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Abstract

This paper is an academic experience report describing the use
by researchers at the University of Arizona of a domain-specific
language developed by the Institute for Software Integrated Sys-
tems (at Vanderbilt University). The domain in question is hetero-
geneous, distributed simulation of quad-rotor unmanned aerial ve-
hicles (UAVs) as they respond to command and control requests
from a human operator. We describe in detail how our individual
designs of the controller and guidance laws for the UAV, as well
as its rendering and position updates in a 3D environment, its on-
board sensors detecting ground features, and the various commands
to delegate mission-critical behaviors, all interact using the ISIS-
developed modeling language. We then discuss the outlook for
this domain (heterogeneous system simulation and integration) for
domain-specific languages and models, specifically for unmanned
vehicle control and interaction.

Categories and Subject Descriptors D.2.6 [Programming Envi-
ronments]: Integrated Environments

General Terms Domain-specific modeling languages, Heteroge-
nous system simulation

Keywords HLA, RTI, GME, Command and Control (C2)

1. Introduction

Large projects with decentralized development face a critical issue
in holistic system simulations. Maintaining a single simulation
strategy, which may even include the use of proprietary tools and/or
shared network drives, is quite difficult to achieve, and can lead to
poor software engineering practices where elements are developed
outside the simulation toolchain. These elements must be rewritten
or adapted to fit inside the tools used by the project. Such practices
are prone to problems that are subtle, such as mismatched models
of computation, as well as problems that are widespread, such as
software bugs while porting.

Many systems require development and design in proprietary
tools (e.g., MATLAB/Simulink for the domain of control systems),
and may take advantage of sophisticated models of computation
available in such tools. Other portions of the system may depend
on logic that is best expressed as a switch statement in C/Java, or
may be run as an applet (e.g., human control through a command
and control interface). How to integrate these portions of the system
with various components written in other languages is best done
through middleware, and many standard middlewares exist for such
applications. However, for an expert in control, or discrete event
simulation, middleware programming can be a treacherous and
confusing addition to their own algorithms.

The simulation of these systems built with heterogenous tools,
components, models of computation, and operating systems is a

nontrivial task that is best tackled by a middleware expert. How-
ever, there exists the bootstrapping issue of confirming that all pro-
grammers for each component follow a styleguide, or include stan-
dard header files with standard object definitions. Enforcing such
a styleguide early in the process can often lead to the ‘chicken-
and-egg’ problem where experts cannot start working on their al-
gorithms because they do not have a testing infrastructure, while
infrastructure developers cannot develop the middleware because
they do not have a set of algorithms to design around.

To address this issue for the specific domain of multi-vehicle
command and control (C2), Balogh et al. [2008, Balogh] devel-
oped the HLA paradigm. Starting with a suite of tools that could
utilize the infrastructure, and with a few examples, we began an
experiment to continue advanced implementation of interactions
between components, with the intention of integrating the compo-
nents into an advanced demo that drew from many different simu-
lation, design, and visualization tools. Importantly, we were able to
do our component designs and simulations independently of the an-
ticipated middleware, infrastructure, and global simulation strategy.
Although it was known a priori that HLA was the likely candidate,
this strategy enabled users to operate without that assumption'. In-
tegration of these various components was somewhat trivial, which
is a great result for the domain-specific modeling language, as it
reduced the complexity of the expert developers significantly.

The scope of this paper does not include motivating the develop-
ment of this HLA modeling language, nor a detailed description of
the HLA middleware used. Readers interested in these details can
refer to Balogh et al. [2008, Balogh]*. In fact, there were many de-
sign choices and application domain choices made by the authors of
the domain-specific language we use in this paper: we do not justify
or motivate their work, but instead present this application example,
which shows the tremendous amount of heterogeneous simulation,
design, and rendering, which the use of this domain permitted in
the period of just three months. For this paper’s scope, we are most
interested in the following qualities of a modeling language:

e the ability to specify tool-independent data structures;
e the ability to compose data structures with other data structures;

e the ability to synthesize “glue code” between various tools and
software architectures;

e the ability to prototype component behaviors without running
middleware as part of the test;

!In fact, early application domain choices utilized the ICE middleware by
ZeroC.

