
Model-Driven Development and Assembly of
Content Management Applications

{mrichmon, prasadd, btmcnich, savita, vzbarsky}@us.ibm.com
ABSTRACT
The use of service-oriented development architectures can speed up business application
development allowing market changes to quickly be reflected in enterprise software. We have
developed a novel service-oriented development architecture and associated tooling to sup-
port on model-driven development of content management based applications.

This architecture supports the set of roles necessary for content management: Data Architect
and Component Integrator. The data architect role is concerned with capturing domain
knowledge using tooling that supports visual repository schema design and data modeling in
a disconnected mode. The Component Integrator role assembles business and process logic at
a high level of abstraction, potentially without the need for specialized coding skills. The
challenge addressed by this approach is to bridge the gaps found at the boundaries of devel-
opment tooling and allow for a smooth transition across the various roles involved in the
development of content management based enterprise applications.

1 INTRODUCTION
The imperative in business today is to respond to market-place changes in real-time and be
agile. Managers cannot afford to postpone business process changes until the IT department
or outside contractors can reflect changes in their software systems.

The way business applications are developed is evolving. Many business process applications
are being developed at higher levels of abstraction with a growing focus on assembling “serv-
ice-oriented” components and less on code crafting than traditional development. These
“service-oriented” components allow business and process logic to be assembled at a higher
level, or meta-layer, potentially without the need for specialized coding skills.

This paper presents our tooling for Content Management (CM) which supports model-
driven devevelopment (MDD) and generation of service-oriented components based on
domain models. The remainder of Section 1 provides an overview of Content Management
and the data modeling aspects of a Content Manager application. In Section 2 we give a brief
overview of the CM data model and the architecture for IBM’s Content Manager repository.
Section 3 describes services-oriented application development, highlighting two key develop-
ment roles that are the focus of our tooling. Section 4 describes our tooling support for
Model-Driven Design of an application data model. Section 5 describes our tool support for
web interface design and assembling services-oriented applications. In Section 6 we outline
earlier related work. Finally, in Section 7 we summarize our work.

1.1 Content Management
Content management (CM) is defined as software that builds, organizes, manages, and stores
collections of digital works in any medium or format. It refers to the process of handling var-
†IBM Almaden Research Center, 650 Harry Road, San José, CA 95120 ‡IBM Rational, 8383 158th Ave NE, Redmond, WA 98052.
Michael Richmond† Prasad Deshpande† Brendan McNichols‡
Savitha Srinivasan† Vladimir Zbarsky†

ious types of structured and unstructured information, including images and documents that
may contain billing data, customer service information, or other types of content. It also
refers to the process of capturing, storing, sorting, codifying, integrating, updating and pro-
tecting any and all information. Studies estimate that more than 75% of enterprise data is
unstructured and document-related [9]. Key technologies in the content management market
include traditional Document Management, Web Content Management, Digital Asset
Management, and Records Management. Today’s users of content management are in docu-
ment-heavy industries, where document management is essential, often for regulatory or
compliance reasons. In addition, there is an increasing trend towards content management for
collaborative applications, including streaming media, video conferencing meetings or pres-
entations, Web collaboration sessions or threads, Webcast content, and instant messages. A
real-time enterprise needs content management so it can create, access, and transfer informa-
tion, as needed, to meet the enterprise’s business goals. To summarize, today’s content com-
prises of many different forms of unstructured data that must be managed:

• Dynamic Web content—business data in relational databases and personalized infor-
mation.

• Business documents—ranging from contracts and invoices to forms and e-mail that
facilitate internal back-office processes and enable direct external communication with
customers, partners, and suppliers.

• Rich media—such as digital audio and video which is rapidly transforming areas of
training, education, marketing and customer relationship management in many indus-
tries.

• Records Management—is being driven by government and industry regulations to
effectively document processes, audit trails and data retention.

• Team Collaboration Content—Web collaboration sessions or threads, Webcast con-
tent, and instant messages that are rapidly becoming an important information asset.

While outwardly dissimilar, all of these forms of enterprise content have similar management
needs. To be truly useful, a content management solution must address requirements for mass
storage, search and access, personalization, integration with business applications, access and
version control and rapid delivery over the Internet.

1.2 CM Application Architecture
A web based content management application is comprised of three distinct elements:

• Backend Data Modeling,
• Mid tier application logic (JSP/Servlets or EJBs), and
• Web based UI frameworks.

A CM application can have very complex data modeling requirements. These requirements
include support for different types of content and their relationships, such as links and fold-
ers. This situation can quickly lead to a system development process that is difficult to man-
age. Customers frequently express a need for tools that make it easier to model their data and
build custom CM applications. In this paper, we address this requirement by describing a
solution to make it more intuitive for the user to create a CM system by visually representing
the system data model as a set of diagrams. The data model is then used to generate service-
oriented components that are integrated to construct the application.

