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Abstract  
In this paper I describe how product line engineering and variant 
management can be applied to domain-specific languages. I intro-
duce concepts and a tool prototype for describing a family of 
DSLs used for architecture description. I want to make two points 
in this paper: First, I want to introduce the idea of product line 
engineering for domain-specific languages, and second, I want to 
illustrate why and how this approach is especially useful for DSLs 
that describe software architectures. The paper is based on prac-
tical experience and not on academic research.  

Categories and Subject Descriptors   D.2.2 Design Tools and 
Techniques, D.2.11 Software Architectures, D.2.13 Reusable 
Software, D.3.3 Language Constructs and Features 

General Terms Documentation, Design. 

Keywords software architecture; domain-specific languages; 
variability management; product line engineering 

1. Overview 

Architecture DSLs 

Architecture is typically either a very non-tangible, conceptual 
aspect of a software system that can primarily be found in Word 
documents, or it is entirely driven by technology (“we use an 
XML architecture”). Both are bad: the former makes it hard to 
work with, and the latter hides architectural concepts behind tech-
nology hype.  

What can be done? As you develop the architecture, evolve a 
language that allows you to describe systems based on this archi-
tecture. Based on my experience in a number of real-world 
projects, this makes the architecture tangible and provides an un-
ambiguous description of the architectural building blocks as well 
as the concrete system while still staying away from technology 
decisions (which then can be made consciously in a separate step). 

In other words, I am advocating the use of DSLs to describe 
the architecture of a specific system or product line.  

The beauty of textual languages 

I like to use textual languages for this endeavor, for the following 
reasons: 

• First of all, languages as well as nice editors are much 
easier to build compared to custom graphical editors (e.g. 
those built with Eclipse GMF) 

• Textual artifacts integrate much better with existing de-
veloper tooling compared to graphical models based on 

some kind of repository. You can use the well-known 
diff/merge tools, and it is much easier to ver-
sion/tag/branch models and code together. 

• Model evolution (i.e. the adaptation of the models in cas-
es where the DSL evolves over time, something you’ll 
always have in practice) is much simpler. While you can 
use the standard approach – a model-to-model transfor-
mation from the old version to the new version – you can 
always use search/replace or grep as a fallback, a tech-
nology familiar to basically everybody. 

• Lastly, textual DSLs are often more appreciated by de-
velopers, since “real developers don’t draw pictures”. 

Graphical notations are useful, of course. Whenever you want to 
show the relationship between entities a graphical notation is po-
tentially better suited. Also, whenever you want to communicate 
to non-technical people, graphical languages are typically prefer-
rable because they are perceived to be “easier to understand”. 

However, there is a different between graphical notation and 
graphical editing! Using tools like Graphviz [13] or Prefuse [14], 
you can easily render a textual model in a graphical way – without 
being able to edit in the graphical environment. Since the model 
contains the relevant data in a clear and unpolluted form, you can 
easily transform the model data into a form that tools like Graph-
Viz or Prefuse can process. 

The following is an example of a graphviz-generated diagram. 
It shows namespaces, components, interface, datatypes as well as 
the dependencies between those. 

 

Figure 1. Visualization via Graphviz 

The challenge of reuse 

I argue above that it is essential that the architecture DSL is de-
veloped as you understand your architecture, i.e. that it is specific 
to the system at hand. Just using an existing, generic architecture 
description language (such as UML or one of the many ADLs) 
does not reap the same benefits because you have to shoehorn 
your domain’s architecture into the existing modeling language.  



However, that does not mean that there aren’t a number of arc-
hitectural features that are found in many different systems or 
projects. It is not sensible to put all of them into a “generic archi-
tecture DSL”, but it is sensible to make it trivially simple to add 
the respective feature to the DSL once you’ve identified it as be-
ing relevant to your architecture. 

Enter product lines: I advocate building a product line of archi-
tecture DSL where we use feature modeling to capture the varia-
tions. So, instead of doing feature model-based variability 
management on the concrete system level, we do it on language 
(grammar) level.  

Note that the approach to variant management for languages is 
of course not technically limited to architecture DSLs. However, 
specifically in case of software architecture there’s a high degree 
of similarity between different systems, hence the potential and 
need for reuse is especially high. 

