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Abstract  
A domain-specific language is a specialized and problem-oriented 
language. Successful application of a DSL largely depends on 
provided tools, so called language workbenches that support end-
programmers creating, editing, and maintaining programs written 
in a DSL. In this paper, we describe four different tools support-
ing the creating of language workbenches, identify commonalities 
and differences and compare these tools by means of a set of cri-
teria. 

1. Introdcution 
Domain-specific languages (DSL) are languages tailored to a 
specific application domain [1]. They have the potential to reduce 
complexity of software development by raising the abstraction 
level towards an application domain. According to the application 
domain, different notations (textual, graphical, tabular) are used. 
Textual languages have long tradition in the domain of textual 
meta-modeling languages like PSL/PSA [2] used for analysis and 
documentation of requirements and functional specifications for 
information systems. In this paper, we focus on textual languages 
following the source-to-source transformation (see [3]), i.e. DSL 
code is compiled into a general purpose programming language 
like Java and C#. Such textual DSLs are applied successfully in 
various areas. For instance, Monaco [4] is a language for end-user 
programming for automation systems and Tbl [5] is a language 
for test scripts of mobile devices. Successful application of such 
languages largely depends on provided tool support. A tool that 
support end-programmers creating, editing, and maintaining pro-
grams in a DSL is called a language workbench [6]. Users expect 
workbenches including full-featured editors with syntax high-
lighting, code completion, etc. as available for general program-
ming languages. Such editors are often implemented manually 
resulting in effort and costs that can be reduced only to a certain 
degree by using editor frameworks, for example the Eclipse plat-
form. Furthermore, language workbenches require further compo-
nents like lexical scanner, parser, and data structures for the 
abstract syntax tree as well as generators to transform the program 
to a general programming language.   

Both industry and research community have recognized this 
circumstance so that today several tools exists that allows auto-
matically generation of such language workbenches based on 
meta-models or grammar definitions. The automatically genera-
tion of a compiler frontend including scanner and parser out of a 
context-free grammar is an established area and a lot of such tools 
like CoCo/R [7] or Antlr [8] are available today. The additional 
generation of editors towards a full-fledged language workbench 
is a consequent further development. 

In this paper, we compare four different tools supporting the 
generation of language workbenches for textual DSLs. In particu-
lar, we describe and compare approaches for definition of the 
language, used techniques for parsing and code generation as well 
as the functional range of the resulting workbenches. For illustra-
tion of commonalities and differences, we created language work-
benches for a simple language used to define finite state 
machines. Furthermore, we provide comparison based on a subset 
of criteria defined by the feature model of DSL tools given in [9].  

This paper is organized as follows. Section 2 defines criteria 
for comparison. Section 3 holds the language definition for our 
example language for finite state machines. Section 4 gives an 
overview of tools supporting textual DSL. Section 5 compares 
these tools based on the defined criteria. 

2. Criteria for Comparison DSL Support 
The goal of this section is to describe the criteria to be used for 
the comparison of selected DSL tools. The criteria are based on 
the DSL feature model defined by Langlois et al. [9]. This feature 
model covers languages, transformation, tooling, and process 
aspects. Instead of defining a new criteria catalog, the reuse of an 
existing catalog facilitates the comparison of our results with 
other comparisons too, in particular, with the comparison of 
graphical DSL tools given in [9]. 

As our comparison will mainly focus on tool support of textual 
DSL, we omitted some criteria. For example, the process aspects 
that are defined as optional features only are omitted. Hence, the 
criteria to be used may be split into three groups: 

 
• Language (LA) 
• Transformation (TR) 
• Tool (TO) 

 
The criteria for each group and the difference to the feature model 
are explained at a glance below. The abbreviation of the group 
combined with a criteria identifier is unique and used later to 
compactly describe the results. In contrast to the feature model in 
[9], the criteria will be explained by means of questions; this is a 
very straightforward and simple approach and should clearly 
show what the respective criteria are about.  