2 The maturity of the project and the short timeline for this workshop do not
permit an in-print citation of the work.
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Figure 1. GME Model in the HLA paradigm, which describes
an interaction between the UAV and the UAVGSOp. Note that New
Waypoint information is passed to the UAV from the ground station,
and the UAV publishes its position for interested parties. The object-
oriented structure of those messages are present in the UML class
diagram representation.

the ability to use existing domain-specific tools and environ-
ments for design of models, and re-use those models in those
tools at runtime; and

e the ability to have a single, unifying modeling language that
permits all of the above.

In this paper, we describe our experience with using this
domain-specific modeling language, specifically with its advance-
ment of our design and simulation agenda from the perspective
of “what would we have to do if we did not have the modeling
language to help?” We first describe the tools which were at our
disposal for design, simulation, and visualization. We next discuss
the various implementations of component functionality. Finally,
we describe the integrated demonstration, and how we envision our
future work based on the capabilities of this modeling environment.

2. Modeling Language Description

The Generic Modeling Enviroment (GME) [Ledeczi et al. 2001]
developed by the Institute for Software Integrated Systems (ISIS)
at Vanderbilt University is a configurable modeling environment
with a graphical interface. The basis of GME is Model Inte-
grated Computing (MIC) [Ledeczi et al. 2005], which facilitates
the creation and evolution of embedded software systems that are
domain-specific. MIC gives us an end-to-end view of the entire
system and lets us capture an entire class of applications. The
Multi-Graph Architecture (MGA) supports meta-level processes
and meta-modeling, and is an executable framework for MIC. A
meta-level process is used to specify, define and validate domain-
specific environments. These environments are then used to obtain
metamodels, that let us specify the various properties of the domain
models, like the concepts, relationships, compositions and integrity
constraints. Metamodels are used to generate paradigms, that can
be deployed to create applications.

The project required the integration of various heterogeneous
tools. Specifically, we needed the ability to use

e MATLAB/Simulink

® OMNeT++ [Varga 2001]

e CPN Tools [Jensen et al. 2007]

e DEVSJAVA [Palaniappan et al. 2006]
e 3D-Viewers like Delta3D and Blender.

To facility communication between these tools, the High Level Ar-
chitecture (HLA) [IEEE-HLA-1516 2000] was used to handle in-
teroperability and synchronization issues. HLA is an object-based,

DoD/IEEE standard that facilitates the building of simulation sys-
tems from heterogenous components, permits component reuse,
and supports interoperability through publish/subscribe mecha-
nisms. It also encourages distributed and multi-platform comput-
ing. An elementary HLA-compliant program is called a federate,
and a set of interacting federates is referred to as a federation.
The exchange of data among federates is supported via the Run-
time Infrastructure (RTI). The key functions of the RTI involve
Federation Management, Data Distribution Management and Time
Management. To support these functionalities, various toolkits like
the MATLAB HLA Toolbox, Open-HLA, pRTI and Portico are
available. Authors used the Portico 8.0 environment to implement
the RTI. Portico is a flexible, open-source, cross-platform imple-
mentation of the RTI (see http://www.porticoproject.org/).

The HLA paradigm, developed by ISIS at Vanderbilt University,
was used to create various models in GME, including a particular
interaction model shown in Figure 1. The federates corresponding
to the UAV and the Ground Station Operator are components
developed in any tool that the paradigm supports (in our case,
MATLAB/Simulink for UAV, and Java for UAVGSOp). In this case,
the UAV publishes updates to its position, but the UAVGSOp can send
new commands via the NewWayPoint message, which will affect
the direction in which the UAV flies.

These domain models specify the fundamental structure of the
interconnection of these components, and the messages they are al-
lowed to send. Model interpreters specify a mapping between this
structure and the RTI infrastructure, and various application com-
ponents, in the following ways. Although their detailed description
is out of the scope of this paper, the HLA paradigm has two model
interpreters—the C2WInterpreter and the CPNInterpreter.
The first of these interpreters produces the required federate files
that are used by the RTI. These files include the names of var-
ious components, the data structures expected to be shared, etc.
The second, (CPNInterpreter), imports information from a CP-
NTools model to obtain the discrete events expected from that
tool, for use in integrating the overall demonstration. These dis-
crete events are then used in the HLA model to specify which
events are expected to be received from which components, and
consequences of their receipt (i.e., actions). This permits the spec-
ification of complex decision-making processes in an existing tool
(CPNTools), and the sending of various messages to computational
components throughout the model.

The HLA paradigm provides the following abilities:

e layout of interaction models between various components;

¢ middleware-independent specification of data structures for
messaging; and

e specification of runtime parameters for the overall simulation.

