

The Practice of Deploying DSM

Report from a Japanese Appliance Maker Trenches

Laurent Safa

EMIT Middleware Laboratory

Matsushita Electric Works, Ltd.

1048, Kadoma, Osaka 571-8686, Japan

+81-6-6908-6752

safa at mail dot mew dot co dot jp

Abstract: Abstract: Abstract: Abstract: Domain-specific modeling (DSM) and code generation technologies

have been around for decades yet are not widely used when compared to

traditional software development practices of using general purpose languages (“C”,

Java...) and design techniques (sketches, UML, OOP...). This is surprising

considering the availability of mature tools capable of generating product quality

application code, configurations, documentations, test suites and other artifacts,

from a unique source, a domain-specific model [1]. Why is it so? The problem may

lie in the difficulty of integrating DSM into legacy processes and mindsets. Based

on real experience in the domains of home automation and embedded device

networks developments, we present some key aspects of deploying DSM. After

presenting our context of modeling and the rationales behind our decision to use

DSM, we describe our approach to the problems of promotion, process integration,

usability and sustainable deployment of domain-specific solutions. We conclude

with the recognition that most challenges to deploy DSM are not technical but

human by nature, and we elaborate on the perceived advantages of using Cognitive

Dimensions to help build better domain-specific languages and tools.

Introduction

The home and building automation divisions of Matsushita Electric Works, Ltd., Japan

(MEW) are contemplating a steady increase of software development costs combined with

growing difficulties to satisfy quality requirements for appliances. These problems are caused

by the constant growth in scope, size, and complexity of the features implemented by way of

embedded software, while the fundamental practices and tools have not significantly evolved.

More embedded features Same old development tools

- Internet connectivity

- Multi-media

- Ubiquitous computing

- Plug-and-play behavior

- Peer-to-peer networks

- Mesh networks

- Application mashups

- Text-based editor

- Low-level programming language “C”

- Limited use of patterns

- Ad-hoc approaches to problem solving

Table 1: Poor practices for today's challenges

MEW has engaged several projects to address this challenge, the so-called “Software crisis”:

- CMM-based software process improvement (SPI)

- Definition of common development platforms and modules

- Deployment of software automation practices and tools

This paper discusses the later project. We start with an explanation of our rationales for

selecting domain-specific modeling (DSM). We subsequently describe our promotional

approach based on the resolution of measurable problems related to the use of embedded

software. We then discuss the issue of process integration and propose a life cycle for

software development with DSM. Next we analyze the problem of devising visual languages

that do not get in the way of the practitioners, and we introduce the concept of escape

semantics that enables creative modeling and collegial language construction. Finally we

present a test-driven approach to facilitate the deployment of families of custom languages.

The Context of Modeling and the Decision to Use Domain-Specific Modeling

At MEW, new technologies and

disciplines are created in the Advanced

R&D Lab before being transferred to

product divisions to help these enter

new markets. The phases of creating

appropriate new technologies and

deploying these in time to product

divisions constitute two major

challenges (cf. {C} for creation and

{D} for deployment in Diagram 1).

MEW had mixed experiences with past

attempts to use CASE tools and

UML-based modeling to facilitate the new technology creation phase {C}.

Advanced
R&D Lab

technologies

tools

methods

product

division
A product

division
B

product
division

C

market B

market A

market C

C

D

Diagram 1: Position and role of the R&D lab

The following table lists the most significant attempts at using modeling tools to develop

better software. Although these were local successes, each one failed to go beyond the

category of early adopters.

Tool type Design method Generation Platform Application

state-transition

matrix

8-16bit CPU

No RTOS
Room control

commercial

UML

“C”
16-32bit CPU

RTOS

IP routing and

filtering

in-house

development

sequential

functional charts
ASM

4-8bit CPU

No RTOS

Remote sensors

and actuators

Table 2: Past experiences of software modeling

The first reason invoked by practitioners for the failure to deploy software modeling is

specific to off-the-shelf commercial tools: for full code generation, it is necessary to use the

tool vendor’s underlying framework which raises questions of suitability (does the vendor’s

framework perform correctly within the product specifications), adaptability (recurrent cost

of porting the vendor’s framework to new hardware platforms), availability (MEW products

for home and building automations have a typical lifespan of 10 to 20 years), and loss of

differentiation factor (use of same framework as competitors who purchased the same

vendor’s tool).

