Implementing a MOF-Based Metamodeling
Environment Using Graph Transformations

Matthew J. Emerson
(Vanderbilt University, USA
Institute for Software Integrated Systems (ISIS)
mjemerson@isis.vanderbilt.edu)

Janos Sztipanovits
(Vanderbilt University, USA
Institute for Software Integrated Systems (ISIS)
sztipaj@isis.vanderbilt.edu)

September 28, 2004

Abstract

Versatile model-based design demands languages and tools which are
suitable for the creation, manipulation, transformation, and composition of
domain-specific modeling languages and domain models. The Meta Object
Facility (MOF) forms the cornerstone of the OMG’s Model Driven Archi-
tecture (MDA) as the standard metamodeling language for the specifica-
tion of domain-specific languages. We have implemented MOF v1.4 as an
alternative metamodeling language for the Generic Modeling Environment
(GME), the flagship tool of Model Integrated Computing (MIC). Our imple-
mentation utilizes model-to-model transformations specified with the Graph
Rewriting and Transformation toolsuite (GReAT) to translate between MOF
and the UML-based GME metamodeling language. The technique described
by this paper illustrates the role graph transformations can play in interfacing
MIC technology to new and evolving modeling standards.

1 Introduction

Model-based design has over the last several years grown into an important trend
in software and systems engineering. The central vision of the OMG, Model

Driven Architecture (MDA), describes a platform-independent approach to the
development of domain-specific applications. It advocates the specification of
software systems through modeling and model transformation [1]. MDA builds
upon OMG'’s widely-used UML, which provides a common graphical syntax for
object-oriented design. MDA incorporates modeling into every stage of the soft-
ware development process by describing this process as a sequence of transfor-
mations among models.

One theme of MDA is that UML will be the single, universal, platform-
independent modeling language used by model translators to generate software
artifacts for specific platforms. The basis of this conviction stems from viewing
model-based design in the same light as conventional programming, where lan-
guage standardization has been an important issue. However, the scope of model-
based design is in fact much broader. Model-based design encompasses the entire
modeling process, which inherently includes the selection of essential domain as-
pects, careful separation of the modeled and not modeled worlds, and abstraction.
Because specifying a universal language which is broad enough to cover all con-
ceivable systems would be extremely difficult, reasonable solutions depend on the
use of domain-specific modeling languages (DSML-s).

A step in the right direction is to use a modeling language that is both uni-
versal and extendable — an approach captured by the UML profile mechanism.
Unfortunately, stereotyping does not change the fundamental syntactic and se-
mantic properties of the modeling languages and tends to create a complex web
of interfering standards.

The more radical approach of constructing DSML-s demands an understand-
ing of the fundamentals of constructing modeling languages and creating stan-
dards and tool suites for facilitating their specification and composition. The
theme of this approach is metamodeling. A metamodel is a model of a DSML
expressed using some metamodeling language. The latest developments in UML
2 [2] depend on this approach, as UML 2 has been defined using the Meta Object
Facility (MOF). MOF has emerged as the OMG’s standard metamodeling lan-
guage, and one of the MOF use-cases [3] is the specification of DSML-s. In the
future, MOF may serve as a widely-adopted tool-independent metamodeling lan-
guage, allowing model data to be freely transfered between compliant tools using
OMG’s XML Metadata Interchange (XMI) technology [4].

We must also consider the demand for powerful tool suites which aid in spec-
ifying, manipulating, transforming, and composing models [5]. Model Integrated
Computing (MIC) is a comprehensive approach to model-based design. In MIC,
a modeling language and model interpreter tools are developed for a given do-
main. Then, the domain-specific language is used for creating and evolving a
computer system through modeling and model interpretation [6]. Over the last ten
years, MIC metamodeling approaches have been successfully applied in a variety

of application domains [7] [8]. The primary MIC development tool is the Generic
Modeling Environment (GME), a metaprogrammable model builder for designing
and modeling in domain-specific modeling environments. GME supports its own
metamodeling language based on UML Class Diagrams with Class stereotypes
and OCL constraints called MetaGME. However, as MOF becomes the widely-
adopted, industry-standard metamodeling language, GME can evolve to support
tool-independent MOF-based metamodels while also maintaining compatibility
with technologies based on its own tool-specific metamodeling language.

Using metamodeling and metamodel-based model transformation, we have
implemented a MOF v1.4-based alternative metamodeling environment for GME.
Our transformation allows the new MOF metamodeling environment to leverage
existing tool support for GME modeling environment generation. Our implemen-
tation of the MOF sits as an additional layer of abstraction above the existing
GME-specific metamodeling facilities.