Current CM tools are tightly coupled with the CM server and directly manipulate the data
definitions on the server. This coupling limits the scope of “what-if ” exploration, common in
iterative development, that a developer can perform. In addition, this lack of a model-driven
approach does not allow integration with other development tools such as component gener-

ation, documentation generation, or interface construction tools. Our approach separates the
modeling process from the deployment process to facilitate distributed, easy-to-use develop-
ment tools.

2 DB2 CONTENT MANAGER
In this section, we will give a brief introduction to the IBM DB2 Content Manager on which
our solution is based.

2.1 DB2 Content Manager Architecture
IBM’s content management technology directly leverages the DB2 Universal Database to
store “structured” data-which fits into the columns and rows of traditional databases and
complements that with supporting repositories which manage “unstructured” data or content.
DB2 Content Manager uses a triangular architecture, to offer functional advantages. Client
applications (running either in end-user desktops or mid-tier application servers) use a single
object-oriented API to invoke all DB2 Content Manager services which are divided across a
single library server and one or more resource managers. The library server manages the con-
tent meta-data and is responsible for access control to all of the content, interfacing with one
or more resource managers. Resource managers manage and store the individual content doc-
uments such as a pdf document, image or video file. Both the library server and resource
manager may utilize the Lightweight Directory Access Protocol (LDAP) service for user
management and access control. All access to the library server is handled via the database
query language SQL, due to the library server code being co-resident with the database
engine code. Query results returned to the client from DB2 Content Manager include object
tokens that act as locators for requested content that the user is authorized to access. Using
these locators, the client can communicate directly with the resource manager using HTTP
or FTP to retrieve the content documents.

This decoupling of meta-data management and access control from content management and
delivery offers a number of important advantages; including performance, scalability, exploi-
tation of database capabilities for meta-data management and use of high-speed file system
access for content documents.

2.2 CM Data Model
Data modeling capabilities are essential to enterprise content management. We will not
describe all the data model elements in this paper. The primary building blocks of the DB2
Content Manager data model are itemtypes and attributes. In database terminology, an item-
type corresponds to a table or relation and an attribute corresponds to a table attribute. How-
ever, unlike a flat relational table, an itemtype can have a hierarchical structure much like an
object in object-oriented languages.

An itemtype typically represents a single content document and has a set of user-defined
index attributes. Each itemtype can contain one or more objects that correspond to actual
document content, annotations or notes. Attributes for an itemtype can be structured with
parent and child relationships that match the hierarchical structure found in real-world cus-
tomer application environments. This feature is used to modeling repeating groups in which
multiple instances or values of attributes may be present. For example, a customer insurance
policy could have multiple claims and each claim may contain multiple supporting docu-
ments. The CM repository stores an instance of defined itemtype for each stored content
document. These instances are known as ‘items’.

The flexibility of the CM meta-data model allows the creation of itemtypes that combine
attributes from different business processes (perhaps health insurance and life insurance
which are legacies of separate, acquired divisions) centralizing information from both as busi-

ness and regulatory needs dictate. Different views of this information can represent a com-
bined electronic customer folder. An example might be an insurance company total customer
view, or a health-only folder.

DB2 Content Manager allows custom applications to build more complex inter-item peer-
to-peer relationships using links, references and foreign keys. Links are many-to-many typi-
cally used to associate arbitrary external relationships between any two items. References are a
way to represent a pointer from any component in an item hierarchy to any item of any type
in the system. Applications can also define attributes as foreign keys to external DB2 Univer-
sal Database tables that are not part of the DB2 Content Manager schema.

2.3 CM Application Development
A typical CM Application adopts the classic 3-tier architecture consisting of:

1 backend CM Server,
2 mid-tier application logic and presentation handling,
3 thin web-based clients.

The backend CM Server is generally made up of a cluster of CM library servers together with
one or more CM resource managers as detailed in Section 2.1. This server interfaces with the
mid-tier business logic via proprietary Java APIs that export the necessary functionality to
establish a connection with the server, perform CRUD (Create, Retrieve, Update, Delete)
operations over the data, and perform server administration tasks.

The CM APIs are designed to expose all of the CM functionality to the developer. The
drawback is that since CM servers are complex systems this complexity results in a complex
API. The complexity is required if developers are to have full access to CM functionality, but
it hinders development of the average application.

The mid-tier is primarily concerned with hosting and executing the raw business logic of the
application. This logic is typically implemented using a collection of Java classes which are
triggered by hand coded JSP and/or Servlet-based presentation layer.

With a thin client model, the mid-tier is also responsible for generating the instructions that
are interpreted by web-based clients to provide the presentation layer. Since both the business
logic and much of the presentation layer is concentrated at the mid-tier, current practice often
results in the merging of these elements. The net result is a monolithic mid-tier application
which is difficult to maintain, debug or extend to new presentation technologies.