A second reason is specific to UML: practitioners consider UML’s object-oriented notations

too far apart from the “C” procedural world in which they evolve. Instead of class-centric

designs, practitioners think in terms of concurrent tasks, interlock mechanisms, software

stacks, data formats and communication protocols.

A third reason was the lack of support over the long period of product development.

Innovators did not have sufficient organizational support to pursue the promotion long

enough for their new methodologies to be integrated in the organization’s development

process. Active promotions were abandoned after their initiators were assigned new

responsibilities.

After previously promising methods felt short of expectations, users built-up natural

defenses against novelty and focused instead on known-practices: assembly language and

“C” programming. With these, the team can program on the bare metal, be in control of the

detailed implementation, and predictable behavior can be produced.

A corporate language has evolved naturally over the years to express requirements, designs

and implementations matters. It has notations, conventions and semantics that map precisely

the problem domains, and it evolves incrementally when the problem domain changes as

described in following table.

Problem domain change Consequence / Response

Application of Building Automation

technologies to the Home Automation

market

Downsizing of specifications.

Reuse of selected sensors, actuators and

communication mediums.

Porting of selected software modules and hardware

components to lower-end hardware platforms.

Home appliances get connected to the

Internet

Addition of Internet protocol stacks for

machine-to-machine and machine-to-human

communications (TCP, HTTP, SMTP/POP...).

Reduction of single points of failure Addition of peer-to-peer features to move from

top-down hierarchical control to grid-like

computing.

Table 3: Examples of corporate response to some domain changes

This corporate language survived all the changes and it evolved just in time at the pace

required by practitioners to be used for internal communication and development purposes.

It is well understood not only by developers, but also across the board by testing divisions,

marketing people, sales people and managers. Models are written in the form of diagrams

with free-form graphic tools, or simply tables with text editors.

Format Defines

Table Message format, Product specifications, I/O map, Memory map

Graph Network system architecture, Device role, User-interface,

Data-flow, Hardware layout

Sequence diagram Communication protocol, Feature implementation

Sequential functional

graph

Input-driven decision logic (decision-tree)

Stack Software architecture

Bag Features selection

Table 4: Some concepts found in MEW models (N=13 projects)

We concluded that past failures to deploy software modeling practices were caused

principally by the strategy of targeting the fragmented problem of new technology creation

with uniform methods (cf. {C} in Diagram 1), the requirement to use notations and concepts

apart from the practitioners’ concerns, and the lack of organizational support.

Furthermore, although the methods employed to create new technologies are not always

optimal, practitioners generally succeed to complete their technical development. However,

practitioners often have troubles getting their new technology deployed to product divisions

and spread to many development groups, which results in underused software modules. In

other words, previous modeling promotion efforts aimed at improving what was working

(creation), failing to provide a solution for what was not working (deployment).

With that respect, we decided to focus our new software modeling project on the issue of

deploying new technologies to product divisions (cf. {D} in Diagram 1), and to use the

on-going CMM-based process improvement effort as our organizational support. To adapt to

the needs of stakeholders from various backgrounds, we selected Domain-Specific Modeling

(DSM) for its versatility and adaptability. To enable quick development of solutions with few

resources, we selected a DSM tool with a metamodeling facility (language definition and

visual editing) based on configuration rather than programming. To reduce the risk of losing

support over a long period of time, we selected a commercial tool from a well-established

vendor. The promotion of general purpose modeling was delegated to our Software

Engineering Group (SEG) within the software process improvement project.

DSM Medicine

In the course of our DSM developments, we found evidences of a wide range of problems that

can be solved with DSM technologies, although these are not necessarily defined in terms of

application code generation. Hereafter we list the problems we encountered, and we briefly

describe the DSM solution we proposed to the respective stakeholders.

