
A Comparison of Tool Support for Textual Domain-Specific
Languages

Michael Pfeiffer
Software Competence Center Hagenberg

michael.pfeiffer@scch.at

Josef Pichler
Software Competence Center Hagenberg

josef.pichler@scch.at

Abstract
A domain-specific language is a specialized and problem-oriented
language. Successful application of a DSL largely depends on
provided tools, so called language workbenches that support end-
programmers creating, editing, and maintaining programs written
in a DSL. In this paper, we describe four different tools support-
ing the creating of language workbenches, identify commonalities
and differences and compare these tools by means of a set of cri-
teria.

1. Introdcution
Domain-specific languages (DSL) are languages tailored to a
specific application domain [1]. They have the potential to reduce
complexity of software development by raising the abstraction
level towards an application domain. According to the application
domain, different notations (textual, graphical, tabular) are used.
Textual languages have long tradition in the domain of textual
meta-modeling languages like PSL/PSA [2] used for analysis and
documentation of requirements and functional specifications for
information systems. In this paper, we focus on textual languages
following the source-to-source transformation (see [3]), i.e. DSL
code is compiled into a general purpose programming language
like Java and C#. Such textual DSLs are applied successfully in
various areas. For instance, Monaco [4] is a language for end-user
programming for automation systems and Tbl [5] is a language
for test scripts of mobile devices. Successful application of such
languages largely depends on provided tool support. A tool that
support end-programmers creating, editing, and maintaining pro-
grams in a DSL is called a language workbench [6]. Users expect
workbenches including full-featured editors with syntax high-
lighting, code completion, etc. as available for general program-
ming languages. Such editors are often implemented manually
resulting in effort and costs that can be reduced only to a certain
degree by using editor frameworks, for example the Eclipse plat-
form. Furthermore, language workbenches require further compo-
nents like lexical scanner, parser, and data structures for the
abstract syntax tree as well as generators to transform the program
to a general programming language.

Both industry and research community have recognized this
circumstance so that today several tools exists that allows auto-
matically generation of such language workbenches based on
meta-models or grammar definitions. The automatically genera-
tion of a compiler frontend including scanner and parser out of a
context-free grammar is an established area and a lot of such tools
like CoCo/R [7] or Antlr [8] are available today. The additional
generation of editors towards a full-fledged language workbench
is a consequent further development.

In this paper, we compare four different tools supporting the
generation of language workbenches for textual DSLs. In particu-
lar, we describe and compare approaches for definition of the
language, used techniques for parsing and code generation as well
as the functional range of the resulting workbenches. For illustra-
tion of commonalities and differences, we created language work-
benches for a simple language used to define finite state
machines. Furthermore, we provide comparison based on a subset
of criteria defined by the feature model of DSL tools given in [9].

This paper is organized as follows. Section 2 defines criteria
for comparison. Section 3 holds the language definition for our
example language for finite state machines. Section 4 gives an
overview of tools supporting textual DSL. Section 5 compares
these tools based on the defined criteria.

2. Criteria for Comparison DSL Support
The goal of this section is to describe the criteria to be used for
the comparison of selected DSL tools. The criteria are based on
the DSL feature model defined by Langlois et al. [9]. This feature
model covers languages, transformation, tooling, and process
aspects. Instead of defining a new criteria catalog, the reuse of an
existing catalog facilitates the comparison of our results with
other comparisons too, in particular, with the comparison of
graphical DSL tools given in [9].

As our comparison will mainly focus on tool support of textual
DSL, we omitted some criteria. For example, the process aspects
that are defined as optional features only are omitted. Hence, the
criteria to be used may be split into three groups:

• Language (LA)
• Transformation (TR)
• Tool (TO)

The criteria for each group and the difference to the feature model
are explained at a glance below. The abbreviation of the group
combined with a criteria identifier is unique and used later to
compactly describe the results. In contrast to the feature model in
[9], the criteria will be explained by means of questions; this is a
very straightforward and simple approach and should clearly
show what the respective criteria are about.

2.1 Language

This group of criteria comprises tool support for both the abstract
syntax (AS) and concrete syntax (CS).

• LA-AS1. Which representation is used for the abstract

syntax (abstract syntax tree or abstract syntax graph)?
• LA-AS2. Which representation is used for the definition of

the abstract syntax (grammar or a meta-model)?

• LA-AS3. Can the abstract syntax be composed of several
grammars or meta-models?

• LA-CS1. Which technique is used to map abstract syntax
to concrete syntax?