Code Generation 

Once we have defined a modeling language that accurately re-
flects the architecture of a software system, and once we have 
described actual systems with this language, we have to decide 
what to do with the models. Generally it is my firm belief that if 
you don’t do something with your formal models, they are pretty 
useless (actually, in this case, the process of describing the archi-
tecture and the systems has a value in itself, since it helps you 
understand your own systems much better).  

Hence, we will generate two kinds of code models: API code 
is used by developers to implement manually written business 
against. Glue code adapts the API code and the manually written 
code to some kind of implementation/middleware platform. 

A central point of this paper is that we describe variants of the 
architecture DSL. Consequently we also need to vary the code 
generator, typically based on the same configuration features that 
are used to define variants of the language.  

openArchitectureWare includes a number of features useful to 
this end. For example, you use aspects for code generation tem-
plates, model transformations and workflow specifications to 
define variants of code generators. The deployment of the aspects 
can be made to depend on configuration features, too, making the 
language as well as it’s processors depend on the same configura-
tion model. I don’t describe this any further in this paper, but you 
can read more about it in [15]. 

The structure of this paper 

The rest of the paper is structured as follows. Section 2 contains a 
discussion of how to build an architectural meta model for com-
ponent-based architectures and also shows a set of typical varia-
tions that I came across over the years. It is those variations we’ll 
capture in the feature model. Section 3 looks at how language 
tooling can be implemented to be able to express the variability 
discussed in section 2. Section 4 then looks at how users use this 
variability to configure and customize their own language. Section 
5 looks at the current state of the prototype, and section 6 contains 
an evaluation as well as directions for future work.  

 

2. A Product Line for Component Meta Models 
This section introduces a set of typical features of a component 
DSL. I’ll start with defining a set of basic viewpoints and their 
meta models. The rest of the section then looks at variations of 
those viewpoints/meta models. These have been extracted from 
years of work building component-oriented architectures, most of 
them using formal modeling as a basis. 

Viewpoints 

A viewpoint describes a specific aspect or concern of a system. It 
has a limited number of connections to other viewpoints, making 
each of the viewpoints reusable and well modularized. We use 
three viewpoints as the foundation for component architectures: 
type viewpoint, composition viewpoint and system viewpoint. 
Again, those viewpoints are based on experience gained in many 
projects over the years. They can also be found in various industry 
standards (such as EJB or SCA), even if they are not necessarily 
explicitly distinguished and given names. 

Type Viewpoint 

The type viewpoint describes component types, interfaces, and 
data structures. A component provides a number of interfaces and 
references a number of required interfaces. An interface owns a 
number of operations, each with a return type, parameters, and 
exceptions. Alternatively, for message oriented systems, an inter-
face can also be a collection of messages, where a message is 
named and has a number of parameters. In this case, the interface 
also defines the direction (in/out) of messages, or even message 
interaction patterns (oneway, request-reply, publish-subscribe) 

 

Figure 2. Type viewpoint, components 
 

To describe the data structures with which the components 
work, we start out with the abstract type Type. We use primitive 
types as well as complex types. A complex type has a number of 
named and typed attributes. There are two kinds of complex types. 
Data transfer objects are simple structs that are used to exchange 
data among components. Entities have a unique ID and can be 
made persistent (this is not visible from the meta model). Entities 
can reference each other and thus build more complex data 
graphs. Each reference has to specify whether it is navigable in 
only one or in both directions. A reference also specifies the car-
dinalities of the entities at the respective ends. 

 

Figure 3. Type viewpoint, data 
 
This data meta model is not much different from the entity re-

lationship model or the SDO standard. In many scenarios, the data 
meta model can probably be simplified quite a bit, basically re-
ducing it to the equivalent of Java beans or C structs.  



The Composition Viewpoint 

This viewpoint, illustrated in the following diagram, describes 
component instances and how they are connected. A configura-
tion consists of a number of component instances, each referenc-
ing its type. An instance has a number of wires: a wire is an 
instance of a component interface requirement and hence a con-
nector between component instances. Note the constraints defined 
in the meta model: 

• For each component interface requirement defined in the 
instance’s type, we need to supply a wire. 

• The type of the component instance at the target end of a 
wire needs to provide the interface which the wire’s com-
ponent interface requirement references. 