Stakeholder Activity Needs DSM Solution

Complex system
configuration

Generation of configuration files from
system model Product

engineer
Development of
systems of systems Too many misuse cases

to take in account
Automated discovery of misuse cases
from models

Product
developer

Porting of existing
software to new
hardware
(re-targeting)

Quality issues
Injection of generated code into code
templates

Test suite development
is costly

Product tester
Development of test
suites Possibility to overlook

test cases

Automated generation of test suite
from models

Development
team

Product development
Late requirement
changes

Provide agility by way of visual
modeling and code generation as
visual models are closer to the
requirements than source code

Development
manager

Pass-over of a
working software to
the product division

Up-to-date design
documentations

Generate up-to-date design and
architecture documents from the
model

R&D planning
office

Measure of gap
between current
development practices
and foreseeable
market needs

Visibility of current
development practices

A central model repository that can be
scanned (a special model compilation)
to extract information such as usage
frequency of a module, of an operating
system, of a combination of domain
concepts…

Stakeholder Activity Needs DSM Solution

Core technology
developers

Develop new
technologies for
tomorrow’s products

Reduce learning curve
of innovative
technologies to help
deploy these to the
developers

Reduce learning curve by embedding
new APIs and guidelines into the code
generator, and by providing a familiar
visual language atop of it.

Software
Process
Improvement
Group

Promotion of best
coding practices

A method to enforce
code layouts, naming
conventions, folders
conventions, etc…

Automated code generation according
to well-defined rules.

A method to avoid
dangerous code
structures (scanf…)

Automated code generation that
complies with the corporate security
policy

Software
Security Group

Reduction of software
security risk

Difficulty to analyze
risks induced by design

A special model compiler that derives
risks from the model

Costly software
development

Software automation

Top
management

Strategic planning Difficulty to enforce
reuse of common
platforms across the
company

Automated selection of reusable
models

Table 5: A selection of problems that can be addressed by way of DSM

Note that care should be given to select pains (problems) which resolution can be measured

to demonstrate progress to both practitioners and management. Our pain killing method is

composed of six steps:

- Get embedded into the practitioner team

- Observe the way people work to understand their context

- Ask practitioners for the few problems that most disrupt their core activity

- Select the problems that can be measured

- Present the DSM solution as a pain killer

- Deploy the DSM solution and verify the problem reduction with the practitioners

Process Integration of Modeling

Contrary to what happened with past efforts to promote general purpose modeling, where

practitioners questioned the ability of specifying their software particularities, or the

opportunity of replacing in-house frameworks with the tool vendor’s, we found no such

resistance to our DSM effort. The perceived reason is that DSM tools adapt to the

methodology in place, allowing us to use the domain concepts and frameworks that

practitioners have been developing for years. This seems to corroborate Seth Godin when he

writes [2] “a key element in the spreading of the idea is the capsule that contains it. If it’s

easy to swallow, tempting and complete, it’s far more likely to get a good start.”

In order to clarify the positioning of DSM into the corporate process, we defined the three

activities of creation {C}, deployment {D} and evolution {E}. As illustrated in the following

diagram, new technologies are first created using appropriate software engineering

techniques {C}, and later deployed to the product domain with the help of DSM {D}. Finally,

necessary evolutionary steps {E} are engaged to keep both technologies and DSM capsules

up to date with the constantly changing market needs.

Software

Engineering
Framework DSM

capsule

Product
Variations

Market Evolution

Marketing

technologist
domain

product
domain

“classic” design
and modeling

C
D

E

Diagram 2: DSM capsule fills the gap between technologists and marketers

When looking from a life cycle perspective (cf. Diagram 3), the creation activity {C}

corresponds to new product developments, while deployment activity {D} represents

domain-specific modeling. Finally, the evolution activity {E} maps to the incremental

changes applied to both framework and modeling tool to follow the domain changes.

Furthermore, this view reveals a well-established practice we have no plan to change: during

the fundamental research phase practitioners often use off-the-shelf DSM tools for algorithm

research purposes (ex: Simulink®).

Software
Engineering

Domain-Specific
Modeling

Metamodeling

Research New Product

Product Variations

Product Line

Software
Engineering

Product

Line
Development

Only Once
Development

S
im

u
lin

k
,
e
tc

..
.