Applications developed today to use Content Management services are typically hand crafted
amalgamations of a range of technologies. This is particularly endemic since requirements for
CM applications often require the application to be available in several competing and over-
lapping presentation technologies and integrate with other enterprise resources such as legacy
applications and data stores.

The overriding difficulty is that each of the technologies being used operate at fairly low lev-
els of abstraction. This requires the application developer to be an expert in the CM APIs,
JavaBeans, along with any supported presentation technology such as JSP/servlets, struts,
portlets, etc.

3 SERVICE-ORIENTED COMPONENT DEVELOPMENT
Development approaches for business applications is shifting away from the traditional reli-
ance on custom code developed in-house. Instead, business process applications are being
constructed at higher levels of abstraction with a heavy focus on assembling “service-oriented”
components that provide individual units of application functionality. These components

allow business and process logic to be assembled at a higher level than traditional application
development.

Each service-oriented component provides a well-defined set of services to other components
in the final application and may rely on services provided by other components. In this sce-
nario, the task of building applications becomes that of collecting the components which pro-
vide the desired services and specifying the interaction between these components. Apart
from the resulting benefits related to code-reuse, the higher level of abstraction afforded by
services-oriented development reduces the need for specialized development skills for appli-
cation development. This provides managers and other process experts the ability to imple-
ment software changes quickly as they are less reliant on the skills of IT specialists.

When discussing services-oriented development it is useful to refer to the various roles
involved in the development lifecycle. For example, one can consider the role of component
developer as being separate from the role of component integrator whereas these roles are
combined in traditional application development. It is this separation of component/service
implementer from that of the application implementer which allows applications to be built
at a high level of abstraction.

In our work, we are primarily focusing on two specific development roles:
• the Data Architect role, and
• the Component Integrator role.

3.1 Data Architect Role
Applications provide a way for users to work with data that is stored persistently either in a
database or content management system. The structure of this data depends on the applica-
tion being developed. For example, an insurance application will have data corresponding to
insurance policies, claims and the people insured.

The data architect role is concerned with defining the domain data elements to be used in the
application. These elements are then assembled to form the application data model. Since
this model is the basis for all persistent data storage and access its design is a critical step in
the application development process. The data architect takes into account the different
objects, their attributes and relationships between objects. These are then mapped onto the
data model provided by the backend store. It could be a relational model in the case of a data-
base system or a richer hierarchical model in the case of a content management system. Thus,
in the context of the DB2 Content Manager, this process consists of defining the different
attributes, itemtypes, documents, etc. that will be used to represent the application data. The
data architect ideally has expertise on the capabilities and limitations of the data store so that
they can determine an optimal way of representing the data on the data store.

The data architect role relies on skills which are generally held by a database administrator
and bases much of the data model design on elements found in the domain being modelled.
The concerns of the data architect role are focused on capturing an accurate model of the
application domain. As such, it is useful to separate this role from those roles explicitly
involved in application development. An application developer needs to be concerned with
the business logic without having to worry about how to store or represent the domain data.

The application components supported by our development model can be characterized by
their coupling with the underlying CM data model as:

1 data model dependent, or
2 data model independent.

The data-independent components may be developed once and made available to the compo-

nent integrator as a static library of components. Whereas the data model dependent compo-
nents need to be developed after the data architect has defined the data model.

Rather than require re-development of components each time a data model is defined, or
refined, our tooling automates the generation of the appropriate service-oriented compo-
nents. These components are generated during component integration based on the data ele-
ments defined by the data architect.

3.2 Component Integrator Role
The component integrator role is concerned with integrating pre-existing graphical interface
components and service-oriented mid-tier components to construct a functional CM applica-
tion. This involves identifying the components which provide the functionality needed in the
application and establishing links between these components to provide data passing and
interaction between them.

The service-oriented components used to assemble an application may originate from one of
three sources:

1 commercial component libraries,
2 in-house development of custom business components, or
3 integration tool generated components.

The advent and on-going standardization of component frameworks together with the grow-
ing acceptance of services-oriented development is opening a market for commercially devel-
oped libraries of components. These libraries focus on the needs of a given industry and
provide components which implement common, well defined processes in the industry.

For example, a vendor may offer a component library which meets the needs of the airline
industry. Such a library would provide components which handle ticket issuing, baggage han-
dling, and seat assignment. Ideally, these libraries would implement industry agreed upon
standards such as the OMG Domain Specifications.

Where commercial libraries are not available or do not fully meet the needs of the business it
may be necessary to develop custom service components in-house. These components are
then used to build an internal library of services that are focused on processes used within the
organization.

Finally, the development tooling such as the data modeling tool or application assembly tool
can provide wizards and other user-interaction approaches to generate additional compo-
nents. For example, based on the user selecting a required itemtype from a CM server, the
component integration tool can generate an appropriate service component to access the
itemtype data in the application.