 

Figure 4. The composition viewpoint 
 
Using the type and composition viewpoints, it is possible to 

define component types as well as their collaborations. Logical 
models of applications can be defined. From the composition 
viewpoint, you can generate or configure a container that instan-
tiates the component instances. Unit tests that verify the applica-
tion logic can be run in an infrastructure-free environment. 

The System Viewpoint 

This third viewpoint describes the system infrastructure onto 
which the logical system defined with the two previous view-
points is deployed. A system consists of a number of nodes, each 
one hosting containers. A container hosts a number of component 
instances. Note that a container also defines its kind – this could 
be things like CCM, J2EE, Eclipse, Spring or a proprietary run-
time infrastructure.  

 

Figure 5. System viewpoint 
 

Based on this information, you can generate the necessary glue 
code to run the components in that kind of container. The node 
information, together with the wires (connections) defined in the 
composition model, allows you to generate all kinds of things, 
from remote communication infrastructure code and configuration 
to build and packaging scripts. 

Viewpoint Dependencies 

You may have observed that the dependencies among the models 
(and meta models) are well-structured. Since you want to be able 
to define several compositions using the same components and 
interfaces, and since you want to be able to run the same composi-
tions on several infrastructures, dependencies are only allowed in 
the directions shown in the next diagram. 

 

Figure 6. Viewpoint dependencies 

Variations 

The meta models we describe above cannot be used in exactly this 
way in every project. Also, in many cases the notion of what con-
stitutes a component needs to be extended. As explained earlier, it 
is essential that the DSL for describing an architecture evolves 
and grows with the architecture itself. However, there are com-
mon variations. In this section we illustrate some of these. 

Separate Interfaces   

You might not need separate interfaces. Operations (or messages, 
respectively) could be owned directly by the components. As a 
consequence, of course, you cannot reuse the interface “contracts” 
separately, independently of the supplier or consumer compo-
nents. 

 

Figure 7. Hierarchical Components 

Hierarchical Components 

Hierarchical components are a very powerful concept: a compo-
nent is internally structured as a composition of other component 
instances. Ports define how components may be connected: a port 
has an optional protocol definition that allows for port compatibil-
ity checks that go beyond simple interface equality. While this 
approach is powerful, it is also non-trivial, since it blurs the for-
merly clear distinction between type and composition viewpoints. 



Configuration Parameters 

A component might have a number of configuration parameters – 
comparable to command line arguments in console programs – 
that help configure the behavior of components. The parameters 
and their types are defined in the type model, and values for the  
parameters can be specified later, for example in 
the composition or the system models, or through 
configuration files. 

Component Kinds and Layering 

Often you’ll need different kinds of components, 
such as domain components, data access (DAO) 
components, process components, or business 
rule components. Depending on this component 
classification you can define constraints that 
check whether certain component dependencies 
are valid or not. You will typically also use dif-
ferent ways of implementing component functio-
nality, depending on the component types. In 
effect, this gives you a way of layering applica-
tion functionality. 

Another way of managing dependencies is to 
mark each component directly with a layer tag, 
such as domain, service, gui, or facade, and de-
fine constraints on how components in these 
layers may depend on each other. 

State, Threads and Lifecycle 

You might want to specify something about 
whether the components are stateless or stateful, 
whether they are thread-safe or not, and what 
their lifecycle should look like (for example, 
whether they are passive or active, whether they 
want to be notified of lifecycle events such as 
activation/passivation, and so on). 

Communication Paradigm 

Even if a decision has been made for RPC-style 
communication, it is not always enough to use 
simple synchronous communication. Instead, one 
of the various asynchronous communication 
patterns, such as those described in the Remoting 
Patterns book [16], might be applicable. Because 
using these patterns affects the APIs of the com-
ponents, the pattern to be used has to be marked 
up in the type model.  

 

Figure 8. Communication Alternatives 
 
Of course when messaging is used the communication is asyn-

chronous anyway. However, even in that case it makes sense to 

capture a set of predefined communication paradigms such as 
oneway, request/reply or publish/subscribe. 

Events 

In addition to the communication through interfaces, you might 
need (asynchronous) events using a static or 
dynamic publisher/subscriber infrastruc-
ture. It is often useful that the “direction of 
flow” of these events is the opposite of the 
uses dependencies discussed above, i.e. 
they propagate from the used entity to the 
using entity. 