• LA-CS2. Which representation (text, graphic, wizard, or
table) can be used for the concrete syntax?

• LA-CS3. Which style (declarative or imperative) can be
used for the concrete syntax?

As our focus is on textual tools, the criteria LA-CS2 will be
evaluated as text for all tools.

2.2 Transformation

The criteria of this group have to answer questions about specifi-
cation of transformation, expected target assets, and the realiza-
tion to produce the expected target assets. The transformation
realizes the correspondence from the problem to the solution
space. A target asset is a software artifact resulting from the trans-
formation. The criteria of this group cover target assets (TA) and
the operational transformation (OT).

• TR-TA1. Which representations of the target asset (model,

text, graphic, binary) are possible?
• TR-TA2. Which kind of support of asset update (destruc-

tive or incremental) is possible?
• TR-TA3. Which kind of support for integration of target

assets is used?
• TR-OT1. Which kinds of transformation technique are

used (model-to-model (M→M), model-to-text (M→T),
T→T, T→M)?

• TR-OT2. Which mode (compilation or interpretation) is
used for transformation execution?

• TR-OT3. Which environment (internal or external) is used
for transformation execution?

• TR-OT4. Which scheduling (implicit or explicit) form is
used?

• TR-OT5. Which location (internal or external) is used?
• TR-OT6. Which automation level (manual or automated)

is used?

The criteria variability and phasing of the feature model are omit-
ted.

2.3 Tool

This group of criteria stresses on overall tool support.

• TO-RA1. Which respect of abstraction (intrusive or seam-

less) is used?
• TO-AS1. Which kind of assistance (static or adaptive) is

provided?
• TO-AS2. Which kind of process guidance (step or work-

flow) is provided?
• TO-AS3. Which kind of checking (completeness or consis-

tency) is supported?

Criteria of the feature model covering quality factors like reliabil-
ity and efficiency are omitted because they are not specific to
DSL tools and, hence, do not make a substantial contribution for
our comparison.

3. Example
For illustration of commonalities and differences of tools in the
next section, we show examples based on a simple language used

to define finite state machines (FSM). For our example, a FSM
will be described in a text file following a simple syntax. The
target asset is Java source code. The lexical and syntactical struc-
ture of FSM text files are defined by the following grammar given
in the EBNF proposed by Wirth [10]:

FSM = "inputAlphabet" string
 "outputAlphabet" string {State}.
State = ["start"] "state" id {Transition}.
Transition = "transition" char ["/" char] "->" id.

A FSM is described by the input alphabet, the output alphabet,
and a set of states. A state has an identifier and a set of transitions
that connect a state to following states. A transition is composed
of an input character that triggers the transition, an optional out-
put character, and the identifier of the following state.

Terminal classes id, string, and char of the FSM are specified
as regular expressions:

id = [:alpha:][:alnum:]+ string = "[~ \t\n\r]*" char = [~ \t\n\r]

The following example shows a finite state machine that deter-
mines if a binary number has an odd or even number of zero dig-
its.

// Digits of a binary number
inputAlphabet "01"
// Char 'e' for even and 'o' for odd
outputAlphabet "eo"
start state Even
transition 0 / o -> Odd
transition 1 / e -> Even
state Odd
transition 0 / e -> Even
transition 1 / o -> Odd

Even this example is very simple it suffices to demonstrate most
important aspects of different tools and differences between these
tools.

4. Overview of Selected Tools
In this section, we give an overview of tools supporting textual
DSLs. According to the focus of this paper, a first investigation
resulted in following tools to be considered:

• openArchitectureWare (oAW), version 4.3
• Meta Programming System (MPS), early access version
• MontiCore, version 1.1.5
• IDE Meta-Tooling Platform (IMP), version 0.1.74
• Textual Concrete Syntax (TCS), version 0.0.1
• Textual Editing Framework (TEF), version 1.0.3
• CodeWorker, version 3.5

For the selection of tools to be included, we considered to omit
tools that are very similar (at least on technology view) to other
ones or system that cannot be considered to be used in real pro-
jects (for example, due to immature academic tool). For example,
oAW, TCS, and TEF are based on same technology (Eclipse,
GMT); hence, the systems TCS and TEF were omitted in favor of
the mature oAW. The CodeWorker tool was not considered be-
cause it did not provide editor support at the time of the evalua-
tion.

Figure 1. xText grammar editor.

