with which the components
work, we start out with the abstract type Type. We use primitive
types as well as complex types. A complex type has a number of
named and typed attributes. There are two kinds of complex types.
Data transfer objects are simple structs that are used to exchange
data among components. Entities have a unique ID and can be
made persistent (this is not visible from the meta model). Entities
can reference each other and thus build more complex data
graphs. Each reference has to specify whether it is navigable in
only one or in both directions. A reference also specifies the car-
dinalities of the entities at the respective ends.

Figure 3. Type viewpoint, data

This data meta model is not much different from the entity re-

lationship model or the SDO standard. In many scenarios, the data
meta model can probably be simplified quite a bit, basically re-
ducing it to the equivalent of Java beans or C structs.

The Composition Viewpoint

This viewpoint, illustrated in the following diagram, describes
component instances and how they are connected. A configura-
tion consists of a number of component instances, each referenc-
ing its type. An instance has a number of wires: a wire is an
instance of a component interface requirement and hence a con-
nector between component instances. Note the constraints defined
in the meta model:

• For each component interface requirement defined in the
instance’s type, we need to supply a wire.

• The type of the component instance at the target end of a
wire needs to provide the interface which the wire’s com-
ponent interface requirement references.

Figure 4. The composition viewpoint

Using the type and composition viewpoints, it is possible to

define component types as well as their collaborations. Logical
models of applications can be defined. From the composition
viewpoint, you can generate or configure a container that instan-
tiates the component instances. Unit tests that verify the applica-
tion logic can be run in an infrastructure-free environment.

The System Viewpoint

This third viewpoint describes the system infrastructure onto
which the logical system defined with the two previous view-
points is deployed. A system consists of a number of nodes, each
one hosting containers. A container hosts a number of component
instances. Note that a container also defines its kind – this could
be things like CCM, J2EE, Eclipse, Spring or a proprietary run-
time infrastructure.

Figure 5. System viewpoint

Based on this information, you can generate the necessary glue
code to run the components in that kind of container. The node
information, together with the wires (connections) defined in the
composition model, allows you to generate all kinds of things,
from remote communication infrastructure code and configuration
to build and packaging scripts.

Viewpoint Dependencies

You may have observed that the dependencies among the models
(and meta models) are well-structured. Since you want to be able
to define several compositions using the same components and
interfaces, and since you want to be able to run the same composi-
tions on several infrastructures, dependencies are only allowed in
the directions shown in the next diagram.

Figure 6. Viewpoint dependencies

Variations

The meta models we describe above cannot be used in exactly this
way in every project. Also, in many cases the notion of what con-
stitutes a component needs to be extended. As explained earlier, it
is essential that the DSL for describing an architecture evolves
and grows with the architecture itself. However, there are com-
mon variations. In this section we illustrate some of these.

Separate Interfaces

You might not need separate interfaces. Operations (or messages,
respectively) could be owned directly by the components. As a
consequence, of course, you cannot reuse the interface “contracts”
separately, independently of the supplier or consumer compo-
nents.

Figure 7. Hierarchical Components

Hierarchical Components

Hierarchical components are a very powerful concept: a compo-
nent is internally structured as a composition of other component
instances. Ports define how components may be connected: a port
has an optional protocol definition that allows for port compatibil-
ity checks that go beyond simple interface equality. While this
approach is powerful, it is also non-trivial, since it blurs the for-
merly clear distinction between type and composition viewpoints.

Configuration Parameters

A component might have a number of configuration parameters –
comparable to command line arguments in console programs –
that help configure the behavior of components. The parameters
and their types are defined in the type model, and values for the
parameters can be specified later, for example in
the composition or the system models, or through
configuration files.

Component Kinds and Layering

Often you’ll need different kinds of components,
such as domain components, data access (DAO)
components, process components, or business
rule components. Depending on this component
classification you can define constraints that
check whether certain component dependencies
are valid or not. You will typically also use dif-
ferent ways of implementing component functio-
nality, depending on the component types. In
effect, this gives you a way of layering applica-
tion functionality.

Another way of managing dependencies is to
mark each component directly with a layer tag,
such as domain, service, gui, or facade, and de-
fine constraints on how components in these
layers may depend on each other.

State, Threads and Lifecycle

You might want to specify something about
whether the components are stateless or stateful,
whether they are thread-safe or not, and what
their lifecycle should look like (for example,
whether they are passive or active, whether they
want to be notified of lifecycle events such as
activation/passivation, and so on).