C

D

E

Diagram 3: Life cycle for software development aimed at deployment with DSM

Agile Modeling

Language agility is critical to the tool-smith, because lack of language agility puts the DSM

tool at risk of being abandoned by practitioners for more convenient methods. After all, what

matters most to practitioners is producing a working product, not using modeling tools.

The following diagram illustrates the gap between present needs, practices and available

tools. Due to the metamodeling delay necessary to define visual languages, editors and

compilers, the DSM tool lags behind practices, so it is at risk of being perceived as

constraining, especially for practitioners used to drawing with free-format whiteboards, pen

and paper and general purpose diagram tools like Microsoft© PowerPoint.

Tomorrow’s
tool

Today’s
practicesYesterday’s

practices

Today’s

tool

well-known
problem range

lower value

new problem range
higher value

metamodeling

delay

escape semantics
bridge the gap

Diagram 4: Reduce the gap between tool and practices

To address this issue we implemented escape semantics in our languages, with the purpose

of improving the modeling tool’s stickiness by making it applicable to new problems not

taken in account at language-design-time. The escape semantics allow for free-form

modeling within boundaries set by the tool-smith, letting the modeler augment the official

notation as necessary, typically when devising designs for new market segments. This opens

the door to a collegial form of custom language construction where the DSM tool-smith and

the domain expert initiate the reflection and practitioners add their thoughts and knowledge

from field applications.

We identified several escape semantics that can empower the tool user:

1. Joker objects to augment the official language with new concepts

2. Joker links to augment the official language with new kinds of relationships

3. Overwritable list-boxes that can be augmented on the fly with new entries

4. Code generator aspects to let tool users augment the model compiler

5. The ability to extend model concepts with properties created on the fly

We noticed that young practitioners are more inclined to “invent” new notations to represent

the world as they see it, while senior practitioners have been trained to the corporate notation

and limit their usage of escape semantics to fixing purposes. Typical usage patterns of

escape semantics we identified include:

- Add a concept that was overlooked by the tool-smith and expert.

- Augment the expressiveness of an existing language to enter a new domain.

- Adapt existing models to new corporate regulations.

Following is a real example of escape semantics occurrence. A Field-bus Definition

language had been defined to declare the type, cardinality and mapping of data points found

in communication protocols used to interface sensors and actuators. Because this language

was too simple to describe Full2Way field-bus, Mr. Tanaka proposed the addition of a union

relationship by using one Joker object (yellow box) and three Joker links (red dashed lines)

to represent the fact that terminal unit data points (tu) and lighting dimmer data points

(dimmer) are interchangeable.

tu : bit

dimmer : integer

[0..127]

dimmer : integer
[0..127]

group : bit

pattern

Union
by: A. Tanaka (2006/01/25 16h30)
With Full2Way, the address space from 0
to 255 is shared between “tu” and
“dimmer” equipment.
Each address within that space can be

either bit or integer[0..127]. The selection
can be changed at run-time by loading a
new configuration file.

Lighting

equipment

256

16

127

72

Full2Way

Diagram 5: Using escape semantic to convey the meaning of union

which does not exist in the language yet

In addition to language adaptability via escape semantics, we find necessary to design the

languages for modeling flow. That means reducing the number of double-clicks, text-field

editions, list and menu navigations necessary to draw a complete model.

As a rule of thumb, all activities introduced by the DSM but not found in sketching should

be minimized, because practitioners will compare modeling with tool to sketching models.

Some form of automation can be introduced in modeling languages to protect the modeling

flow:

- Default values (object name, property value) to separate the creative activity of drawing

pictures from the activity of specifying attributes. This can be facilitated by following the

principle of convention over configuration [3] in the language design.

- Special values undefined and unknown to model fuzzy problems were some specifications

remain unclear.

- Integration of the DSM tool with the corporate IT system to avoid duplicate input of

information

Sustaining Deployment of Many Custom Languages

By introducing his tools into the product development process, the DSM tool-smith is

exposed to several risks, including but not limited to:

- A broken visual editor does not load old models

- The visual editor does not support current modeling practices

- A broken code generator produces malfunctioning software

- A valid code generator has not been updated to support changes in the target framework

These risks are worsened by several factors specific to DSM:

- Most domain-specific languages (DSL) are proprietary and maintained by a limited team

- Proprietary DSLs suffer from limited scrutiny and peer-reviews

- Proprietary DSLs have a limited user base and are applied to a limited number of

applications when compared to main-stream languages like UML, “C”

To address these issues we implemented some test-driven practices from the agile software

development community.