Recall from Figure 1 that a ground station interacts with a UAV.
The data in that diagram, namely NewWayPoint, is fully specified
in a larger diagram. The Object and the Interaction Diagram, as
modeled in the HLA paradigm, are shown in Figure 2. The nota-
tions used are similar to those in standard UML, but the language
definition has the additional semantics that their interconnection
will denote specific structure in the federate synthesis.

3. Rendering

The aim of a simulation is to accurately replicate a real-life or
hypothetical scenario, including its visualization. Tools that permit
the high-fidelity design and simulation of a complex vehicle do not
always provide an equivalent high-fidelity rendering of that vehicle,
so there exists a need to enhance this visualization through external
tools. One such tool is Delta3D (http://www.delta3d.org/),
an open source gaming and simulation engine which provides a 3D
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Figure 2. The model of interactions, in the HLA paradigm. Models describing the runtime parameters for simulation, logging, and network
interactions are in the left-hand side of the figure. The right hand side concentrates on messages sent back and forth between various
components (UAV, Ground Station, etc.), including the commands used by various components. Finally, the rightmost portion of the figure
shows the various objects that are passed by the RTI, including the sending/receiving streams of the network simulator.

visualization of the virtual world as the simulation executes (refer
to the manuscript by Balogh et al. [2008, Balogh]).

Delta3D is packed with numerous sprites which can be used to
represent a UAV, such as that in Figure 3(a). This is not an accurate
representation of the STARMAC [Hoffmann et al. 2007] that is
to be simulated, so a more suitable rendered model was created
using Blender (http://www.blender.org/), an open source 3D
content creation suite used to create and render the 3D model seen
in Figure 3(b). This is a much more accurate representation of the
STARMAC than the included sprite.

In order to correctly render the UAV, Delta3D requires posi-
tion (z,y,2), velocity (&, y, £), attitude (¢, 0, 1) and a time stamp
(time). Since Delta3D can natively interface with HLA, no special
GME interpreter is required to generate the glue code for HLA in-
tegration. Implementing the HLA Run-Time Infrastructure allows
published PosUpdate information to be subscribed to by a fed-
erate. The Delta3D federate can then be configured to subscribe
to PosUpdate interactions. HLA allows any source to publish the
PosUpdate information making development flexible.

Actual image data is not feasible to transfer over the network;
network bandwidth causes a large bottleneck. Fortunately, it is pos-
sible to send simulated data from Delta3D to look like new data
from a sensor. The UAV state data and GPS location correspond-
ing to a target can be published to the RTI. If the UAV is in the
Search Target State, Delta3D will publish confirmation that the
UAV has started its search. The Delta3D federate will constantly
publish target position information (target_x, target_y, target_z,
target_r, target_t), target velocity (&, y, 2), suspected target lo-
cation (suspected_x, suspected_y, suspected_z, suspected._r,
suspected_t) and target id (target_id). These comprise the pa-
rameters available for the TrackTarget interaction. Section 5 dis-
cusses the algorithm for deducing and publishing the target location
from a simulated camera.

4. Controller

The UAV chosen for this project was the STARMAC, a quadrotor
UAV being developed by a group at Stanford University. Both a
description of its dynamics and a demonstration of its abilities can
be found in [Hoffmann et al. 2007]. For easy visualization and
to take advantage of Mathworks design tools (such as the SISO
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(a) An example sprite from the catalog, which does not represent our
vehicle.

(b) 3D rendering of the STARMAC
helicopter, used in Delta3D.

Figure 3. Rendered 3D models that can be used in Delta3D. Note
that we are now able to use a sprite that represents our actual
vehicle, based on a model developed in the Blender tool, and the
actual dynamical model in Simulink.

Design Tool), Simulink was preserved as the modeling language
for designing the controller.

In order to respond to the varying command and control com-
mands of the Ground Station, the Simulink controller can switch
between various control laws. A top level view of the modified
Simulink block diagram can be found in Figure 5. Both the way-
point and spiral search controllers can be seen on the left, with an
input flag that specifies which one should be active.

The waypoint controller for the STARMAC was achieved using
a 3rd order controller across the motor voltage command and set-
ting up feedback loops around translational acceleration, velocity,
and position.
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The search algorithm for the UAV was chosen to be in the form
of a spiral, originating and spiraling out from whatever location
the UAV was at when the flag was switched over. The velocity
vector field for the spiral/search guidance algorithm can be found in
Figure 4(a). Ideally, the UAV should fly along the spiral. In order to
achieve this, the algorithm takes the UAV position as an input, and
returns the velocity it would like the UAV to achieve. Given a UAV
with a position not on the spiral, the velocity issued is dependent
on the distance from the nearest point. The farther the UAV is from
the point, the more its velocity will be commanded directly towards
that location on the spiral. As the craft nears the spiral, more and
more of it’s velocity vector is directed tangential to the spiral, until
eventually the craft merges with the spiral and tracks it. A typical
response can be found in Figure 4(b).