Communication Paradigm

Even if a decision has been made for RPC-style
communication, it is not always enough to use
simple synchronous communication. Instead, one
of the various asynchronous communication
patterns, such as those described in the Remoting
Patterns book [16], might be applicable. Because
using these patterns affects the APIs of the com-
ponents, the pattern to be used has to be marked
up in the type model.

Figure 8. Communication Alternatives

Of course when messaging is used the communication is asyn-

chronous anyway. However, even in that case it makes sense to

capture a set of predefined communication paradigms such as
oneway, request/reply or publish/subscribe.

Events

In addition to the communication through interfaces, you might
need (asynchronous) events using a static or
dynamic publisher/subscriber infrastruc-
ture. It is often useful that the “direction of
flow” of these events is the opposite of the
uses dependencies discussed above, i.e.
they propagate from the used entity to the
using entity.

Static vs. Dynamic Connection

The composition model connects compo-
nent instances statically. This is not always
feasible. If dynamic wiring is necessary, the
best way is to embed the information that
determines which instance to connect to at
runtime into the static wiring model. So,
instead of specifying in the model that in-
stance A must be wired to instance B, the
model only specifies that A needs to con-
nect to an instance with a specific set of
properties: it needs to provide a certain
interface, and for example offer a certain
reliability. At runtime, the wire is “derefe-
renced” to a suitable instance using a repo-
sitory/naming/lookup/trader service.

Higher Level Structures

Finally, it is often necessary to provide
additional means of structuring complex
systems. The terms business component or
subsystem are often used. Such a higher-
level structure consists of a number of
components. Optionally, constraints define
which kinds of components may be con-
tained in a specific kind of higher-level
structure. For example, you might want to
define that a business component always
consists of exactly one façade component
and any number of domain components.

3. PLE for Languages – Tool
Implementation
This section explains how to conceptually
implement the architecture DSL product
line approach for a textual language. We
use Eclipse [1], EMF [2], openArchitectu-
reWare [3] and pure::variants [4] as tool-
ing. Specifically, openArchitectureWare’s
Xtext is used for the textual editor. The way

it works is that you specify the grammar for your language, and
the meta model, parser and editor are automatically derived from
that grammar. In addition, you also have to specify constraints.

Feature Modeling

Feature modeling is used to describe the variability of the archi-
tecture DSL. The tall diagram on this page shows a pure::variants
feature model with some of the variability mentioned in the pre-
vious section.

Based on this feature model, the architecture DSL can be
adapted to the needs of a specific architecture as it arises.

Of course, there are facilities that allow for custom configura-
tion, i.e. to put features into the architecture DSL that are not
available as a simple configuration option from the feature model.

Variability Mechanisms for Textual Languages

It is not enough to describe conceptual variability in feature mod-
els. It is similarly important to actually implement the variability
in the artifacts for which we define variations.

In the case described here we want to vary the definition of the
architecture DSL (grammar, constraints) as well as the respective
editor (code completion, outline, etc.).

In a scenario where the respective artifacts are built with ope-
nArchitectureWare’s Xtext, this requires variation of the follow-
ing artifacts: Xtext grammar definitions, check files and extension
files. As of now, none of those kinds of files can contain explicit
feature dependencies – those artifacts do not “know” they are
being varied.

Consequently, we have to use low level “text modification”
based on the features. This is similar to Gears’ [5] way of imple-
menting variability and is basically a generalized C #ifdef. Fea-
ture-dependency is expressed with special comments:

//# SomeFeature

context Component ERROR “error message”:

 here.is.the.actual.contraint.condition;

context Configuration ERROR “another message”:

constraint > 0;

//#~ SomeFeature

A preprocessor takes the files marked up with those comments

and removes everything for which the corresponding feature is not
selected. The marked up file itself contains all possible alterna-
tives (hence this is a form of negative variability).

In the current implementation of our tooling, there is some in-
tegration between the text editors and pure::variants:

• Feature names mentioned in artifact files are statically
cross-checked with the feature model. If you mention a
feature name that is not in the feature model, you’ll get an
error in Eclipse’s Message view.

• Also, you can select any feature in the feature model and
see in pure::variants Relations view in which of your arti-
fact files it is referenced.

Customization

Again let me emphasize that is it important to be able to directly
represent the architectural concepts of a specific system in the
architecture DSL. It is therefore not enough to “just” configure a
DSL from a set of predefined configuration options, even if these
are typical, and hence likely to be a good starting point for your
specific system. It is still necessary that the DSL developer can
customize the DSL with arbitrary additional grammar.