Each of these categories of service-oriented components together with libraries of graphical
interface components allows business and process logic to be assembled at a higher level, or
meta-layer to form an application. This allows the application assembler to focus on the over-
all business process being implemented and the interaction of services at a high-level rather
than delving into the implementation details for each of these services. This focus is on “what
needs to be done” by the application rather than the details of “how it is done” allows changes
to be rapidly effected in business applications to reflect changes in business processes.

4 CM ARCHITECT WORKBENCH
We have developed a feature for WebSphere Studio Application Developer (WSAD) which
extends the environment with CM specific functionality. This feature is known as the CM
Architect Workbench. Figure 1 shows the architecture of the CM Architect Workbench

including the major interfaces between individual tools and backend CM repository.

Currently, the CM Architect Workbench tooling is comprised of a data architect tool and a
component integration tool. The data architect tool is designed to support the capture of
domain-specific data models by the data architect role as described in Section 3.1. Whereas
the web application architect tool supports the assembly, customization and development of
applications based on these domain models by the component integrator role described in
Section 3.2.

The CM Architect Workbench encodes the modeling and logic semantics that are specific to
content manager and uses these semantics to prevent the construction of domain models
which violate the semantics of the CM data store.

4.1 Modeling Framework
The modeling tool is based on the Eclipse Modeling Framework (EMF). The EMF unifies
Java, XML, and UML technologies so that they can be used together to build better inte-
grated software tools. It is a framework and code generation facility that lets you define a
model in any of these forms, from which you can generate the others and also the correspond-
ing implementation classes. We defined a UML meta-model for content management and
generated the corresponding Java classes using the EMF code generation framework. These
classes provide the meta-model for building Content Management data models. For example,
the meta-model contains a class to represent a CM itemtype and class to represent a CM
Attributes. Similarly there are classes corresponding to other CM building blocks. Our
plugin allows users to build CM data models based on this EMF meta-model. Thus the user
can define different attributes and itemtypes that will be used by the application. The tool
also provides a mechanism to visually represent the model as a set of diagrams thus making it
more intuitive for the developer as well as for others with whom the model is shared. This is
detailed below in Section 5.

4.2 Decoupled Model Development
The EMF framework allows the model to be stored as a XML file. This allows the user to
work with models without it being actually deployed on any CM system. Thus, unlike the
current tools for defining CM data models, the architect workbench is not tightly coupled

XDO/DDO/Bean API

Content
Manager

Modeling/Development Workstation

Application
Logic

JSF Interface
Beans

Web ArchitectData Architect

WSAD

itemtype
definition

generate
generate

forward
engineer

reverse
engineer

itemtype
definition

Repository

Figure 1 CM Architect architecture

with any CM server and allows the user to work in an offline mode. Making model definition
independent of the backend system has the following advantages:

1 The user can work on a data model iteratively without affecting the backend system,
2 It allows for easier integration with other tools such as the web application architect.

Those tools can read the data model from the modeling tool rather than having to con-
nect to the backend CM system,

3 It facilitates advanced development features such as automatic generation of data-
model dependent service components,

4 It allows domain specific reference models to distributed easily with the product as xml
files, and

5 It allows easier migration of data models from one server to another.

The activity diagram shown in Figure 2 summarizes the sequence of actions supported by the
CM Data Modeling tool for model driven application development.

4.3 Forward/Reverse Engineering
Even though the bulk of model development is in a decoupled mode, we need to provide a
way for users to actually deploy their model onto a CM system and to work with model ele-
ments already existing on a CM system. Our tool provides this functionality by giving the
user the choice to synchronize with the CM system at any point through forward and reverse
engineering. Forward engineering persists the model defined by the user onto a CM server.
Reverse engineering is the complementary action where the user loads the existing model ele-
ments from the CM server into a visual model. The forward and reverse engineering feature
is implemented as part of the CM plugin The forward and reverse engineering code inter-
faces with the CM system using the Java client API to CM (called XDO/DDO). The for-
ward engineering traverses the CM data model and for each CM element it takes an
appropriate action using the XDO/DDO interface. For example, if a CMAttribute “Address”
is defined in the model, it will create a corresponding Attribute definition in the CM system.
However, the CM system might already have some model elements defined earlier. The tool
compares the user defined model with the model already on the server to detect conflicts.
Conflicts that cannot be resolved automatically are handled by taking user input into account.
This is conceptually similar to a merge operation. Reverse engineering is a similar process
where we read the CM model elements from the backend system using the XDO/DDO API
and populate the EMF based model with the corresponding elements.

1. Create new CM Project

6. Generate documentation
for data model

5. Forward engineer to
CM server

4. Reverse engineer from
CM server

2. Add new CM element
to data model diagram

3. Modify existing CM
element in data model

Work with new CM system

Figure 2 Activity diagram detailing CM Data Modeling process.

5 WEB APPLICATION ARCHITECT
We have developed a GUI-focused component integration tool to support the component
integrator role described in Section 3.2. This tool is focused on the needs of component inte-
grator role and allows the user to assemble applications using the familiar drag and drop met-
aphor.