Static vs. Dynamic Connection 

The composition model connects compo-
nent instances statically. This is not always 
feasible. If dynamic wiring is necessary, the 
best way is to embed the information that 
determines which instance to connect to at 
runtime into the static wiring model. So, 
instead of specifying in the model that in-
stance A must be wired to instance B, the 
model only specifies that A needs to con-
nect to an instance with a specific set of 
properties: it needs to provide a certain 
interface, and for example offer a certain 
reliability. At runtime, the wire is “derefe-
renced” to a suitable instance using a repo-
sitory/naming/lookup/trader service.  

Higher Level Structures 

Finally, it is often necessary to provide 
additional means of structuring complex 
systems. The terms business component or 
subsystem are often used. Such a higher-
level structure consists of a number of 
components. Optionally, constraints define 
which kinds of components may be  con-
tained in a specific kind of higher-level 
structure. For example, you might want to 
define that a business component always 
consists of exactly one façade component 
and any number of domain components. 

3. PLE for Languages – Tool 
Implementation 
This section explains how to conceptually 
implement the architecture DSL product 
line approach for a textual language. We 
use Eclipse [1], EMF [2], openArchitectu-
reWare [3] and pure::variants [4] as  tool-
ing. Specifically, openArchitectureWare’s 
Xtext is used for the textual editor. The way 

it works is that you specify the grammar for your language, and 
the meta model, parser and editor are automatically derived from 
that grammar. In addition, you also have to specify constraints. 

Feature Modeling 

Feature modeling is used to describe the variability of the archi-
tecture DSL. The tall diagram on this page shows a pure::variants 
feature model with some of the variability mentioned in the pre-
vious section.  



Based on this feature model, the architecture DSL can be 
adapted to the needs of a specific architecture as it arises. 

Of course, there are facilities that allow for custom configura-
tion, i.e. to put features into the architecture DSL that are not 
available as a simple configuration option from the feature model. 

Variability Mechanisms for Textual Languages 

It is not enough to describe conceptual variability in feature mod-
els. It is similarly important to actually implement the variability 
in the artifacts for which we define variations.  

In the case described here we want to vary the definition of the 
architecture DSL (grammar, constraints) as well as the respective 
editor (code completion, outline, etc.).  

In a scenario where the respective artifacts are built with ope-
nArchitectureWare’s Xtext, this requires variation of the follow-
ing artifacts: Xtext grammar definitions, check files and extension 
files. As of now, none of those kinds of files can contain explicit 
feature dependencies – those artifacts do not “know” they are 
being varied.  

Consequently, we have to use low level “text modification” 
based on the features. This is similar to Gears’ [5] way of imple-
menting variability and is basically a generalized C #ifdef. Fea-
ture-dependency is expressed with special comments: 
 

//# SomeFeature 

context Component ERROR “error message”: 

  here.is.the.actual.contraint.condition; 

context Configuration ERROR “another message”: 

constraint > 0; 

//#~ SomeFeature 

 
A preprocessor takes the files marked up with those comments 

and removes everything for which the corresponding feature is not 
selected. The marked up file itself contains all possible alterna-
tives (hence this is a form of negative variability).  

In the current implementation of our tooling, there is some in-
tegration between the text editors and pure::variants: 

• Feature names mentioned in artifact files are statically 
cross-checked with the feature model. If you mention a 
feature name that is not in the feature model, you’ll get an 
error in Eclipse’s Message view. 

• Also, you can select any feature in the feature model and 
see in pure::variants Relations view in which of your arti-
fact files it is referenced. 

Customization 

Again let me emphasize that is it important to be able to directly  
represent the architectural concepts of a specific system in the 
architecture DSL. It is therefore not enough to “just” configure a 
DSL from a set of predefined configuration options, even if these 
are typical, and hence likely to be a good starting point for your 
specific system. It is still necessary that the DSL developer can 
customize the DSL with arbitrary additional grammar.  

This is easily possible. The grammar derived from the feature 
model shown above will contain hooks in various places where 
customization can happen. It is again based on “text mangling”. 
We show an example in the next section. 

 

4. Using the tools 
This section explains how to use the tooling from the perspective 
of a DSL developer or architect.  

Configuring your language 

Open the configuration model and select the options you want for 
your language. In the example here, we want to be able to express 
stateful components and use exceptions for the operations of our 
interfaces. We select the Stateful and Exceptions features as 
shown in the illustration below.  