This is easily possible. The grammar derived from the feature
model shown above will contain hooks in various places where
customization can happen. It is again based on “text mangling”.
We show an example in the next section.

4. Using the tools
This section explains how to use the tooling from the perspective
of a DSL developer or architect.

Configuring your language

Open the configuration model and select the options you want for
your language. In the example here, we want to be able to express
stateful components and use exceptions for the operations of our
interfaces. We select the Stateful and Exceptions features as
shown in the illustration below.

Figure 9. Selecting Stateful Components with Exceptions

Then we regenerate the language (by running the configure-

MyLanguage.oaw workflow) and rebuild the tooling (running
generateDSLAndTooling.oaw). We are now able to use the fol-
lowing notation in the language-aware editor:

Figure 10. Resulting Language and Editor

Customizing the Language

We call configuration the activity of adapting your language by
selecting features from the configuration model. This is in contrast
to customization, by which we mean the extension of the ADSL
with your own, project specific features.

There are two fundamentally different ways to go about this:
you can define an external viewpoint, i.e. a completely separate
language that “annotates” an ADSL model. Technically, this is
not an adaptation of ADSL, but can serve the same purpose. Al-

ternatively you can also extend the actual ADSL by adding cus-
tom code to a set of predefined hooks.

External Viewpoint

An external viewpoint is especially useful if you want to describe
something that relates to the abstractions defined in the ADSL
model, but is sufficiently different for it to be expressed with a
different notation or by a different role in the development
process.

Since Xtext models can be treated as an EMF resource, you
can, with the facilities provided by EMF, reference an Xtext mod-
el element from any other EMF model and hence “annotate” it.
The following example shows how to define another textual DSL
to annotate the ADSL model.

Assume you want to define some kind of database mapping for
your data structures. To do that, you define a separate DSL using
the following piece of code as the grammar:

importMetamodel "platform:/resource/

 net.ample.adsl.language/src-gen/net/ample/adsl/

 language/adsl.ecore" as adsl;

DBMapping:

 (imports+=Import)*

 (structMappings+=StructMapping)*;

Import:

 "adsl" file=URI;

StructMapping:

 "map" struct=[adsl::ComplexType|ID] "{" "}";

In this grammar we import the generated meta model of the
ADSL language and reference elements from it (in the Struct-
Mapping rule). Once you generate the editor and run it the editor
provides code completion and constraint checking into the ADSL
file, thereby providing tight integration between the two languag-
es.

Figure 11. Code-completing into the ADSL file

By loading the persistence model as well as the ADSL model, you
can now generate code from both models together – effectively
customizing the ADSL model without touching the language it-
self.

In-Language Extension

The other approach to customization is the custom extension of
the ADSL language itself. You can extend the language in all
respects, you can even change parts of the configured language.
Language customization happens in three steps:

• In the base language (the one you get via configuration) a
hook must be defined in all the location where customiza-

tion is intended. Borrowing from AO, we call these hooks
joinpoints.

• You can then define advices (again, borrowing from the
AO terminology) that contribute additional code before,
after and instead of predefined joinpoints.

• Step three is the execution o the weaver, which actually
contributes the advices to the joinpoints.

Let us look at an example. Imagine you want to be able to
embed a statemachine in a component. The grammar for a state-
machine is probably relatively straight forward. Here is one way
of integrating state machines into component grammar:

• We need to add a reference to a statemachine inside a
component

• And we’d need to embed the actual statemachine as a top
level content in the namespace.

Defining the Joinpoints: We start by defining those two join-

points in the original overall grammar. In the following piece of
grammar, the joinpoints are highlighted in bold (the lines begin-
ning with //>).

Namespace:

 "namespace" name=ID

 //# NamespaceFeatureDependencies

 (featureClause=FeatureClause)?

 "{"

 (usings+=Using)*

 (subNamespaces+=Namespace

 | components+=Component

 | datatypes+=DataType

 | interfaces+=Interface

 | compositions+=Composition

 //# DeploymentViewpoint

 | systems+=System

 //# Exceptions

 | exceptions+=Exception

 //> AdditionalNamespaceContents

 //~> AdditionalNamespaceContents

)*

 "}";

Component:

 "component" name=ID

 //# Active (isActive?="active")?

 //# Periodic (isPeriodic?="periodic"

 "(" period=INT ")")?

 //# Stateful ("state" state=[ComplexType|ID])?

 "{"

 (ports+=Port)*

 //> ComponentContentsAfterPorts

 //~> ComponentContentsAfterPorts

 //# ConfigurationParameters

 (configuration=

 ComponentConfiguration)?