Our Web Application Architect tool is based on the WSAD development environment. We
have implemented the tool as a plug-in to WSAD which can be used in parallel or independ-
ently of our Data Architect tool described earlier. The supporting business component librar-
ies are based on the JavaServer Faces (JSF) component framework and all business
components generated by our tool during application assembly also conform to the JSF spec-
ification [15].

A typical CM application is based around a series of screens each of which contains a number
of panels which provide discrete units of generic application functionality. For example, a
logon panel is a unit that is comprised of text fields to collect the user name, password and
server name together with the appropriate labels and control buttons such as Logon and
Reset.

These functional units, commonly referred to as business units or business components, are
comprised of a GUI element and some form of backing logic to provide the actions provided
by the business component. In the above example of a logon panel, the backing logic would
provide the methods executed when either of the buttons is clicked. For the logon button, the
action would authenticate the details provided by the user and establish an authenticated
server connection which can passed to other business components.

Each business component relies on some range of input values from other components, per-
forms some processing and provides some range of output values to other components. The
component’s processing may be triggered on a page load, or by explicit user input. Addition-
ally, component processing may effect state changes in the application which have the side-
effect of providing on-screen output to the user.

The JSF framework builds on Java Server Pages (JSP) technology and allows components to
access the common data environment provided by the JSP architecture. This environment is
unique for each client and provides several separate name spaces which are scoped according
to the lifetime of the namespace.

Each of our business components conform to a well defined public contract [4] that is specific
to an individual component or category of components. This contract defines the input
name-value pairs expected to be available in the common data environment, the processing
conditions and outcomes, and the output name-value pairs published into the common data
environment by the component.

For example, the contract for a logon component specifies no input requirements, processing
for a logon action in which the provided user details are authenticated. On successful
authentication the component publishes a server connection under a specific name in the
common data environment and generates a logonSuccess action. If the authentication fails
the component generates a logonFailure action and stops processing. For a reset action,
the component processing clears all user input elements and resets any component state
established during a logon attempt. The output of the component consists of either a server
connection and a logonSuccess action, or a logonFailure action.

Our efforts to support component-based development for CM have lead to the development
of a library of business components and associated contracts which can be integrated to form

a CM web-based application. We have categorized this library into two distinct groups:
• generic components, that are either unconcerned with the underlying data model or

interpret the model at runtime, and
• specialized components, that are bound to a specific data model element (e.g. an item-

type).

Generic components mirror the traditional code library in that they are written and compiled
ahead of time and then used as black box components during component integration. This
use-case generally favors components which are data model agnostic and are capable of
adapting their behavior at runtime to match the underlying data model.

In contrast, specialized components are generated during component integration and are
tightly bound to a specified data model or model element. These components provide a com-
paratively simpler implementation as against the generic components since there is no need
for the component to interpret the data model at runtime. The implementation of these com-
ponents is open to the user of our tool and is implemented in terms of domain model ele-
ments as defined in the data architect tool. This is achieved by generating data accessor
classes based on the domain knowledge captured in the data model. The net result is that the
implementation of our generated components tend to be cleaner and easier to further special-
ize than typical generic components.

5.1 Application Construction
To construct a CM application, the component integrator uses the web application architect
to perform the following series of steps:

1 Create a new CM Application project,
2 Add page to project,
3 Populate page with required business components specifying relevant data elements as

required, (repeat steps 2 and 3 as required)
4 Specify page flow using action triggered navigation rules,
5 Deploy application to test application server.

The focus of our tooling support is around steps 3 and 4 above, and shown in Figure 3.

Figure 4 CM Web Application Architect tool
palette.

4. Specify page flow

1. Create new CM
Application Project

2. Add new page to
project

3. Populate with business
components

5. Deploy on application
server

Figure 3 Web Application Architect activity
diagram.

Our GUI Construction tool introduces a palette of CM specific business components. This
palette contains all of the pre-built components in our generic component library together
with a button for each type of specialized component we support. This palette is shown in
Figure 4. The component palette with the data-independent and data-dependent compo-
nents that it contains constitutes a library of domain-specific application components. The
data-independent components may be written once and reused, whereas the data-dependent
components are generated to operate on specific data during application development.

After adding a new page to a project, the user drags the desired business components from
the CM JSF Components palette onto the application page. In the case of generic components
such as a Logon or Logoff Button component this action inserts the appropriate JSF tags
into the page and generates managed beans to provide the necessary action logic. If the com-
ponent dragged onto the page is a specialized component the user is presented with a list of
appropriate data elements from the Data Architect tool or a live CM server. For example,
when the user drags a Search Panel onto the page a dialog listing the itemtypes available in the
CM Data Architect tool (or a CM server) is shown. After an itemtype has been selected the
Web Application Architect tool interacts with the Data Architect to retrieve the definition
for the selected itemtype. This definition is used to populate the UI search panel with the
names of searchable attributes, data format hints and a text box to input a constraint over
each searchable attribute. Additionally, dropping the panel onto the page triggers the code
generation for the backing JavaBeans which implement the behavior of the search panel and
adds them to the project.