2.1 Language 

This group of criteria comprises tool support for both the abstract 
syntax (AS) and concrete syntax (CS). 

 
• LA-AS1. Which representation is used for the abstract 

syntax (abstract syntax tree or abstract syntax graph)? 
• LA-AS2. Which representation is used for the definition of 

the abstract syntax (grammar or a meta-model)?  



• LA-AS3. Can the abstract syntax be composed of several 
grammars or meta-models?  

• LA-CS1. Which technique is used to map abstract syntax 
to concrete syntax? 

• LA-CS2. Which representation (text, graphic, wizard, or 
table) can be used for the concrete syntax?  

• LA-CS3. Which style (declarative or imperative) can be 
used for the concrete syntax? 

 
As our focus is on textual tools, the criteria LA-CS2 will be 
evaluated as text for all tools.  

2.2 Transformation 

The criteria of this group have to answer questions about specifi-
cation of transformation, expected target assets, and the realiza-
tion to produce the expected target assets. The transformation 
realizes the correspondence from the problem to the solution 
space. A target asset is a software artifact resulting from the trans-
formation. The criteria of this group cover target assets (TA) and 
the operational transformation (OT).  

 
• TR-TA1. Which representations of the target asset (model, 

text, graphic, binary) are possible? 
• TR-TA2. Which kind of support of asset update (destruc-

tive or incremental) is possible? 
• TR-TA3. Which kind of support for integration of target 

assets is used? 
• TR-OT1. Which kinds of transformation technique are 

used (model-to-model (M→M), model-to-text (M→T), 
T→T, T→M)? 

• TR-OT2.  Which mode (compilation or interpretation) is 
used for transformation execution? 

• TR-OT3. Which environment (internal or external) is used 
for transformation execution? 

• TR-OT4. Which scheduling (implicit or explicit) form is 
used? 

• TR-OT5. Which location (internal or external) is used? 
• TR-OT6. Which automation level (manual or automated) 

is used? 
 

The criteria variability and phasing of the feature model are omit-
ted. 

2.3 Tool  

This group of criteria stresses on overall tool support.  
 
• TO-RA1. Which respect of abstraction (intrusive or seam-

less) is used? 
• TO-AS1. Which kind of assistance (static or adaptive) is 

provided? 
• TO-AS2. Which kind of process guidance (step or work-

flow) is provided? 
• TO-AS3. Which kind of checking (completeness or consis-

tency) is supported? 
 

Criteria of the feature model covering quality factors like reliabil-
ity and efficiency are omitted because they are not specific to 
DSL tools and, hence, do not make a substantial contribution for 
our comparison. 

3. Example 
For illustration of commonalities and differences of tools in the 
next section, we show examples based on a simple language used 

to define finite state machines (FSM). For our example, a FSM 
will be described in a text file following a simple syntax. The 
target asset is Java source code. The lexical and syntactical struc-
ture of FSM text files are defined by the following grammar given 
in the EBNF proposed by Wirth [10]: 

 
FSM        = "inputAlphabet" string  
                        "outputAlphabet" string {State}. 
State      = ["start"] "state" id {Transition}. 
Transition = "transition" char ["/" char] "->" id. 
 

A FSM is described by the input alphabet, the output alphabet, 
and a set of states. A state has an identifier and a set of transitions 
that connect a state to following states. A transition is composed 
of an input character that triggers the transition, an optional out-
put character, and the identifier of the following state.  

Terminal classes id, string, and char of the FSM are specified 
as regular expressions: 

 
id = [:alpha:][:alnum:]+  string = "[~ \t\n\r]*"  char = [~ \t\n\r] 
 

The following example shows a finite state machine that deter-
mines if a binary number has an odd or even number of zero dig-
its. 
  

// Digits of a binary number 
inputAlphabet "01" 
// Char 'e' for even and 'o' for odd 
outputAlphabet "eo" 
start state Even 
transition 0 / o -> Odd 
transition 1 / e -> Even 
state Odd 
transition 0 / e -> Even 
transition 1 / o -> Odd 
 

Even this example is very simple it suffices to demonstrate most 
important aspects of different tools and differences between these 
tools. 