2 The Generic Metamodeling Environment

GME is the flagship tool of MIC. It provides a graphical UML-based meta-
modeling language capable of expressing the concrete and abstract syntax of a
target graphical modeling language. OCL constraints specify metamodel well-
formedness rules. GME provides library import and export facilities and custom
model visualizations. There are also facilities for plugging in analysis, verifica-
tion, and translation tools which interpret domain-specific models. GME’s meta-
modeling language, called MetaGME, predates the OMG'’s adoption of the MOF
specification. It utilizes UML stereotypes to imply the abstract syntax expressed
by the metamodel [9]. The meanings of the stereotypes used in MetaGME are:

e Modelsare compound objects which are visualized in GME as containing
other model elements.

e Atomsare elementary objects which are not visualized in GME as contain-
ing other model elements.

e FCO-sare first-class objects which must be abstract but can serve as the
base type of an element of any other stereotype.

e Referencesorrespond to pointers in an object-oriented programming lan-
guage.

e Connectionsre analogous to UML Association Classes.

e Aspectgprovide logical visibility partitioning to present different views of a
model.

Abstract syntax modeling

e, mGIL/EMMDSM

 ——
| NMLTG]VEADSM I ﬂ
Concrete
@mclL/EMc,Dsle =’ syntax

modeling

merachECpsm
= e ‘
GME-DSML

Ty MetaGME—
GME/Meta Modeled by
—_—

l Mapped into

Environment for

«--- Eironment for.
GME-DSML —| GME/Meta

A B

Figure 1:A) Metamodeling with GMBB) Simplified Diagram

GME-based metamodeling is demonstrated in Figure 1. The metamodel
MetacmiEM Mpsy, Of @ DSML consists of the abstract syntaX.ayveApsair,
concrete syntaX;c..qveCpsvz, and syntactic mapping...ay e Mcepsar SPEC-
ified using the UML constructs of MetaGME. Thegi.ayne M Mpsyr, metamodel
is translated by th&; translator (called the meta-interpreter) into a configuration
file for GME (represented in Figure 1 by the box labelled “GME/Meta”). Using
this configuration file, GME can also function as the domain-specific modeling
environment for the metamodel domain. (A simplified diagram of the metamod-
eling process can be seen in Figure 1.B)

There exists a large body of existing GME-based DSML-s [10] [11]. There
also exist a number of related modeling tools, including the model transforma-
tion tool GReAT [12]. The Graph Rewriting and Transformation toolsuite is a
DSML implemented for GME that enables the graphical specification of graph
transformation algorithms with formal execution semantics. Because GME es-
sentially represents models as vertex- and edge-labelled multi-graphs where the
labels denote the corresponding types defined by some metamodel, GReAT can
be used for model-to-model transformation. This paper describes our work to
update the MIC metamodeling facilities to incorporate the MOF standard in addi-
tion to the UML/OCL-based MetaGME. Because of the large volume of existing
DSML-s and tools which depend on the existing GME meta-language, a whole-
sale replacement of MetaGME with MOF is not desirable. Instead, we use model-

to-model transformation technology to implement MOF as an optional layer of
abstraction over MetaGME.

3 MOF Metamodeling Constructs

As defined in the v1.4 specification [3], MOF provides the following five basic
object-oriented concepts for use in defining metamodels. Our implementation
includes each of these constructs. Furthermore, we have specified a mapping
between these concepts and the MetaGME concepts outlined above.

e Classesare types whose instances have identity, state, and an interface. The
state of a Class is expressed by its Attributes and Constants, and its interface
is governed by Operations and Exceptions.

e Associationglescribe binary relationships between Classes. They may ex-
press composite or non-composite aggregation semantics. Because MOF
Associations have no object identity, they lack both state and interface.

e DataTypesare types with no object identity. By design, the different MOF
DataTypes encompass most of the CORBA IDL primitive and constructed
types.

e Packagesare nestable containers for modularizing and partitioning meta-
models into logical subunits. Generally, a non-nested Package contains all
of the elements of a metamodel.

e Constraintsspecify the well-formedness rules that govern valid domain
models.

4 Implementing MOF for GME

We have implemented a MOF-based metamodeling environment for GME. Our
implementation leverages the existing GME metamodeling language and meta-
interpreter for the generation of new GME configurations.