5.2 Page Navigation
Page flow in the JSF model is controlled by a collection of navigation rules. Each rule defines
either the destination of a page transition or an action method to invoke. An action method
returns either null or another action. For rules which define action methods the action are
handled by invoking the specified method and placing the resulting action back into the
action event queue. Rules which define page transitions are handled by the JSF framework by
performing a transition to the specified page.

For example, the Logon panel defines the four actions shown in Table 1. When the Logon
button in the panel is clicked, the action logon is fired triggering the invocation do
logonCredentials.doLogon(). This method authenticates the user, establishes a con-
nection to the CM server and returns either a logonSuccess or logonFailure depending
on the status of this processing. If an error occurs, an error message is put in the message
queue and logonFailure is returned to trigger a transition back to the Logon.jsp page. If
the doLogon() processing does not encounter errors, then a logonSuccess action is
returned to trigger a page transition to the Search.jsp application page.

6 RELATED WORK
The Entity-Relationship (ER) model, originally proposed by Peter Chen in 1976 [7], is a

Table 1 Logon navigation rules.

Alias Action Reference Destination

Logon logonCredentials.doLogon() *

logonSuccess * /Search.jsp

logonFailure * /Logon.jsp

reset * /Logon.jsp

conceptual data model that views the real world as entities and relationships. A basic compo-
nent of the model is the Entity-Relationship diagram which is used to visually represent data
objects. The ER model maps well to a relational model and is widely used for database
design.

The need for easier user interaction with databases has been an active research concern since
graphical user interfaces (GUI) first became widely available in the mid 1980s. Modern data-
bases provide both command-line tools and GUI-based tools to manipulate schemas perform
system administration tasks, express queries and display query results. The GUI-based tools
typically rely on tree and table structures to provide the metaphors presented in the user inter-
face. The limitation of these representations is that the user is still required to perform a men-
tal mapping between the tree/table view of the database structure and the abstract conceptual
model of the domain represented by the database.

Much of the research related to easing user-database interactions is focused on runtime
aspects such as query expression [2][3], query result display [16] and navigation through the
stored data. Collectively these tasks are referred to as Visual Query Systems (VQS) [6]. In
comparison, relatively little focus has been placed on the interface provided by the tools used
to define and manipulate data models and database schemas. Commercial database modeling
products such as Rational XDE provide visual data modeling profiles which integrate into the
broader software development cycle [8][9]. These profiles are generally geared to UML mod-
eling of relational databases. The OPOSSUM system, developed at the University of Wis-
consin, Madison, allows a database schema to be edited through manipulation of the schemas
visualization [10]. Haber et al. report that “schema visualization is the key issue in any
attempt to improve schema management” with diagrammatic presentations being generally
easier to understand for both beginning and advanced users [11].

In our data modeling tool, the user directly manipulates the data model elements to model
the required domain. We claim that this approach to data modeling capitalizes on the benefits
of general direct manipulation interfaces–specifically, ease of use and learning together with a
reduction in the required mental mapping between the on screen representation of the data
model and the abstract conceptual model of the domain [13].

Existing work related to user interface construction focuses on providing drag-and-drop tool-
ing to layout individual interface widgets. Once the interface design has been completed with
these tools, code which will produce the designed layout is generated. At this stage, with cur-
rent tools, the developer then establishes hooks between the generated interface code and the
corresponding business logic code. This model of interface construction is exhibited by
XForms [17], NetBeans Form Editor [5], and Microsoft Visual Basic [12].

In our web application construction tool, the user manipulates user interface components that
are comprised of both the graphical interface elements and the corresponding business logic
for the component. These interface components are assembled with mid-tier service compo-
nents by the user to assemble a complete application without the need to directly alter pro-
gram code. As such, our approach is more closely related to web page construction tools such
as Adobe GoLive and Microsoft FrontPage which allow the user to drag-and-drop page ele-
ments such as scrolling marques which are backed by business logic written in JavaScript.

7 SUMMARY
We have presented a pair of tools designed to support model-driven development for Con-
tent Management. These tools supporting several roles in the application development lifecy-
cle. Our goal has been to explore the effects of capturing a domain model in the application

developer tooling space. We are now investigating where relevant intelligence can be devel-
oped around the model tooling to support a broad range of development roles allowing for a
smooth transition from one role into another within the same development environment. In
this context - we have described our tooling technologies developed to support the Data
Architect and Component Integrator roles.

Key advantages of this framework are:
• data model tooling decouples the design phase from the deployed system. This enables

the model to evolve iteratively before committing to the deployed system. This is a crit-
ical requirement as today’s process typically involves paper-based design of data models
without the ability to use tools to collaboratively evolve the design.