4. Overview of Selected Tools 
In this section, we give an overview of tools supporting textual 
DSLs. According to the focus of this paper, a first investigation 
resulted in following tools to be considered: 

 
• openArchitectureWare (oAW), version 4.3 
• Meta Programming System (MPS), early access version 
• MontiCore, version 1.1.5 
• IDE Meta-Tooling Platform (IMP), version 0.1.74 
• Textual Concrete Syntax (TCS), version 0.0.1 
• Textual Editing Framework (TEF), version 1.0.3 
• CodeWorker, version 3.5 

 
For the selection of tools to be included, we considered to omit 
tools that are very similar (at least on technology view) to other 
ones or system that cannot be considered to be used in real pro-
jects (for example, due to immature academic tool). For example, 
oAW, TCS, and TEF are based on same technology (Eclipse, 
GMT); hence, the systems TCS and TEF were omitted in favor of 
the mature oAW. The CodeWorker tool was not considered be-
cause it did not provide editor support at the time of the evalua-
tion. 



 
Figure 1. xText grammar editor. 

4.1 openArchitectureWare 

The openArchitectureWare [11] [12] is an open source project for 
model-driven software development, based on the Eclipse plat-
form. The sub-component xText provides a framework for textual 
languages, whereas the resulting DSL environment is also based 
on the Eclipse platform. 

The concrete syntax is specified as context-free grammar in-
cluding production rules and types of terminal symbols. Figure 1 
shows the grammar of our FSM example in the corresponding 
editor provided by oAW.  The schema of the grammar supports 
cross references, type inheritance, and enumerations. The corre-
sponding editor supports syntax highlighting, code completion of 
keywords and meta-model elements, validation and multi-file 
templates among other things. 

The grammar contains sufficient data to generate the main 
building blocks of a language workbench supporting the specified 
language including: 

 
• an abstract syntax graph (ASG)  
• scanner and parser for text-to-model transformation by 

means of Antlr [8] 
• a generator for model-to-text transformation by means of 

xPand part of oAW 
• an editor based on the Eclipse 

The generation of all these artifacts is configured and controlled 
by a so-called workflow definition file, as shown in Figure 2. 
 

 
Figure 2. Overview oAW. 

 
Figure 3. oAW FSM editor. 

 
The generated artifacts are separated into files (Java source code 
or configuration files) that are indented to be reworked and modi-
fied by the developer and files that are regenerated each time the 
workflow is run. This separation avoids a common problem [13] 
of synchronization of single files that are both generated auto-
matically but also reworked by the developer. 

The generated ASG in form of an Ecore model is based on the 
Eclipse Modeling Framework [14]. oAW uses Antlr to generate 
scanner and parser for text-to-model transformation whereas for 
model/text transformation, the template engine xPand, part of 
oAW, is used. 

The generated text editor for manipulation of DSL texts sup-
ports syntax highlighting, code completion, validation of syntax 
and model constraints checking. Figure 3 shows an example FSM 
opened in the editor whereas a syntax error is showed together 
with provided code completion in order to fix the error. 

At the current state, oAW has some limitations of the expres-
siveness of a DSL grammar. However it provides good tools with 
early validations to quickly develop a DSL with semantic checks 
and text generator. 

4.2 Meta Programming System 

The Meta Programming System (MPS) [15] [16] of JetBrains has 
not been released yet; however, an evaluation version can be ob-
tained in an early access program. Nonetheless, we have included 
the MPS to our comparison because of its unique technique to 
define the syntax of a DSL and the used cell-based editing model.  

The abstract syntax tree (AST) is specified by a list of so-
called concepts. In MPS, all concepts of one language together 
are called the structure of the language.  

 
Figure 4. MPS concept editor. 



 
Figure 5. Overview MPS. 

 
Figure 4 shows the concept for the top-level element FSM of our 
example described in section 3. A concept can extend another 
concept to inherit its properties. For instance, the concept FSM 
defined Figure 4 extends the built-in concept BaseConcept. 