As described previously, a complete GME metamodeling language consists of
two parts. Part one is a graphical metamodeling environment for the specifica-
tion of the abstract syntax, concrete syntax, and syntactic mappings. Part two is
a translation tool capable of generating from the graphical metamodel of a target
domain the configuration file that enables GME to serve as the domain-specific
modeling environment for that domain. MetaGME is itself a metamodeling lan-
guage with sufficient expressive power to fully model MOF. So, while the MOF

specification uses MOF to model itself, we have expressed the MOF model with
the language of MetaGME. Furthermore, because MetaGME already reflects the
full range of configurations which can be realized by Giy\Ee found the easiest

way to create the necessary translation tool by defining a transformation algorithm
from MOF-specified metamodels into MetaGME-specified metamodels.

Having transformed a MOF-specified metamodel to a Meta-GME metamodel,
we take advantage of MetaGME'’s existing meta-interpreter to generate the GME
configuration file. The shaded components in Figure 2 represent the facilities
we have to provide in implementing MOF for GME;.iogri M Myor 1S OUr
MetaGME-specified MOF model arif}, is our implementation of the transfor-
mation algorithm from MOF-specified metamodels to MetaGME-specified meta-
models.T; is Meta-GME’s meta-interpreter, which generates the GME configu-
ration files from the translated metamodels.

Metamodeling of DS ML Metamodeling of MOF
Using MOF Using MetaGME

MOFMMDSML @

4

EP
]
L

mGMEMMDSM GME-MOF leta
[T

U

GME-DSML| e

Figure 2: Building the MOF-Based Metamodeling Environment

4.1 The MOF-MetaGME Transformation

The transformation algorithm is quite straightforward because the modeling con-
cepts of both MOF and MetaGME are heavily based on the modeling concepts of
UML Class Diagrams. GReAT was the natural choice for implementing our meta-
model translation algorithm - we were able to easily and rapidly create our meta-
model translation tool. The tool itself is easy to analyze, maintain, and evolve.

1n fact, the meta-information in the configuration files directly parallels the MetaGME mod-
eling concepts.

old:Sting| | new - Sting

AttributeMapping 1s0fType ®
Guard

Aftribute
Class cchtores F‘nmn'lveType

<<Model=» Typs | srlsOfTyps <=Atom==

Sre

lasstype |0.%

BaseFCOCEss
<<FCO=s

FieldAttribute ParadigmShest
wAom== «shindel==

ssssssss

Figure 3: MOF Primitive-Typed Attributes Mapped to MetaGME FieldAttributes

We refer to this tool as MOF2MetaGME.

GReAT transformations are composed of a series of rules which are applied
in order to an input model. Each rule attempts to find some pattern in the input
model and, if successful, generate some corresponding pattern in an output model.
Although we do not wish to delve into the details of GReAT, we explain one
example MOF2MetaGME rule visualized in Figure 3.

Figure 3 displays the MOF2MetaGME tranformation rule responsible for
mapping String-, Integer-, and Double-typed MOF Attributes into MetaGME
Field Attributes. The black Classes represent model patterns which the rule at-
tempts to match, and the blue Classes are those which are to be created in the
output model if a match is foudd The rule finds any MOF Class containing an
Attribute with an IsOfType connection to a PrimitiveType. The guard ensures that
only String, Integer, or Double PrimitiveTypes are matched. If such a Class ex-
ists, then the rule finds the corresponding MetaGME Class and gives it a Field
Attribute of the same type as the matched MOF Attribute.

Table 1 specifies the mapping of MOF constructs to corresponding MetaGME
constructs performed by MOF2MetaGME. Notice that MOF Classes and non-
aggregate Associations may map to multiple MetaGME constructs. Our imple-
mentation of MOF allows metamodelers to specify how each MOF Class or non-
aggregate Association should be transformed.

We provide Figures 4 and 5 to illustrate the full function of MOF2MetaGME.
Figure 4 is a small part of a MOF-based implementation of UML Class Diagrams
for GME used as the input to MOF2MetaGME, and Figure 5 is the corresponding
output produced by MOF2MetaGME. Note the high degree of symmetry between

2For those viewing this article without color, the blue Classes are HasAttribute and FieldAt-
tribute, while the rest of the Classes are depicted in black.

MOF Construct MetaGME Construct

Package ParadigmSheet

Class FCO, Atom, Model, Set, or Reference
Non-Aggregate AssociationConnection, SetMembership, or ReferTo
Aggregate Association Containment

Boolean Attribute BooleanAttribute

Integer Attribute Integer FieldAttribute

Double Attribute Double FieldAttribute

String Attribute String FieldAttribute

Constraint Constraint

Table 1: MOF Construct to MetaGME Construct Mapping

the two diagrams.