• data modeling tool gives the ability to deliver out of the box domain specific models
that encapsulate best practices in the specific domain—this becomes an important lev-
erage for application developers in terms of reducing startup time.

• data modeling tool creates the path for effectively documenting the design and main-
taining it as the design evolves by coupling the data modeling environment with web
publishing tools.

• component integration tool gives the ability to construct an application using libraries
of generic and generated itemtype specific components to quickly produce a running
application.

• drag-and-drop component integration allows domain experts to be involved in imple-
menting CM application implementation without the need for programming experi-
ence.

• JSF based business supports integration of CM data sources with other business
resources such as foreign data repositories (e.g. relational databases) and existing appli-
cations (e.g. legacy code, web methods).

A visual development environment, rather than the tree-based text view and APIs provided
by current tools, makes development of applications much more intuitive and easy-to-use. By
simplifying application development and reducing the reliance on specialized development
skills our tooling can reduce the development cycle for CM applications.

Our data modeling and component integration tools enable rapid application development
cycles by simplifying the tasks performed by two major roles during CM application develop-
ment. Initial feedback from CM customers and consultants on the value of this model-driven
environment for CM applications has been extremely positive.

8 REFERENCES
[1] Agrawal, R., Gehant, N. H., and Srinivasan, J., “OdeView: The Graphical Interface to Ode”, In

Proceedings of the ACM SIGMOD’90, 34–43, Atlantic City, 1990.

[2] Andries, M., and Engels, G. A., “A Hybrid Query Language for the Extended Entity Relation-
ship Model”, In Journal of Visual Languages and Computing, Special Issue on Visual Query Systems,
8(1), 1997.

[3] Angelaccio, M., Catarci, T., and Santucci, G., “QBD*: A fully visual query system”, In Journal on
Visual Languages and Computing, 1(2), 255–273, 1990.

[4] Binder, R., Testing Object-Oriented Systems, Addison-Wesley, Reading, MA, 1999.

[5] Bourdreau, T., Glick, J., Greene, S., Woehr, J., and Spurlin, V., NetBeans: The definitive guide,
O’Reilly and Associates, Sebastopol, CA, 2002.

[6] Catarci, T., Costabile, M. F., Levialdi, S., and Batini, C., “Visual Query Systems for Databases: A
Survey”, Technical Report SI/RR-95/17, Dipartimento di Scienze dell’Informazione, Universita’
di Roma “La Spaienza”, 1995.

[7] Chen, P. P., “Entity-Relationship Model: Towards a unified view of data”, ACM Transactions on
Database Systems, 36(9), 1976.

[8] Gornik, D., UML Data Modeling Profile, IBM Rational Software Whitepaper TP 162 05/02,
2003.

[9] Gornik, D., Data Modeling for Data Warehouses, IBM Rational Software Whitepaper TP 161 05/
02, 2002.

[10]Haber, E. M., Ioannidis, Y. E., and Livny, M., “OPOSSUM: A flexible schema visualization and
editing tool”, In Proceedings of the 1994 ACM CHI Conference, Boston, MA, April, 1994.

[11]Haber, E. M., Ioannidis, Y. E., and Livny, M., “OPOSSUM: Desk-top schema management
through customizable visualization”, In Proceedings of the 21st International VLDB Conference,
pages 527–538, Zurich, Switzerland, September, 1995.

[12]Holzner, S., Advanced Visual Basic 4.0 Programming, M & T Books, 1996.

[13]Hutchins, E. L., Hollan, J. D., and Norman, D. A., “Direct Manipulation Interfaces”, In User
Centered System Design: New perspectives in human-computer interaction, Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1986.

[14]Lyman, P., and Varian, H. R., How Much Information, 2000. Retrieved from http://
www.sims.berkeley.edu/how-much-info

[15]McClanahan, C., and Burns, E., (Eds), JavaServer Faces Specification: Version 1.0, Sun Microsys-
tems, Santa Clara, CA, February, 2004.

[16]Olston, C., Wooddruff, A., Aiken, A., Chu, M., Ercegovac, V., Lin, M., Spalding, M., and
Stonebraker, M., “DataSplash”, In Proceedings of the ACM SIGMOD ‘98, Seattle, WA, June, 1998.

[17]Zhao, T. C. and Overmars, M., Forms Library: A graphical user interface toolkit for X, April,
1996. Retrieved from http://www.york.ac.uk/services/cserv/sw/graphics/xforms/
forms.index.html

	Model-Driven Development and Assembly of Content Management Applications
	Michael Richmond†
	Prasad Deshpande†
	Brendan McNichols‡
	Savitha Srinivasan†
	Vladimir Zbarsky†
	abstract
	1 Introduction
	1.1 Content Management
	1.2 CM Application Architecture

	2 DB2 Content Manager
	2.1 DB2 Content Manager Architecture
	2.2 CM Data Model
	2.3 CM Application Development
	1 backend CM Server,
	2 mid-tier application logic and presentation handling,
	3 thin web-based clients.