 

Figure 9. Selecting Stateful Components with Exceptions 
 
Then we regenerate the language (by running the configure-

MyLanguage.oaw workflow) and rebuild the tooling (running 
generateDSLAndTooling.oaw). We are now able to use the fol-
lowing notation in the language-aware editor: 

 

Figure 10. Resulting Language and Editor 

Customizing the Language 

We call configuration the activity of adapting your language by 
selecting features from the configuration model. This is in contrast 
to customization, by which we mean the extension of the ADSL 
with your own, project specific features.  

There are two fundamentally different ways to go about this: 
you can define an external viewpoint, i.e. a completely separate 
language that “annotates” an ADSL model. Technically, this is 
not an adaptation of ADSL, but can serve the same purpose. Al-



ternatively you can also extend the actual ADSL by adding cus-
tom code to a set of predefined hooks. 

External Viewpoint 

An external viewpoint is especially useful if you want to describe 
something that relates to the abstractions defined in the ADSL 
model, but is sufficiently different for it to be expressed with a 
different notation or by a different role in the development 
process. 

Since Xtext models can be treated as an EMF resource, you 
can, with the facilities provided by EMF, reference an Xtext mod-
el element from any other EMF model and hence “annotate” it. 
The following example shows how to define another textual DSL 
to annotate the ADSL model. 

Assume you want to define some kind of database mapping for 
your data structures. To do that, you define a separate DSL using 
the following piece of code as the grammar: 
 

importMetamodel "platform:/resource/ 

   net.ample.adsl.language/src-gen/net/ample/adsl/ 

   language/adsl.ecore" as adsl; 

 

DBMapping: 

  (imports+=Import)* 

 (structMappings+=StructMapping)*; 

  

Import: 

 "adsl" file=URI;  

  

StructMapping: 

 "map" struct=[adsl::ComplexType|ID] "{" "}"; 

 
In this grammar we import the generated meta model of the 
ADSL language and reference elements from it (in the Struct-
Mapping rule). Once you generate the editor and run it the editor 
provides code completion and constraint checking into the ADSL 
file, thereby providing tight integration between the two languag-
es. 

 

Figure 11. Code-completing into the ADSL file 
 

By loading the persistence model as well as the ADSL model, you 
can now generate code from both models together – effectively 
customizing the ADSL model without touching the language it-
self. 

In-Language Extension 

The other approach to customization is the custom extension of 
the ADSL language itself. You can extend the language in all 
respects, you can even change parts of the configured language. 
Language customization happens in three steps: 

• In the base language (the one you get via configuration) a 
hook must be defined in all the location where customiza-

tion is intended. Borrowing from AO, we call these hooks 
joinpoints. 

• You can then define advices (again, borrowing from the 
AO terminology) that contribute additional code before, 
after and instead of predefined joinpoints. 

• Step three is the execution o the weaver, which actually 
contributes the advices to the joinpoints. 

Let us look at an example. Imagine you want to be able to 
embed a statemachine in a component. The grammar for a state-
machine is probably relatively straight forward. Here is one way 
of integrating state machines into component grammar:  

• We need to add a reference to a statemachine inside a 
component 

• And we’d need to embed the actual statemachine as a top 
level content in the namespace.  

 
Defining the Joinpoints:  We start by defining those two join-

points in the original overall grammar. In the following piece of 
grammar, the joinpoints are highlighted in bold (the lines begin-
ning with //>). 

 
Namespace: 

 "namespace" name=ID  

   //# NamespaceFeatureDependencies  

                     (featureClause=FeatureClause)? 

   "{" 

  (usings+=Using)*  

  ( subNamespaces+=Namespace  

    | components+=Component  

    | datatypes+=DataType 

    | interfaces+=Interface 

    | compositions+=Composition 

    //# DeploymentViewpoint  

                        | systems+=System 

    //# Exceptions  

                        | exceptions+=Exception 

    //> AdditionalNamespaceContents  

    //~> AdditionalNamespaceContents  

   )* 

 "}";  

  

Component: 

 "component" name=ID 

 //# Active (isActive?="active")? 

 //# Periodic (isPeriodic?="periodic"  

                    "(" period=INT ")")? 

