
The TOPCASED project

a Toolkit in OPen source for Critical Applications & SystEms Design

Marc Pantel
∗

ACADIE team
FéRIA-IRIT-INPT-N7

University of Toulouse, France
Marc.Pantel@enseeiht.fr

ACADIE team
†

FéRIA-IRIT
INPT-N7 & UPS

University of Toulouse, France
Mamoun.Filali@irit.fr

OLC team
‡

FéRIA-LAAS-CNRS
University of Toulouse, France
Francois.Vernadat@laas.fr

TOPCASED team
§

topcased-
contact@gforge.enseeiht.fr

ABSTRACT
The TOPCASED project aims at developing an open source CASE
environment for critical applications and systems development. Its
main benefits should be to perpetuate the methods and tools for
software development, minimize ownership costs, ensure indepen-
dence of development platform, integrate, as soon as possible, method-
ological changes and advances made in academic world, be able to
adapt tools to the process instead of the opposite, take into account
qualification constraints. In this purpose, TOPCASED relies on
the Eclipse Modelling Project platform (EMF, GEF, GMF, OCL,
UML2, ...) and on many available tools such as the AMMA tools
(ATL, AMW, AM3), MDDi model bus, Kermeta executable mod-
els, ... and participate in the development of extensions or addi-
tional tools. One key point is that TOPCASED focuses on critical
system development, which means that a strong emphasis is made
on system validation and on traceability. This paper focuses on the
proposed process to help in designing correct systems by relying on
DSL and formal approaches. Meta-modelling principles are at the
core of the TOPCASED framework. We will focus on the exam-
ple of SimplePDL a subset of the SPEM process modelling DSL.
TOPCASED currently includes its own tool to automatically gen-
erate graphical editors for specific languages based on their meta-
model. The demonstration will go through all the design of the DSL

∗Will present the TOPCASED framework
†Made most of the work on SimplePDL
‡Authors of the TINA toolbox
§Current members: Airbus, CNES, EADS-Astrium, Rockwell &
Collins, Siemens VDO Automotive, Thales Avionics, TurboMeca,
AdaCore, AnyWare Technologies, ATOS Origin, C-S, Ellidiss
Technologies, Micoin Consulting, SodiFrance, Sogeti-HiTech, So-
praGroup, Tectosages, TNI-Software, ENSIETA, ESEO, FéRIA-
IRIT/LAAS/ONERA, INRIA-ATLAS/EXPRESSO/TRISKELL,
MIPS, SEI, UFSC, ENSEEIHT, INSAT, UPS

from the graphical editor, to the model validation called through the
model bus. The paper focus on the model validation process. Un-
til now, the only complete industrial solutions that are available at
the meta-model level only consider structural properties such as the
ones that could be expressed in OCL. There are although some at-
tempts on behavioural properties for DSL. This paper addresses a
method to specify and then check temporal properties over models.
The case study is SIMPLEPDL, a process metamodel. We propose
a way to use a temporal extension of OCL, TOCL, to express prop-
erties. We specify a models transformation to Petri Nets and LTL
formulae for both the process model and its associated temporal
properties. We check these properties using a model checker and
enrich the model with the analysis results. This work is a first step
towards a generic framework to specify and effectively check tem-
poral properties over arbitrary models.

1. INTRODUCTION
Domain specific approaches tend to be the next approach for spec-
ifying complex systems, giving the appropriate abstraction. They
can be easily built by domain experts and can then be integrated in
generic toolkits and frameworks. Nowadays, there exists a bunch
of environments allowing to define DSL (EMF1, GME2 ...) mainly
focusing on abstract and concrete syntaxes.

Once a metamodel specific to a particular domain has been defined,
one wants to express properties that have to be verified for models
of this DSL. Such extensions are usually expressed in OCL and de-
scribe structural properties of the model. Initially OCL constraints
were applied to UML models. Therefore many works and tools
have been designed in order to verify these constraints. Tools de-
veloped for UML have been adapted to DSL.

However, for behavioural properties, there is a lack of effective
works that define all the steps from the property specification to
its effective verification. Numerous current projects, such as Top-
cased3, consider these problematics as a main topic.

The paper introduces a property-driven approach for specifying
and checking temporal properties. The case study is process en-
1http://www.eclipse.org/emf/
2http://www.isis.vanderbilt.edu/projects/gme/
3Toolkit In OPen source for Critical Applications and SystEms De-
velopment, http://www.topcased.org

gineering. Our approach can be described as simple steps. We first
characterise the properties. Then process states must be identified.
The DSL metamodel is then extended to represent these states. We
adapt an OCL temporal extension, formalized using a LTL seman-
tics [6], to represent our temporal properties. The properties are
then checked in another formalism: Petri nets. A model transfor-
mation to Petri nets is given and allows to apply model checking
on an observational abstraction of the trace semantics of the given
model with respect to the properties. Finally the result of the anal-
ysis is used to enrich the model with properties information.