(b) Dynamic simulation of STARMAC following a spiral path in
Simulink.

Figure 4. The controller design, done in Simulink, allows for
component-scale simulation and analysis. In (a) the vector field
shows the controller’s response based on position (this represents
the analysis and design phase. ). In (b) a simulation of the controller
from an initial condition below the spiral’s origin is shown (this is
the component-scale simulation).

The importance of these plots to this work is that they were the
results of design done inside the design and simulation toolchain
of Mathworks, including the ability to generate plots, utilize sum-
ming and feedback functions, and a fundamentally model-based
approach. If we had decided to prototype the designs in MAT-
LAB/Simulink and later port them to C/C++, errors could have
been introduced either by changing to those languages (subtle er-
rors of models of computation) or typographical errors (explicit er-
rors not easy to find). With the integration of MATLAB/Simulink
into the HLA infrastructure, we were able to use the same models
developed in design and analysis as executable models.

5. Ground Feature Detection

For unmanned vehicles outfitted with a camera sensor, one potential
application is unmanned and autonomous surveillance. The UAV
could be given an instruction as, for example, “find the blue trucks
in some area.” Analyzing the output image from the camera is a
crucial operation for the UAV to complete this task. It would have
to determine first whether there was a blue truck in its field of view
and report the rough location of that truck in some meaningful way,
such as GPS coordinates, based on the image and its present state.

In order to closely emulate an actual implementation it is nec-
essary to have a picture. However, simulation in Delta3D has a
major drawback with respect to the sensor: the image cannot be
directly analyzed. Therefore a software workaround is required to
determine whether an object of interest is contained within the im-
age. Taking advantage of the fact that knowledge of the simulation
world is absolute, it is possible to bypass the image analysis phase.
Instead of locating an object via the camera’s image, an algorithm
(given the known position of an object) can report where that ob-
ject would appear in the image, if at all. From there the final task of
meaningfully reporting that location is identical as if the pixel lo-
cation came from an actual picture. Such an approach allows easy
transition from canned simulation data to data obtained from anal-
ysis.

The process starts by feeding the algorithm the position of an
object from Delta3D in z,y,z coordinates. Additional required data
are the x,y,z coordinates of the UAV, its roll-pitch-yaw orienta-
tion, and the intrinsic parameters of the camera. The most impor-
tant properties of the camera are its focal length, the size of the
CCD, and the resolution. Given these, the algorithm produces the
1,7 pixel coordinates that represent where in the picture the speci-
fied object lies. These coordinates are then adjusted by some noise
factor to simulate receiving actual data. Finally the adjusted pixel
coordinates are reverse transformed and reported as an approximate
location for the object. In practice only the latter portion is neces-
sary because the image will actually be available for analysis.

To accomplish this, Delta3D and MATLAB/Simulink must
communicate with one another. Delta3D provides MATLAB the
x,y,z coordinates of the object and UAV while Simulink provides
the state and orientation data directly to the camera (i.e., not pub-
lished through the RTI). The camera parameters are fixed and so are
simple constants. All the calculations are carried out in MATLAB.
An overview of the process can be seen in Figure 6.

6. Integration

Section 2 describes how the GME Environment was used to de-
velop an application model with the help of the HLA paradigm.
The UAV and the Ground Station federates and the associated
interactions were discussed, including how the UAV is controlled
through Simulink. Target detection was discussed in Section 5, and
requires state information of the UAV as well as information regard-
ing the target’s location.

Now with each of these pieces developed, simulated, and tested
individually, we should integrate them into a demonstration. To do
this, we follow the overall structure as described in Figure 7. Using
Portico as the RTT infrastructure, we use a Java implementation of
a Ground Station which provides human command input into
the simulation. These commands include direction for the UAV to
search for a target, fly to a waypoint, track a target, etc. The other
Java implementation (a work in progress) publishes information
about the location of a target, in order for the MATLAB component
discussed in Section 5 to publish information about a target being
acquired.