	3 Service-Oriented Component Development
	3.1 Data Architect Role
	1 data model dependent, or
	2 data model independent.

	3.2 Component Integrator Role
	1 commercial component libraries,
	2 in-house development of custom business components, or
	3 integration tool generated components.

	4 CM Architect Workbench
	Figure 1 CM Architect architecture
	4.1 Modeling Framework
	4.2 Decoupled Model Development
	1 The user can work on a data model iteratively without affecting the backend system,
	2 It allows for easier integration with other tools such as the web application architect. Those tools can read the data model from the modeling tool rather than having to connect to the backend CM system,
	3 It facilitates advanced development features such as automatic generation of data- model dependent service components,
	4 It allows domain specific reference models to distributed easily with the product as xml files, and
	5 It allows easier migration of data models from one server to another.
	Figure 2 Activity diagram detailing CM Data Modeling process.

	4.3 Forward/Reverse Engineering

	5 Web Application Architect
	5.1 Application Construction
	1 Create a new CM Application project,
	2 Add page to project,
	3 Populate page with required business components specifying relevant data elements as required, (repeat steps 2 and 3 as required)
	4 Specify page flow using action triggered navigation rules,
	5 Deploy application to test application server.
	Figure 4 CM Web Application Architect tool palette.

	5.2 Page Navigation

	6 Related Work
	Table 1 Logon navigation rules.

	7 Summary
	8 References
	[1] Agrawal, R., Gehant, N. H., and Srinivasan, J., “OdeView: The Graphical Interface to Ode”, In Proceedings of the ACM SIGMOD’90, 34-43, Atlantic City, 1990.
	[2] Andries, M., and Engels, G. A., “A Hybrid Query Language for the Extended Entity Relationship Model”, In Journal of Visual Languages and Computing, Special Issue on Visual Query Systems, 8(1), 1997.
	[3] Angelaccio, M., Catarci, T., and Santucci, G., “QBD*: A fully visual query system”, In Journal on Visual Languages and Computing, 1(2), 255-273, 1990.
	[4] Binder, R., Testing Object-Oriented Systems, Addison-Wesley, Reading, MA, 1999.
	[5] Bourdreau, T., Glick, J., Greene, S., Woehr, J., and Spurlin, V., NetBeans: The definitive guide, O’Reilly and Associates, Sebastopol, CA, 2002.
	[6] Catarci, T., Costabile, M. F., Levialdi, S., and Batini, C., “Visual Query Systems for Databases: A Survey”, Technical Report SI/RR-95/17, Dipartimento di Scienze dell’Informazione, Universita’ di Roma “La Spaienza”, 1995.
	[7] Chen, P. P., “Entity-Relationship Model: Towards a unified view of data”, ACM Transactions on Database Systems, 36(9), 1976.
	[8] Gornik, D., UML Data Modeling Profile, IBM Rational Software Whitepaper TP 162 05/02, 2003.
	[9] Gornik, D., Data Modeling for Data Warehouses, IBM Rational Software Whitepaper TP 161 05/ 02, 2002.
	[10] Haber, E. M., Ioannidis, Y. E., and Livny, M., “OPOSSUM: A flexible schema visualization and editing tool”, In Proceedings of the 1994 ACM CHI Conference, Boston, MA, April, 1994.
	[11] Haber, E. M., Ioannidis, Y. E., and Livny, M., “OPOSSUM: Desk-top schema management through customizable visualization”, In Proceedings of the 21st International VLDB Conference, pages 527-538, Zurich, Switzerland, September, 1995.
	[12] Holzner, S., Advanced Visual Basic 4.0 Programming, M & T Books, 1996.
	[13] Hutchins, E. L., Hollan, J. D., and Norman, D. A., “Direct Manipulation Interfaces”, In User Centered System Design: New perspectives in human-computer interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.
	[14] Lyman, P., and Varian, H. R., How Much Information, 2000. Retrieved from http:// www.sims.berkeley.edu/how-much-info
	[15] McClanahan, C., and Burns, E., (Eds), JavaServer Faces Specification: Version 1.0, Sun Microsystems, Santa Clara, CA, February, 2004.
	[16] Olston, C., Wooddruff, A., Aiken, A., Chu, M., Ercegovac, V., Lin, M., Spalding, M., and Stonebraker, M., “DataSplash”, In Proceedings of the ACM SIGMOD ‘98, Seattle, WA, June, 1998.
	[17] Zhao, T. C. and Overmars, M., Forms Library: A graphical user interface toolkit for X, April, 1996. Retrieved from http://www.york.ac.uk/services/cserv/sw/graphics/xforms/ forms.index.html

	{mrichmon, prasadd, btmcnich, savita, vzbarsky}@us.ibm.com