4.1 openArchitectureWare

The openArchitectureWare [11] [12] is an open source project for
model-driven software development, based on the Eclipse plat-
form. The sub-component xText provides a framework for textual
languages, whereas the resulting DSL environment is also based
on the Eclipse platform.

The concrete syntax is specified as context-free grammar in-
cluding production rules and types of terminal symbols. Figure 1
shows the grammar of our FSM example in the corresponding
editor provided by oAW. The schema of the grammar supports
cross references, type inheritance, and enumerations. The corre-
sponding editor supports syntax highlighting, code completion of
keywords and meta-model elements, validation and multi-file
templates among other things.

The grammar contains sufficient data to generate the main
building blocks of a language workbench supporting the specified
language including:

• an abstract syntax graph (ASG)
• scanner and parser for text-to-model transformation by

means of Antlr [8]
• a generator for model-to-text transformation by means of

xPand part of oAW
• an editor based on the Eclipse

The generation of all these artifacts is configured and controlled
by a so-called workflow definition file, as shown in Figure 2.

Figure 2. Overview oAW.

Figure 3. oAW FSM editor.

The generated artifacts are separated into files (Java source code
or configuration files) that are indented to be reworked and modi-
fied by the developer and files that are regenerated each time the
workflow is run. This separation avoids a common problem [13]
of synchronization of single files that are both generated auto-
matically but also reworked by the developer.

The generated ASG in form of an Ecore model is based on the
Eclipse Modeling Framework [14]. oAW uses Antlr to generate
scanner and parser for text-to-model transformation whereas for
model/text transformation, the template engine xPand, part of
oAW, is used.

The generated text editor for manipulation of DSL texts sup-
ports syntax highlighting, code completion, validation of syntax
and model constraints checking. Figure 3 shows an example FSM
opened in the editor whereas a syntax error is showed together
with provided code completion in order to fix the error.

At the current state, oAW has some limitations of the expres-
siveness of a DSL grammar. However it provides good tools with
early validations to quickly develop a DSL with semantic checks
and text generator.

4.2 Meta Programming System

The Meta Programming System (MPS) [15] [16] of JetBrains has
not been released yet; however, an evaluation version can be ob-
tained in an early access program. Nonetheless, we have included
the MPS to our comparison because of its unique technique to
define the syntax of a DSL and the used cell-based editing model.

The abstract syntax tree (AST) is specified by a list of so-
called concepts. In MPS, all concepts of one language together
are called the structure of the language.

Figure 4. MPS concept editor.

Figure 5. Overview MPS.

Figure 4 shows the concept for the top-level element FSM of our
example described in section 3. A concept can extend another
concept to inherit its properties. For instance, the concept FSM
defined Figure 4 extends the built-in concept BaseConcept.

Concepts are connected together by means of references or
aggregations. An example for an aggregation is the connection
between the FSM concept and the State concepts. Furthermore, a
concept has properties that are typically used to contain the values
of terminal symbols. One concept of a language must be declared
as root element.

The concrete syntax of a concept has to be defined in form of
static text that is not editable and editable cells. An example is
given later on in this section.

Figure 5 gives an overview of the affected models for the im-
plementation of the example described in section 3. MPS provides
a generator following a model-to-model approach that allows the
transformation from any model to any other model. The transfor-
mation is described by means of templates that are edited with a
cell editor.

Figure 6 shows the resulting cell editor for our FSM language
containing the example FSM defined in section 3. The editing
area is separated into read-only areas and editable cells. For in-
stance, the properties of the third transition in the example are
editable, whereas the text outside is read-only. Manipulation of
texts follows always the same pattern: first, the kind of element to
be added or edited must be selected and, second, the properties for
that element can be edited in so called cell editors.

MPS is interesting as it provides a self-contained complete so-
lution that uses its own technology every where, for example
editors for manipulation of syntax or templates follow the same
approach as the resulting editor for our DSL. For another MPS
example we refer to an article by Martin Fowler [16].

4.3 MontiCore

The MontiCore framework [17] [18] [19] is a research project by
Software Systems Engineering Institute, TU Braunschweig, Ger-
many. Its core and the generated editor for the DSL are based on
the Java/Eclipse platform.

Figure 6. MPS FSM editor.

Figure 7. MontiCore grammar editor.

MontiCore uses an enriched context-free grammar for the specifi-
cation of the concrete syntax which is similar to the input format
of Antlr [8]. In addition to rules of the grammar, it contains defi-
nitions of the data types of terminal symbols, whereas the whole
range of simple Java data types is supported.