These Java-based components express basic control-flow, and
also have their own GUI, utilizing Java’s user-interface libraries.
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Figure 5. Top-level block diagram of Simulink STARMAC model. Note that the switching controller on the left side of the figure represents
the hybrid behavior of the controller, whether the vehicle is flying the spiral search pattern, or the waypoint following pattern.
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(FoV), it is passed along to the targeting component to report location.

For the physical-system simulation, the Simulink models discussed
in Section 4 are called, which publish updated position informa-
tion. This positional information, as well as location of the target,
are read by the Delta3D component, and visualized for the bene-
fit of the Ground Station human operator. The final result is an
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Figure 7. Integrated Schema of the Federation Execution

integrated demo that can be run from a Windows . bat file, reduc-
ing the possibility of human error in starting up components in the
wrong order, or forgetting to pass in parameters. Such an automa-
tion for running the demonstration also reduces the effort required
to run tests to confirm that certain tools (e.g., MATLAB) are prop-
erly integrated into the demonstrator’s machine.

7. Results and Analysis

We successfully integrated several demonstrations that showed our
various technical contributions. Depending on the number of inter-
actions that we utilized in each demonstration model, about 5000
lines of software were generated for the entire set of federates
available. This included the standard “getter” and “setter” methods

for various objects, but more importantly the “publish” and “‘sub-
scribe” methods were provided, reducing the complexity of pro-
gramming for domain experts. For the Simulink interaction, some
hand-editing of the model is required to integrate, i.e., replacing
the state reading and writing blocks with HLA reading and writing
blocks. This is important not just for information exchange, but also
to prevent Simulink from advancing more rapidly than other por-
tions of the simulation, and thus not synchronizing data with other
components.

Based on the amount of generated code discussed in Section 7,
it would require a significant amount of human effort to code
the various integration points for each tool. The HLA modeling
language provided an integration point for each software tool we
needed, as well as many others that we did not need. This not only
provides a late-stage integration freedom, but also gives a design
freedom, where alternative tools can be explored in parallel tested
upon integration for selection of the optimal behavior. In addition
to the raw effort of programming the interaction points, there is
significant effort required to understand sow the tools could interact
with the middleware. Thankfully, this task has already been done by
the HLA modeling language designers.

There are, however, several areas in which the tool can be
improved. As of now, the integration of components running on
different machines is performed through shared drives. This could
be improved to use TCP/IP across a network. To mitigate this
shortcoming, such integration is currently performed through code
generation, so a better integration solution will also be transparent
to the users.

Another area for improvement is the integration with MAT-
LAB/Simulink, which currently requires some user editing the
MATLAB/Simulink model to include the generated interfaces to
HLA. We leave this solution up to the language designers, though



one possible approach is to generate a library of blocks that can be
used, and then updates to models in these blocks will automatically
update any simulation models.

8. Conclusions and Future Work

In under three months, the authors were able to integrate a new
demonstration of C2 behaviors, including new controllers for the
quad-rotor vehicle, new commands sent to the vehicles, new mod-
els of the demonstration, and summary simulations that verify be-
havior on a new installation of the infrastructure. These summary
simulations are important for a distributed team, as they confirm to
other team members that various functional components are behav-
ing correctly, and also confirm to those teams that they can run the
simulation tools required.

Figure 8. Co-operative Search Operations

Our future work includes development of high-level control
algorithms for managing a group of vehicles that co-operatively
search for target(s) at a specified location(s). This would be an im-
plementation of mixed-initiative control. The key issues would in-
volve ensuring a stable formation and generating optimal search al-
gorithms. The UAVs would depart as a group in response to a com-
mand, and would separate mid-way to perform individual search
operations spanning the entire search area, as in Figure 8. Divid-
ing the search space optimally, avoiding collisions and reporting
back appropriate information would require the inclusion of intelli-
gent real-time algorithms in the controller. Mesh stability is a good
model to obtain a stable formation, as it attenuates disturbances
acting on one vehicle as they propagate to other vehicles. Thus the
UAUVs travel in a mesh. This calls for decentralized control laws and
intelligent search strategies.

DSMs present a significant advantage in the high-level specifi-
cation of system interaction, especially when the generation of the
software that produces their interaction (i.e., the “glue-code” that
holds an interaction together) is computational, and not a case-by-
case design. We believe that future uses of domain-specific mod-
eling environments in this domain will further enable experts in
control, visualization, computer vision, etc., to put experiments of
system-level simulations together more easily than a brute-force in-
tegration strategy.
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