 //# Stateful ("state" state=[ComplexType|ID])?  

 "{"  

  (ports+=Port)* 

     //> ComponentContentsAfterPorts  

     //~> ComponentContentsAfterPorts  

 //# ConfigurationParameters   

              (configuration= 

                      ComponentConfiguration)? 

 "}"; 

 
These joinpoint  markers will end up in the generated, confi-

gured grammar; note how we use the comment to make the join-
points invisible to the grammar generator. Note also, that the 
tooling provides checks against the feature model, so if you refer 
to a joinpoint that is not defined, you’ll get an error message: 



 

Figure 12. Checking for validity of joinpoints 
 
Note that these joinpoints are not really configuration features 

– however, we still use the feature model to uniquely define the 
names of those joinpoints.  

 
Defining the advice.    For the statemachine example, we have 

to define a number of advices. First of all, we need to define the 
statemachine itself in the grammar. Note in bold the actual advice 
syntax. In this case, we put something after (i.e. at the end of) the 
TopLevelContents. 

 

//+ after:TopLevelContents 

Statemachine: 

 "statemachine" name=ID "{" 

  (states+=State | 

   events+=Event)* 

 "}"; 

  

State: 

 "state" name=ID "{" 

  (transitions+=Transition)*  

 "}"; 

  

Transition: 

 event=[Event|ID] "->" target=[State|ID]; 

  

Event: 

 "event" name=ID ":" operation=[Operation|ID]; 

//~+   

 

To add a statemachine to a component, we need to advice the 
ComponentContentsAfterPorts joinpoint: 

 
//+ after:ComponentContentsAfterPorts 

 (statemachine=Statemachine)? 

//~+    

 
Both of these advices are located in a separate file 

/demo.config/src/adsl.xtxt.v. The file has the same name as the file 
into which it is woven into, plus the .v extension which is used for 
all variant files. 

We also define a constraint that checks the uniqueness of state 
names in a statemachine. These need to be contributed to the 
net::ample::adsl::language::Check.chk file, which defines a join-
point TopLevelContents for this purpose. Here’s the advice, 
which, as you might expect, is in the 
/demo.config/src/net/ample/adsl/language/Checks.chk.v file: 

 
//+ before:TopLevelContents 

context State ERROR "State name not unique" : 

   ((Statemachine)eContainer).states. 

          select(s|s.name == name).size == 1; 

//~+ 

 
After running the “text file weaver”, the result is an ADSL 

version that supports embedded statemachines: 

 

Figure 13. Resulting editor, with state machines 

5. The state of the prototype 
The prototype has been developed as part of the AMPLE project 
and is in the process of being made open source. We’re looking 
for interested parties to help develop it further. If you’re interest-
ed, please contact the author. 

The tooling is generally done, but the set of configuration fea-
tures is limited (ca. 25 options as of now).   

There is also a simple Java API generator that generates a 
mapping of the selected language features to Java; however, there 
is no generator yet for any specific target platforms. 

We also have integrated visualization facilities using Graphviz 
(for printing) and Prefuse (for interactive visualization). 

6. Evaluation, Related Work and Future Work 
Since implementing the toolkit, I have used the toolkit for two 
other customers. We have selected the language features neces-
sary for their architecture, generated the tooling, and used it for 
real project work. It is fair to say the approach works in practice. 

Isn’t a generic language good enough? 

Describing architecture with formal languages is not a new idea. 
Various communities recommend using Architecture Description 
Languages (ADLs) or the Unified Modeling Language (UML) for 
describing architecture. Some even (try to) generate code from the 
architecture models. However, all of those approaches advocate 
using existing generic languages for documenting the architecture 
(although some of them, including the UML, can be customized).  

I don’t see much benefit in shoehorning your architecture de-
scription into the (typically very limited) set of constructs pro-
vided by predefined/standardized languages. The idea is to 
actually build your own language to capture your system’s con-
ceptual architecture. Adapting your architecture to the few con-
cepts provided by the ADL or UML is not very helpful. 

So this raises the general question about standards. Are they 
important? Where? And when? In order to use any architecture 
modeling language successfully, people first and foremost have to 
understand the architectural concepts they are dealing with. Even 
if the UML standard is used to do this people will still have to 
understand the concepts and map them to the language – in case 
of using UML that would be an architecture-specific profile. Of 
course, then, the question is whether such a profiled UML is still 



standard. Also, I am not proposing to ignore standards generally. 
The tools are built on MOF/EMOF, which is an OMG standard, 
just like the UML, just on a different meta level.  