Figure 7 shows the MontiCore editor with the grammar de-
scribed in section 3. According to the used input format, the
grammar differs slightly from the grammar described in section 3.
The input and output character are now enclosed within two apos-
trophes. Furthermore, MontiCore does not accept a terminal sym-
bol that consists of a single character only. MontiCore uses a
single source for defining concrete and abstract syntax of a DSL
[18] [20]. The grammar contains sufficient data to generate data
structures for the abstract syntax tree as well as scanner and
parser, as shown in Figure 8. The later ones are generated by
means of the compiler-generator Antlr. However, the parser must
be connected with the editor for validation manually by imple-
menting some glue code in the Java programming language.

The model transformation can either be realized in form of
Java code using the visitor pattern or using the provided template
engine. The model transformation can be triggered by the user
inside the editor.

Figure 9 shows the resulting editor for our FSM language with
an example FSM. As shown by the example, the syntax is almost
as specified in section 3. Working with MontiCore requires labor
however it is also more flexible in the expressiveness of the DSL.

Figure 8. Overview MontiCore.

Figure 9. MontiCore FSM editor.

4.4 IDE Meta-Tooling Platform

The IDE Meta-Tooling Platform (IMP) [21] is an open source
project begun at IBM Watson Research. Its goal is to ease the
development of IDE support for a new programming language.
IMP provides wizards to generated code skeletons for a large
range of features required for an IDE of a new language.

The concrete syntax of a language is defined by a context-free
grammar, whereas the grammar is divided into input used to gen-
erate the scanner (lexer) and the parser. Figure 10 shows the input
for the parser for our example language edited in a plain text edi-
tor. Productions of the grammar can be annotated with Java code
that is added to the data structures for the abstract syntax tree.

IMP includes the parser generator LPG [22] to generate the
data types for the abstract syntax tree as well as scanner (lexer)
and parser, as shown in Figure 11. Furthermore, IMP generates a
full-featured editor based on the Eclipse platform including out-
line and syntax highlighting, whereas the editor includes the gen-
erated parser. The resulting editor is registered in the Eclipse
platform using extension points. IMP utilizes the visitor pattern
for model transformations. For example a source code formatter
can be implemented using the visitor pattern.

Figure 12 shows the editor with the example FSM. IMP pro-
vides a generic text editor that supports syntax highlighting, fold-
ing, formatting and code completion. An outline of the text in the
editor is provided too. IMP does not include a template engine so
other solutions have to be used instead. For our example, the code
generator was implemented by means of JET [23].

Figure 10. IMP parser grammar editor.

Figure 11. Overview IMP.

As the goal of IMP indicates its usage is not limited to the con-

struction of DSLs. Compared to the other tools it requires more
programming effort but on the other hand provides also more
flexibility.

5. Comparison
In this section, we will compare the tools, described in the previ-
ous section, by means of the criteria defined in section 2. Figure
13 contains the result of the comparison at a glance that is de-
scribed in more detail below.

5.1 Language

For the representation of the abstract syntax, both trees (AST) and
graphs (ASG) are used and realized with different strategies.
MontiCore and IMP generate Java source code implementing the
abstract syntax tree, whereas oAW and MPS use generic meta-
models for the abstract syntax graph. Except for IMP, the defini-
tion of the abstract syntax can be composed of several grammars
or meta-models.

All tools differ in the mapping between concrete syntax and
abstract syntax. The tools oAW and MontiCore use a single source
for defining both the concrete and the abstract syntax. In MPS, a
user first defines the abstract syntax in form of concepts and,
afterwards, he defines the concrete syntax for every concept. By
contrast, IMP requires the definition of the concrete syntax only,
and the abstract syntax is derived automatically from the concrete
syntax.

All tools have in common, that the concrete syntax is repre-
sented as text. Of course, this is a consequence of the focus of this
paper on tools for textual languages. However, MPS stores the
model as XML document and presents it as text in the editor only.
All tools support both declarative and imperative style of lan-
guages.

Figure 12. IMP FSM editor.

5.2 Transformation

All tools allow the generation of text files as target assets, how-
ever, the support level differs. oAW provides an outstanding trans-
formation support. The template editor of oAW provides code
completion and early error detection. MPS support model-to-
model transformation out-of-the-box, so text generation requires
generation of a target model that, in turn, can be transformed into
text. MontiCore provides a rudimentary template engine only.
The invocation of the template engine requires to write Java code
for each text file to be generated, though. IMP is the only tool that
has no transformation support built-in, so transformation must be
implemented in the Java programming language following the
visitor pattern. All tools provide destructive update of generated
assets only.