Concepts are connected together by means of references or 
aggregations. An example for an aggregation is the connection 
between the FSM concept and the State concepts. Furthermore, a 
concept has properties that are typically used to contain the values 
of terminal symbols. One concept of a language must be declared 
as root element.  

The concrete syntax of a concept has to be defined in form of 
static text that is not editable and editable cells. An example is 
given later on in this section. 

Figure 5 gives an overview of the affected models for the im-
plementation of the example described in section 3. MPS provides 
a generator following a model-to-model approach that allows the 
transformation from any model to any other model. The transfor-
mation is described by means of templates that are edited with a 
cell editor.  

Figure 6 shows the resulting cell editor for our FSM language 
containing the example FSM defined in section 3. The editing 
area is separated into read-only areas and editable cells. For in-
stance, the properties of the third transition in the example are 
editable, whereas the text outside is read-only. Manipulation of 
texts follows always the same pattern: first, the kind of element to 
be added or edited must be selected and, second, the properties for 
that element can be edited in so called cell editors. 

MPS is interesting as it provides a self-contained complete so-
lution that uses its own technology every where, for example 
editors for manipulation of syntax or templates follow the same 
approach as the resulting editor for our DSL. For another MPS 
example we refer to an article by Martin Fowler [16]. 

4.3 MontiCore 

The MontiCore framework [17] [18] [19] is a research project by 
Software Systems Engineering Institute, TU Braunschweig, Ger-
many. Its core and the generated editor for the DSL are based on 
the Java/Eclipse platform.  

 
Figure 6. MPS FSM editor. 

 
Figure 7. MontiCore grammar editor. 

 
MontiCore uses an enriched context-free grammar for the specifi-
cation of the concrete syntax which is similar to the input format 
of Antlr [8]. In addition to rules of the grammar, it contains defi-
nitions of the data types of terminal symbols, whereas the whole 
range of simple Java data types is supported.  

Figure 7 shows the MontiCore editor with the grammar de-
scribed in section 3. According to the used input format, the 
grammar differs slightly from the grammar described in section 3. 
The input and output character are now enclosed within two apos-
trophes. Furthermore, MontiCore does not accept a terminal sym-
bol that consists of a single character only. MontiCore uses a 
single source for defining concrete and abstract syntax of a DSL 
[18] [20]. The grammar contains sufficient data to generate data 
structures for the abstract syntax tree as well as scanner and 
parser, as shown in Figure 8. The later ones are generated by 
means of the compiler-generator Antlr. However, the parser must 
be connected with the editor for validation manually by imple-
menting some glue code in the Java programming language. 

The model transformation can either be realized in form of 
Java code using the visitor pattern or using the provided template 
engine. The model transformation can be triggered by the user 
inside the editor.  

Figure 9 shows the resulting editor for our FSM language with 
an example FSM. As shown by the example, the syntax is almost 
as specified in section 3. Working with MontiCore requires labor 
however it is also more flexible in the expressiveness of the DSL. 

 

 
Figure 8. Overview MontiCore. 



 
Figure 9. MontiCore FSM editor.  

4.4 IDE Meta-Tooling Platform  

The IDE Meta-Tooling Platform (IMP) [21] is an open source 
project begun at IBM Watson Research. Its goal is to ease the 
development of IDE support for a new programming language. 
IMP provides wizards to generated code skeletons for a large 
range of features required for an IDE of a new language.  

The concrete syntax of a language is defined by a context-free 
grammar, whereas the grammar is divided into input used to gen-
erate the scanner (lexer) and the parser. Figure 10 shows the input 
for the parser for our example language edited in a plain text edi-
tor. Productions of the grammar can be annotated with Java code 
that is added to the data structures for the abstract syntax tree. 