ClassDiagram
—
Caontains:onstraint
Inheritance
HasJaonstraint
[
ClassBase
IsAbstract . Baolean
0. T - il
Associations ormpastion
Constraint ContainsClassBase
ConstraintDescription : String g - 4}%
CaonstraintEqgn : String

[I
Class ClassCop
Attributes ; String T
Stereotype © String

RefarsTa

Figure 4. UML Class Diagrams in MOF

4.2 Limitations to our MOF-MetaGME Transformation

Our translation from MOF into MetaGME is not isomorphic — MOF provides
some capabilities that MetaGME lacks (and vice-versa). MOF allows a wider
range of potential attribute types, the concepts of derived attributes and asso-
ciations, singleton classes, and classifier-scoped attributes. None of these con-
cepts maps well into MetaGME. MetaGME provides facilities for multi-aspect
modeling, concrete syntax specification, and some abstract syntax identifiers
which carry special meaning for GME. MOF captures the light-weight Tag ex-
tension mechanism which was used to include this GME-specific information
in a MOF metamodel. In our implementation of MOF for GME, we have aug-
mented MOF Classes, Associations, Packages, Constraints, and Attributes with

HasConstraint ClassDiagram
==Connection== (0.7 ==<Model==

0.7

Canstraint — H ClassBase =re

- : a2 - Composition
==Atarm== i N ds: ==FC0s= = } ________ 7| <=Connection==
ConstraintEqn : field | v dat

ConstraintDescriptio : field IsAbstract - _hool [5.

=

Class
=2ptom==

ClassCopy
==Reference==

Stereotype : field
Atributes field

Figure 5: UML Class Diagrams in MetaGME

additional attributes to specify this GME-specific information to facilitate map-
ping into MetaGME, but these additional attributes may be conceptualized as
MOF Tags.

5 Conclusions

A primary insight gained through this work is the recognition that versatile mod-
eling tools like GME need not support MOF as the native metamodeling language
in order to be MOF compliant. Using model-to-model transformation, we can
take tool-independent metamodels defined using MOF 1.4 and re-interpret them
as metamodels in the tool-specific metamodeling language used by GME. This
especially useful because the MOF itself lacks some facilities that are necessary
for graphical modeling in a tool like GME, including standard mechanisms for
describing model concrete syntax. Thanks to the powerful model-to-model trans-
formation technology realized by GReAT, we were able to retain the easy GME
modeling environment specification capabilities of MetaGME while also support-
ing a different industry standard. This work underlines the versatility of metapro-
grammable modeling tools such as GME.

References

[1] Object Management Group, “The model driven architecture, 2002”". [On-
line]. Available: http://www.omg.org/mda

[2] Object Management Group, “Unified Modeling Language: Superstructure
version 2.0, 3rd revised submission to OMG RFP”, February 2003. [Online].
Available: http://www.omg.org/docs/ad/00-09-02.pdf

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Object Management Group, “Meta Object Facility Specification v1.4”, April
2002. [Online]. Available: http://www.omg.org/docs/formal/02-04-03.pdf

Object Management Group, “XML Metadata Interchange
(XMI) Specification v2.0", May 2003. [Online]. Available:
http://www.omg.org/docs/formal/03-05-02.pdf

Greenfield J., Short K., “Software Factories: Assembling Applications with
Patterns, Models, Frameworks and Tools”, 2nd OOPSLA Workshop on Gen-
erative Technigues in the context of Model Driven Architecture, 2003.

2] Sztipanovits J., Karsai G., “Model-integrated computing”, IEEE Com-
puter, pp. 110112, Apr. 1997.

Long E., Misra A., Sztipanovits J., “Increasing Productivity at Saturn”, IEEE
Computer Magazine, August, 1998.

Neema S., Sztipanovits J., Karsai G, “Design-Space Construction and Ex-
ploration in Platform-Based Design”, ISIS-02-301, June 24, 2002.

Nordstrom, G., “Metamodeling — Rapid Design and Evolution of Domain-
Specific Modeling Environments”, Proceedings of the IEEE ECBS '99 Con-
ference, 1999.

Neema S., Karsai G., Embedded Control Systems Language for Distributed
Processing, 1SIS-04-505, May 12, 2004.

Schmidt D., Gokhale A., Natarajan B., Neema S., Bapty T., Parsons J., Gray
J., Nechypurenko A., Wan N., “CoSMIC: An MDA Generative Tool for
Distributed Real-time and Embedded Component Middleware and Appli-
cations”, 2nd OOPSLA Workshop on Generative Techniques in the context
of Model Driven Architecture, 2002.

Agrawal A., Levendovszky T., Sprinkle J., Shi F., Karsai G., “Generative

Programming via Graph Transformations in the Model-Driven Architec-

ture”, 2nd OOPSLA Workshop on Generative Techniques in the context of
Model Driven Architecture, 2002.