For example, the opposite diagram

illustrates our solution to test the

correctness of (modeling tool,

framework) pairs by generating

executables from well-known

models and by running these against

well-known data sets. Doing so, the

tool-smith can periodically verify

all well-known model compilation

cases after each modification of

existing DSLs, reducing the risk of

releasing broken model compilers to

the user.

Another step consists in checking

the model repository for occurrences

of escape semantics by way of daily model analysis. For example, the tool-smith could be

emailed an alert on his mobile phone whenever a user would have used escape semantics,

due to some limitation in the modeling language, or to lack of knowledge from the

practitioner, which either is bad news. This mechanism could prove to be a powerful

appli.
source

appli.
model

meta
model

input

expected

output

actual

output

modeling
tool

build
system

test management system

executable
product

test

result

framework

Diagram 6: Test-driven language development

communication means between the tool-smith and his users.

Finally, we use Scrum [4] to manage the development of visual language editors and code

generators. The product backlog proved to be a very practical tool to negotiate work items

between the tool-smith and the stakeholders. For that purpose, we slightly customized the

backlog format by adding columns Example models and Generation samples. Backlog items

with more Example models and Generation samples are given priority because the more

variation samples, the better DSL we can devise. The message is well understood by

stakeholders who naturally do their homework to find or create more samples to get their

problem higher in the list. Holding monthly Sprint Reviews open to all stakeholders and

interested persons is also an efficient way to demonstrate progress, to keep stakeholders and

users interested and involved, and to expose other practitioners to the DSM, fostering

inquiries and requests for help.

The DSM Tool-smith’s Commandments

We propose to summarize this paper in the form of seven principles for the DSM tool-smith:

- You shall find the measurable pain of each user.

- You shall promote DSM as the medicine for each user’s pain.

- To product and solution developers, you shall give DSM. To technology developers, you

shall offer well-known software engineering practices. To all you shall give Agility.

- You shall keep your tool up-to-date with your user’s changing practices.

- You shall offer escape semantics to your users.

- You shall design your languages for ease of modeling.

- You shall daily-test your languages and code generators.

Conclusion

We described key aspects of MEW’s approach to deploy domain-specific modeling (DSM) in

the developments of systems of embedded devices, and we proposed practices to support the

DSM tool-smith. We found that most challenges are not technical but instead human and

organizational, and we interpret this as a testimonial of the maturity of DSM tools, but also as

recognition of the lack of associated methods and practices.

Usability of DSM tools remains the most challenging issue, because these are typically

developed internally by a limited pool of software engineering specialists who lack expertise

in ergonomics.

To address this problem we are exploring the discipline of human-computer interaction

(HCI), and we found in Cognitive Dimensions (CD) [5] a promising candidate as some

cognitive dimensions map precisely to several topics we discussed in this paper. For example,

premature commitment and viscosity relate to our effort for preserving modeling flow, when

secondary notation relates to our escape semantics. And progressive evaluation could

correspond to the ability of simulating models with undefined and unknown values.

Further research will tell whether Cognitive Dimensions can help build DSM tools that are

not only efficient in solving technical problems, but also comfortable to work with.

References

[1] Juha-Pekka Tolvanen, Steven Kelly. (2006). “Defining Domain-Specific Modeling

Languages to Automate Product Derivation: Collected Experiences” (SPLC05).

[2] Seth Godin. (2006). “What makes an idea viral?”

http://sethgodin.typepad.com/seths_blog/2005/09/what_makes_an_i.html

[3] Dave Thomas, David Heinemeier Hansson. (2005). “Agile Web Development with

Rails”, Pragmatic Bookshelf.

[4] Ken Schwaber, Mike Beedle. (2001). “Agile Software Development with SCRUM”.

[5] Alan F. Blackwell, Thomas R.G. Green. (2006). “Cognitive Dimensions of Notations:

A Tutorial” (VL/HCC06).