IMP includes the parser generator LPG [22] to generate the 
data types for the abstract syntax tree as well as scanner (lexer) 
and parser, as shown in Figure 11. Furthermore, IMP generates a 
full-featured editor based on the Eclipse platform including out-
line and syntax highlighting, whereas the editor includes the gen-
erated parser. The resulting editor is registered in the Eclipse 
platform using extension points. IMP utilizes the visitor pattern 
for model transformations. For example a source code formatter 
can be implemented using the visitor pattern. 

Figure 12 shows the editor with the example FSM. IMP pro-
vides a generic text editor that supports syntax highlighting, fold-
ing, formatting and code completion. An outline of the text in the 
editor is provided too. IMP does not include a template engine so 
other solutions have to be used instead. For our example, the code 
generator was implemented by means of JET [23]. 

 

 
Figure 10. IMP parser grammar editor. 

 
Figure 11. Overview IMP. 

 
As the goal of IMP indicates its usage is not limited to the con-

struction of DSLs. Compared to the other tools it requires more 
programming effort but on the other hand provides also more 
flexibility. 

 
5. Comparison 
In this section, we will compare the tools, described in the previ-
ous section, by means of the criteria defined in section 2. Figure 
13 contains the result of the comparison at a glance that is de-
scribed in more detail below. 

5.1 Language 

For the representation of the abstract syntax, both trees (AST) and 
graphs (ASG) are used and realized with different strategies.  
MontiCore and IMP generate Java source code implementing the 
abstract syntax tree, whereas oAW and MPS use generic meta-
models for the abstract syntax graph. Except for IMP, the defini-
tion of the abstract syntax can be composed of several grammars 
or meta-models. 

All tools differ in the mapping between concrete syntax and 
abstract syntax. The tools oAW and MontiCore use a single source 
for defining both the concrete and the abstract syntax. In MPS, a 
user first defines the abstract syntax in form of concepts and, 
afterwards, he defines the concrete syntax for every concept. By 
contrast, IMP requires the definition of the concrete syntax only, 
and the abstract syntax is derived automatically from the concrete 
syntax. 

All tools have in common, that the concrete syntax is repre-
sented as text. Of course, this is a consequence of the focus of this 
paper on tools for textual languages. However, MPS stores the 
model as XML document and presents it as text in the editor only. 
All tools support both declarative and imperative style of lan-
guages. 

 
 
 

 
Figure 12. IMP FSM editor. 



5.2 Transformation 

All tools allow the generation of text files as target assets, how-
ever, the support level differs. oAW provides an outstanding trans-
formation support. The template editor of oAW provides code 
completion and early error detection. MPS support model-to-
model transformation out-of-the-box, so text generation requires 
generation of a target model that, in turn, can be transformed into 
text. MontiCore provides a rudimentary template engine only. 
The invocation of the template engine requires to write Java code 
for each text file to be generated, though. IMP is the only tool that 
has no transformation support built-in, so transformation must be 
implemented in the Java programming language following the 
visitor pattern. All tools provide destructive update of generated 
assets only. 

All tools except IMP provide model-to-text mappings. Addi-
tionally, MontiCore and MPS provides model-to-model mappings 
too. For MPS, the model-to-text mapping requires an intermediate 
model-to-model mapping. 

Concerning operational translation covered by criteria TR-
OT2 – TR-OT6, all tools are very similar. Three tools follow an 
interpreted approach whereas a template engine fills templates at 
runtime; only IMP requires compilation of visitor classes imple-
mented in the Java programming language. MPS allows starting 
the transformation process in the same environment whereas all 
other tools require a new instance of the Eclipse workbench. Only 
IMP schedules the transformation automatically after changing 
the DSL text; other tools require manual scheduling of the trans-
formation. Finally, all tools use internal execution of the trans-
formation. 

5.3 Tool 

Regarding tool assistance we observed a high variance ranging 
from a plain text editor for CS definition (IMP) to an editor with 
syntax coloring (MontiCore), code completion and validation 
while typing (oAW and MPS).  