 "}";

These joinpoint markers will end up in the generated, confi-

gured grammar; note how we use the comment to make the join-
points invisible to the grammar generator. Note also, that the
tooling provides checks against the feature model, so if you refer
to a joinpoint that is not defined, you’ll get an error message:

Figure 12. Checking for validity of joinpoints

Note that these joinpoints are not really configuration features

– however, we still use the feature model to uniquely define the
names of those joinpoints.

Defining the advice. For the statemachine example, we have

to define a number of advices. First of all, we need to define the
statemachine itself in the grammar. Note in bold the actual advice
syntax. In this case, we put something after (i.e. at the end of) the
TopLevelContents.

//+ after:TopLevelContents

Statemachine:

 "statemachine" name=ID "{"

 (states+=State |

 events+=Event)*

 "}";

State:

 "state" name=ID "{"

 (transitions+=Transition)*

 "}";

Transition:

 event=[Event|ID] "->" target=[State|ID];

Event:

 "event" name=ID ":" operation=[Operation|ID];

//~+

To add a statemachine to a component, we need to advice the
ComponentContentsAfterPorts joinpoint:

//+ after:ComponentContentsAfterPorts

 (statemachine=Statemachine)?

//~+

Both of these advices are located in a separate file

/demo.config/src/adsl.xtxt.v. The file has the same name as the file
into which it is woven into, plus the .v extension which is used for
all variant files.

We also define a constraint that checks the uniqueness of state
names in a statemachine. These need to be contributed to the
net::ample::adsl::language::Check.chk file, which defines a join-
point TopLevelContents for this purpose. Here’s the advice,
which, as you might expect, is in the
/demo.config/src/net/ample/adsl/language/Checks.chk.v file:

//+ before:TopLevelContents

context State ERROR "State name not unique" :

 ((Statemachine)eContainer).states.

 select(s|s.name == name).size == 1;

//~+

After running the “text file weaver”, the result is an ADSL

version that supports embedded statemachines:

Figure 13. Resulting editor, with state machines

5. The state of the prototype
The prototype has been developed as part of the AMPLE project
and is in the process of being made open source. We’re looking
for interested parties to help develop it further. If you’re interest-
ed, please contact the author.

The tooling is generally done, but the set of configuration fea-
tures is limited (ca. 25 options as of now).

There is also a simple Java API generator that generates a
mapping of the selected language features to Java; however, there
is no generator yet for any specific target platforms.

We also have integrated visualization facilities using Graphviz
(for printing) and Prefuse (for interactive visualization).

6. Evaluation, Related Work and Future Work
Since implementing the toolkit, I have used the toolkit for two
other customers. We have selected the language features neces-
sary for their architecture, generated the tooling, and used it for
real project work. It is fair to say the approach works in practice.

Isn’t a generic language good enough?

Describing architecture with formal languages is not a new idea.
Various communities recommend using Architecture Description
Languages (ADLs) or the Unified Modeling Language (UML) for
describing architecture. Some even (try to) generate code from the
architecture models. However, all of those approaches advocate
using existing generic languages for documenting the architecture
(although some of them, including the UML, can be customized).

I don’t see much benefit in shoehorning your architecture de-
scription into the (typically very limited) set of constructs pro-
vided by predefined/standardized languages. The idea is to
actually build your own language to capture your system’s con-
ceptual architecture. Adapting your architecture to the few con-
cepts provided by the ADL or UML is not very helpful.

So this raises the general question about standards. Are they
important? Where? And when? In order to use any architecture
modeling language successfully, people first and foremost have to
understand the architectural concepts they are dealing with. Even
if the UML standard is used to do this people will still have to
understand the concepts and map them to the language – in case
of using UML that would be an architecture-specific profile. Of
course, then, the question is whether such a profiled UML is still

standard. Also, I am not proposing to ignore standards generally.
The tools are built on MOF/EMOF, which is an OMG standard,
just like the UML, just on a different meta level.

A specific note on UML and profiles: yes, you could use the
approach explained above with UML, building a profile as op-
posed to a textual language. I have done this in several projects
and while it does work, my conclusion is that it doesn’t work very
well in most environments. Here are some of the reasons:

• Instead of thinking about your architectural concepts,
working with UML requires you to think more about how
you can use UML’s existing constructs to more or less
sensibly express your intentions. That’s the wrong focus!