All tools except IMP provide model-to-text mappings. Addi-
tionally, MontiCore and MPS provides model-to-model mappings
too. For MPS, the model-to-text mapping requires an intermediate
model-to-model mapping.

Concerning operational translation covered by criteria TR-
OT2 – TR-OT6, all tools are very similar. Three tools follow an
interpreted approach whereas a template engine fills templates at
runtime; only IMP requires compilation of visitor classes imple-
mented in the Java programming language. MPS allows starting
the transformation process in the same environment whereas all
other tools require a new instance of the Eclipse workbench. Only
IMP schedules the transformation automatically after changing
the DSL text; other tools require manual scheduling of the trans-
formation. Finally, all tools use internal execution of the trans-
formation.

5.3 Tool

Regarding tool assistance we observed a high variance ranging
from a plain text editor for CS definition (IMP) to an editor with
syntax coloring (MontiCore), code completion and validation
while typing (oAW and MPS).

A well supported template editor is also very important. Sup-
port for editing templates range from using an existing editor
without special template support (MontiCore), to an editor with
comprehensive template support (oAW and MPS). The latter pro-
vides syntax highlighting, code completion and validation.

6. Conclusion
In this paper, we have described four different tools supporting
textual DSLs. Furthermore, we compared these tools by a set of
criteria based on the feature model of Langlois et al. [9]. The
reuse of the criteria facilitates comparison of results presented in
this paper with other comparisons, for example the comparison of
graphical DSL tools given in [9] and [24].

The feature-set of the resulting language workbenches, mainly
the editor, ranges from a plain text editor to a full-featured editor
with syntax coloring, code completion and validation while typ-
ing.

All tools except MPS generate language workbenches based
on the Eclipse platform. This explains the commonalities of the
resulting workbenches. MPS is unique in this comparison as its
editor is cell based instead of free text used by the other tools.

References
[1] M. Mernik, J. Heering, A. Sloane. When and How to Develop Do-

main-Specific Languages, ACM Computing Surveys, vol. 37, no. 4,
pp. 316-344, December 2005.

[2] D. Teichroew and E.A. Hersehey. PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Informa-

tion Processing Systems. IEEE Transactions on Software Engineer-
ing, Vol. SE-3, No. 1, 41-48, 1977.

[3] D. Spinellis. Notable design patterns for domain-specific languages.
The Journal of Systems and Software 56, 91-99, 2001.

[4] H. Prähofer, D. Hurnaus, C. Wirth, H. Mössenböck. The Domain-
Specific Language Monaco and its Visual Interactive Programming
Environment. IEEE Symposium on Visual Languages and Human-
Centric Computing, Coeur d’Aléne, Idaho, USA, September 23-27,
2007.

[5] W. Hargassner, T. Hofer, C. Klammer, J. Pichler, G. Reisinger. A
script-based testbed for mobile software frameworks. In Proceedings
First International Conference on Software Testing, Verification, and
Validation, pp. 448-457, 2008.

[6] M. Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages?. 2005.
http://martinfowler.com/articles/languageWorkbench.html.

[7] H. Mössenböck. Coco/R for various languages – Online Documenta-
tion. http://www.ssw.uni-linz.ac.at/Research/Projects/Coco.

[8] T. Parr and R. Quong. ANTLR: A Predicated-LL(k) Parser Genera-
tor. In Journal of Software Practice and Experience, 25(7):789-810,
July, 1994.

[9] B. Langlois, C.E. Jitia, E. Jouenne. DSL Classification. In 7th OOP-
SLA Workshop on Domain-Specific Modeling, 2007.

[10] N. Wirth. What Can We Do about the Unnecessary Diversity of
Notation for Syntactic Definitions? Communications of the ACM,
November 1977.

[11] Open Architecture Ware, http://www.openarchitectureware.org.
[12] P. Friese, S. Efftinge, J. Köhnlein. Build your own textual DSL with

Tools from the Eclipse Modeling Project. 2008.
http://www.eclipse.org/articles/article.php?file=Article-
BuildYourOwnDSL/index.html.

[13] L. Angyal, L. Lengyel, H. Charaf. A Synchronizing Technique for
Syntactic Model-Code Round-Trip Engineering. Engineering of
Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE In-
ternational Conference and Workshop on the Engineering of Com-
puter Based Systems, pp.463-472, April, 2008.

[14] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. Grose. Eclipse
Modeling Framework. Addison-Wesley, August 2003.