A well supported template editor is also very important. Sup-
port for editing templates range from using an existing editor 
without special template support (MontiCore), to an editor with 
comprehensive template support (oAW and MPS). The latter pro-
vides syntax highlighting, code completion and validation. 

6. Conclusion 
In this paper, we have described four different tools supporting 
textual DSLs. Furthermore, we compared these tools by a set of 
criteria based on the feature model of Langlois et al. [9]. The 
reuse of the criteria facilitates comparison of results presented in 
this paper with other comparisons, for example the comparison of 
graphical DSL tools given in [9] and [24]. 

The feature-set of the resulting language workbenches, mainly 
the editor, ranges from a plain text editor to a full-featured editor 
with syntax coloring, code completion and validation while typ-
ing.  

All tools except MPS generate language workbenches based 
on the Eclipse platform. This explains the commonalities of the 
resulting workbenches. MPS is unique in this comparison as its 
editor is cell based instead of free text used by the other tools.  
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 oAW MontiCore MPS IMP 
Language     
LA-AS1 ASG AST ASG AST 
LA-AS2 ECore meta-model Java Classes Proprietary meta-model. Java Classes 
LA-AS3 Composition. Composition. Composition. No built-in support. 
LA-CS1 Explicit. CS definition 

mixed with AS definition.  
Explicit. CS definition 
mixed with AS definition. 

Explicit. For each element 
of AS editor layout of CS 
is defined. 

Implicit. CS defines AS. 

LA-CS2 Text. Text. Text. Model instance 
stored in XML file. 

Text. 

LA-CS3 Declarative or imperative depends on decision of DSL developer. 
Transformation     
TR-TA1 Text. Template engine 

creates text files. 
Text. Template engine 
creates text files. 

Model or Text. Generator 
creates model instance. 
That in turn can generate 
text. 

No built-in support. 

TR-TA2 Destructive. Overwrites 
TA. 

Destructive. Overwrites 
TA. 

Destructive. Overwrites 
TA. 

No built-in support. 

TR-TA3 No integration support available. 
TR-OT1 M2T using template en-

gine (xPand). 
M2M. Using visitor pat-
tern. 
M2T. Using visitor pattern 
or template engine. 

M2M. Model to model 
generator.  
M2T. Using a target lan-
guage that generates text 
(e.g. BaseLanguage gen-
erates Java Code). 

No built-in support. 

TR-OT2 Interpretation. Templates 
filled at runtime. 

Interpretation. Templates 
filled at runtime. 

Interpretation. Templates 
filled at runtime. 

Compilation if using visi-
tor pattern. 

TR-OT3 External. Runtime work-
bench must be launched. 

External. Runtime work-
bench must be launched. 

Internal. Editor and Trans-
formation in MPS. 

External. Runtime work-
bench must be launched. 

TR-OT4 Explicit. Workflow trig-
gered by user. 

Explicit. Triggered by 
user. 

Explicit. Triggered by 
user. 

Implicit. Eclipse builder 
runs after change. 

TR-OT5 Internal. Runs in runtime 
workbench. 

Internal. Runs in runtime 
workbench. 

Internal. Runs in MPS. Internal. Runs in runtime 
workbench. 

TR-OT6 Manual. Triggered by 
user. 

Manual. Triggered by 
user. 

Manual. Triggered by 
user. 

Automatically after 
change. 

Tool     
TO-RA1 Depends on DSL. Our example DSL is seamless. 
TO-AS1 Adaptive. Code comple-

tion. Validation. 
Adaptive. Validation. Adaptive. Code comple-

tion. Validation. 
Adaptive. Validation. 

TO-AS2 Neither step nor workflow process guidance is supported. 
TO-AS3 Completeness. Using con-

straint language. 
Consistency. Ensured by 
grammar validation. 

Completeness. Needs 
implementation. 
Consistency. Ensured by 
grammar validation. 

Completeness. Using con-
straint language. 
Consistency. Grammar 
validation. 

Completeness. Needs 
implementation. 
Consistency. Ensured by 
grammar validation. 

Figure 13. DSL tool criteria comparison. 