• Also, UML tools typically don’t integrate very well with
your existing development infrastructure (editors,
CVS/SVN, diff/merge). That’s not much of a problem if
you use UML during some kind of analysis or design
phase, but once you use your models as source code (they
accurately reflect the architecture of your system, and you
generate real code from them) this becomes a big issue.

• In today’s tools, a UML profile cannot remove things the
UML provides out of the box. Consequently, the meta
model of the model you create is a superset of the (al-
ready non-trivial) UML meta model, making it even more
complex. Since you want to process your models with ge-
nerators or transformers, this meta model complexity is
an issue to reckon with.

• Finally, UML tools are often quite heavyweight and com-
plex, and are often perceived as “bloatware” or “drawing
tools” by “real” developers. Using a nice textual language
can be a much lower acceptance hurdle.

Related Work

Architecture Modeling. Using formal languages to describe
software architectures is of course nothing new. UML is often
used for this purpose, as are the many ADLs that are available on
the market [6,7,8]. The approach of defining a domain-specific
ADL can also be found elsewhere, an example is AUTOSAR [9]
in the automotive world.

However, the approach advocated in this paper is based on de-
fining an architecture DSL that is much more specific to the plat-
form or system being built. The process of defining the language
is integral to defining the architecture – architecture definition and
language creation cross-polinate each other.

Language Customization. Many general purpose modeling lan-
guages provide some kind of customization. Many ADLs allow
you to define new “component types” – basically a type label that
can be associated with a component. This is a very simplistic ap-
proach that does not allow the definition of new architectural ab-
stractions that come with their own structure, constraints and
syntax. The approach described in this paper supports arbitrary
configuration and customization of languages.

The best known example for language customization is of
course the UML with its profile mechanism. I have already dis-
cussed this in the Isn’t a generic language good enough? section
above. The approach advocated in this paper tailors a language by
actually removing features you don’t need in a given scenario.
Hence the editor, the meta model and all other subsequent model
processing is simplified along with the language.

Language Modularization. Being able to define language mod-
ules and then integrate those modules into “composite languages”
is of course an active area of research. This is a non-trivial prob-
lem, because you’ll have to somehow combine the parsers. In
some cases you’ll have to regenerate a new parser based on the
combined grammars (that will be the approach available in oAW
5, see below). In other environments (such as SDF, [10]) languag-
es can be combined without regeneration of the composite parser.

Other language engineering environments support the modula-
rization of languages without the need for a parser. Examples
include MetaEdit+ [11] (which supports mainly graphical DSLs,
where the editor creates the AST directly) and the Intentional
Domain Workbench [12], which uses projectional editing even for
languages whose concrete syntax looks textual.

Work to be done

More architectural features. Obviously, more architectural fea-
tures will be added to the ADSL toolkit over time. Based on the
more recent customer projects there is already a set of additional
features we would like to support.

Java Generator. Also, the Java API generator is not yet com-
pletely up-to-date with regards to the variability of the language
itself. More work needs to be put into the generator.

openArchitectureWare 5 The facilities for composing Xtext
artifacts are limited. For example, there is not much support for
grammar modularization in oAW Xtext 4.3. The same is true for
composition and modularization of constraint files or other oAW
artifacts. As a consequence, we have to do all the variability on
text level, using those //# and //> comments in textual artifacts.

In the upcoming oAW 5 framework, the facilities for modula-
rizing oAW artifacts, especially Xtext grammars, will be far more
sophisticated.

References
[1] Eclipse platform, www.eclipse.org
[2] Eclipse Modeling Framewok, eclipse.org/emf
[3] openArchitectureWare, openarchitectureware.org
[4] Pure Systems GnbH, pure::variants, http://www.pure-systems.com
[5] BigLever, Software Gears, http://biglever.com/
[6] xADL, http://www.isr.uci.edu/projects/xarchuci/
[7] ACME ADL, http://www-2.cs.cmu.edu/~acme/
[8] AADL http://www.aadl.info/
[9] Autosar, http://www.autosar.org/find02_07.php
[10] SDF, http://www.syntax-definition.org/
[11] MetaEdit+, http://www.metacase.com/
[12] Intentional Domain Workbench,

http://intentsoft.com/technology/IS_OOPSLA_2006_paper.pdf
[13] http://Graphviz.org
[14] http://prefuse.org/
[15] Markus Völter, Iris Groher, Product Line Implementation using As-

pect-Oriented and Model-Driven Software Development, SPLC
2007, or at http://www.voelter.de/data/pub/VoelterGroher_
SPLEwithAOandMDD.pdf

[16] Völter, Kircher, Zdun: Remoting Patterns, Wiley 2004