[15] Meta Programming System. http://www.jetbrains.com/mps.
[16] M. Fowler. A Language Workbench in Action – MPS. 2005.

http://martinfowler.com/articles/mpsAgree.html.
[17] MontiCore http://www.monticore.de.
[18] H. Grönninger, H.Krahn, B. Rumpe, M. Schindler, S. Völkel. Mon-

tiCore: A Framework for the Development of Textual Domain Spe-
cific Languages. In Proceedings of the 30th International Conference
of Software Engineering (ICSE), Leipzig, Germany, 2008.

[19] H. Krahn, B. Rumpe, S. Völkel. Efficient Editor Generation for
Compositional DSLs in Eclipse. In 7th OOPSLA Workshop on Do-
main-Specific Modeling, 2007.

[20] H. Krahn, B. Rumpe, S. Völkel. Integrated Definition of Abstract and
Concrete Syntax for Textual Languages. In Proceedings of the
ACM/IEEE 10th International Conference of Model Driven Engi-
neering Languages and Systems (MODELS), Nashville, TN, USA,
2007.

[21] IDE Meta-Tooling Platform. http://www.eclipse.org/imp.
[22] The LALR parser generator (LPG).

http://sourceforge.net/projects/lpg.
[23] JET, http://www.eclipse.org/modeling/m2t/?project=jet.
[24] T. Özgür. Comparison of Microsoft DSL Tools and Eclipse Model-

ing Frameworks for Domain-Specifc Modeling. Master Thesis, Soft-
ware Engineering, MSE-2007:07, Bleking Institute of Technology,
Sweden, 2007.

 oAW MontiCore MPS IMP
Language
LA-AS1 ASG AST ASG AST
LA-AS2 ECore meta-model Java Classes Proprietary meta-model. Java Classes
LA-AS3 Composition. Composition. Composition. No built-in support.
LA-CS1 Explicit. CS definition

mixed with AS definition.
Explicit. CS definition
mixed with AS definition.

Explicit. For each element
of AS editor layout of CS
is defined.

Implicit. CS defines AS.

LA-CS2 Text. Text. Text. Model instance
stored in XML file.

Text.

LA-CS3 Declarative or imperative depends on decision of DSL developer.
Transformation
TR-TA1 Text. Template engine

creates text files.
Text. Template engine
creates text files.

Model or Text. Generator
creates model instance.
That in turn can generate
text.

No built-in support.

TR-TA2 Destructive. Overwrites
TA.

Destructive. Overwrites
TA.

Destructive. Overwrites
TA.

No built-in support.

TR-TA3 No integration support available.
TR-OT1 M2T using template en-

gine (xPand).
M2M. Using visitor pat-
tern.
M2T. Using visitor pattern
or template engine.

M2M. Model to model
generator.
M2T. Using a target lan-
guage that generates text
(e.g. BaseLanguage gen-
erates Java Code).

No built-in support.

TR-OT2 Interpretation. Templates
filled at runtime.

Interpretation. Templates
filled at runtime.

Interpretation. Templates
filled at runtime.

Compilation if using visi-
tor pattern.

TR-OT3 External. Runtime work-
bench must be launched.

External. Runtime work-
bench must be launched.

Internal. Editor and Trans-
formation in MPS.

External. Runtime work-
bench must be launched.

TR-OT4 Explicit. Workflow trig-
gered by user.

Explicit. Triggered by
user.

Explicit. Triggered by
user.

Implicit. Eclipse builder
runs after change.

TR-OT5 Internal. Runs in runtime
workbench.

Internal. Runs in runtime
workbench.

Internal. Runs in MPS. Internal. Runs in runtime
workbench.

TR-OT6 Manual. Triggered by
user.

Manual. Triggered by
user.

Manual. Triggered by
user.

Automatically after
change.

Tool
TO-RA1 Depends on DSL. Our example DSL is seamless.
TO-AS1 Adaptive. Code comple-

tion. Validation.
Adaptive. Validation. Adaptive. Code comple-

tion. Validation.
Adaptive. Validation.

TO-AS2 Neither step nor workflow process guidance is supported.
TO-AS3 Completeness. Using con-

straint language.
Consistency. Ensured by
grammar validation.

Completeness. Needs
implementation.
Consistency. Ensured by
grammar validation.

Completeness. Using con-
straint language.
Consistency. Grammar
validation.

Completeness. Needs
implementation.
Consistency. Ensured by
grammar validation.

Figure 13. DSL tool criteria comparison.