A specific note on UML and profiles: yes, you could use the 
approach explained above with UML, building a profile as op-
posed to a textual language. I have done this in several projects 
and while it does work, my conclusion is that it doesn’t work very 
well in most environments. Here are some of the reasons: 

• Instead of thinking about your architectural concepts, 
working with UML requires you to think more about how 
you can use UML’s existing constructs to more or less 
sensibly express your intentions. That’s the wrong focus! 

• Also, UML tools typically don’t integrate very well with 
your existing development infrastructure (editors, 
CVS/SVN, diff/merge). That’s not much of a problem if 
you use UML during some kind of analysis or design 
phase, but once you use your models as source code (they 
accurately reflect the architecture of your system, and you 
generate real code from them) this becomes a big issue. 

• In today’s tools, a UML profile cannot remove things the 
UML provides out of the box. Consequently, the meta 
model of the model you create is a superset of the (al-
ready non-trivial) UML meta model, making it even more 
complex. Since you want to process your models with ge-
nerators or transformers, this meta model complexity is 
an issue to reckon with. 

• Finally, UML tools are often quite heavyweight and com-
plex, and are often perceived as “bloatware” or “drawing 
tools” by “real” developers. Using a nice textual language 
can be a much lower acceptance hurdle. 

Related Work 

Architecture Modeling.  Using formal languages to describe 
software architectures is of course nothing new. UML is often 
used for this purpose, as are the many ADLs that are available on 
the market [6,7,8]. The approach of defining a domain-specific 
ADL can also be found elsewhere, an example is AUTOSAR [9] 
in the automotive world.  

However, the approach advocated in this paper is based on de-
fining an architecture DSL that is much more specific to the plat-
form or system being built. The process of defining the language 
is integral to defining the architecture – architecture definition and 
language creation cross-polinate each other. 

 
Language Customization.  Many general purpose modeling lan-
guages provide some kind of customization. Many ADLs allow 
you to define new “component types” – basically a type label that 
can be associated with a component. This is a very simplistic ap-
proach that does not allow the definition of new architectural ab-
stractions that come with their own structure, constraints and 
syntax. The approach described in this paper supports arbitrary 
configuration and customization of languages. 

The best known example for language customization is of 
course the UML with its profile mechanism. I have already dis-
cussed this in the  Isn’t a generic language good enough? section 
above. The approach advocated in this paper tailors a language by 
actually removing features you don’t need in a given scenario. 
Hence the editor, the meta model and all other subsequent model 
processing is simplified along with the language. 

 

Language Modularization.  Being able to define language mod-
ules and then integrate those modules into “composite languages” 
is of course an active area of research. This is a non-trivial prob-
lem, because you’ll have to somehow combine the parsers. In 
some cases you’ll have to regenerate a new parser based on the 
combined grammars (that will be the approach available in oAW 
5, see below). In other environments (such as SDF, [10]) languag-
es can be combined without regeneration of the composite parser. 

Other language engineering environments support the modula-
rization of languages without the need for a parser. Examples 
include MetaEdit+ [11] (which supports mainly graphical DSLs, 
where the editor creates the AST directly) and the Intentional 
Domain Workbench [12], which uses projectional editing even for 
languages whose concrete syntax looks textual. 

Work to be done 

More architectural features.  Obviously, more architectural fea-
tures will be added to the ADSL toolkit over time. Based on the 
more recent customer projects there is already a set of additional 
features we would like to support. 
 
Java Generator.  Also, the Java API generator is not yet com-
pletely up-to-date with regards to the variability of the language 
itself. More work needs to be put into the generator. 

 
openArchitectureWare 5   The facilities for composing Xtext 
artifacts are limited. For example, there is not much support for 
grammar modularization in oAW Xtext 4.3. The same is true for 
composition and modularization of constraint files or other oAW 
artifacts. As a consequence, we have to do all the variability on 
text level, using those //# and //> comments in textual artifacts. 

In the upcoming oAW 5 framework, the facilities for modula-
rizing oAW artifacts, especially Xtext grammars, will be far more 
sophisticated. 
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