This paper gives the following contributions:

• we propose a property-driven approach to identify dynamic
states of process models;

• we introduce a temporal extension of OCL based on process
states;

• we translate temporal constraints into LTL constraints on the
Petri nets;

• we propose an observational trace semantics for SIMPLEPDL;

• we define SIMPLEPDL denotational semantics though a map-
ping to Petri nets;

• we define a front end for the Tina model checker.

This paper is organised as follows: the second section introduces
our DSL, a process metamodel, as well as the natural expression of
the user needs for models validation. The third section develops our
proposition on our case study. The fourth section considers related
works then the last section concludes.

2. CASE STUDY: PROCESS MODEL VALI-
DATION

Our contribution is introduced through a modelling language ex-
ample on which we would like to express a set of properties that
have to be verified on all possible models. Our DSL is a simple
process description language: SIMPLEPDL.

We first introduce the domain concepts of SIMPLEPDL and then
the kind of properties we want to check on models. The properties
we are interested in are properties specific to our DSL that must be
satisfied for every model of our metamodel. In fact, our approach of
verification is driven by those properties. Properties allows to car-
acterise SIMPLEPDL models states and then refine the metamodel
to capture them.

2.1 SIMPLEPDL
SIMPLEPDL is an experimental language for specifying processes.
The SPEM standard (Software Process Engineering Metamodel) [22]
proposed by the OMG inspires our work4, but we also take ideas
from the UMA metamodel (Unified Method Architecture) used in
the EPF Eclipse plug-in5 (Eclipse Process Framework), dedicated
to process modelling. It is simplified to keep the presentation sim-
ple.

4We propose an analysis of the SPEM 1.1 standard in [10]
5http://www.eclipse.org/epf/

The SIMPLEPDL metamodel is given in Figure 1. It defines the
process concept (Process) composed of a set of work definitions
(WorkDefinition) representing the activities to be performed dur-
ing the development. One workdefinition may depend upon an-
other (WorkSequence). In such a case, an ordering constraint (link-
Type) on the second workdefinition is specified, using the enu-
meration WorkSequenceType. For example, two workdefinitions
WD1 and WD2 linked by a precedence relation of kind finishToStart
specify that WD2 will be able to start only when WD1 is finished
(and respectively for startToStart, startToFinish and finishToFin-
ish). SIMPLEPDL does also allow to explicitly represent resources
(Resource) that are needed in order to perform one workdefini-
tion (designer, computer, server, . . .) and also time constraints
(min_time and max_time on WorkDefinition and Process) to spec-
ify the minimum (resp. maximum) time allowed to perform the
workdefinition or the whole process.

One can remark that, for the sake of brevity, some concepts are
not presented here such as products (WorkProduct) that workdefi-
nitions handle, or roles (Role) that can be assimilated to resources.

2.2 Properties
We now present the different kinds of properties specific to the pro-
posed metamodel: structural ones, temporal ones and quantitative
ones. We will particularly develop the second kind as a core con-
cept for the rest of the paper.

Structural properties:. The expressivity of metamodelling lan-
guages (i.e. meta-metamodels) does not allow to formally capture
the whole set of the language properties, i.e. the axiomatic seman-
tics. They mainly capture the cardinalities constraints

In programming languages, the axiomatic semantics is usually based
on mathematical logics and expresses a proof method for some con-
struction properties of a language [12]. It can be very general,
such as Hoare triples or restricted to ensure construction consis-
tency (e.g. typing).

In a modelling language, this second kind of use is expressed using
well formedness rules at the metamodel level. Such rules have to
be realised by all models that are conform to this metamodel. One
can check these rules by static analysis on models.

In order to express the rules, the OMG advocates the use of OCL [21,
26]. Applied at the metamodel level, OCL can add properties,
mostly structural, that could not have been captured by the meta-
model definition. It is a mean to precise the metamodel semantics
by limiting possible conforming models.

There is an example of such a constraint:

One Worksequence could not have the same Workdef-
inition as source and target.

That can be formalised as

context WorkSequence inv :
self.predecessor <> self.successor

In order to check that a particular model satisfies these constraints,

Figure 1: SIMPLEPDL metamodel

one can use an OCL checker such as USE [25], OSLO6, or EMFT7.

Temporal properties:. Many properties have to be satisfied in
every model execution. The expert of the domain will formalise
them when defining the metamodel. In our process metamodel,
any workdefinition can be started and then be finished. One can
then ask, and therefore check, whether a given process model effec-
tively terminates, i.e. that every workdefinition in it finishes. Tak-
ing into account time and resources, some new properties appear
that are independent of any model. For a given set of resources, de-
scribed in the model, does the process terminate ? Is it possible to
satisfy every real time constraints expressed on the workdefinition
(attributes min_time and max_time) ? We could also express tem-
poral properties depending on the capability for a workdefinition to
suspend its work and free its resources to share them temporarily
with other workdefinitions.

Quantitative properties:. The aim of such properties is to de-
scribe or compute critical paths of executions in terms of minimal
or maximal resource consumption. WCET8 or schedulability are
typical examples of quantitative properties. For instance, time and
memory are standard resources the usage of which one would wish
to measure. In this respect, a consumption (and production) model
has first to be set. In simple situations, a discrete and finite model
may fit the needs, as it is the case when we focus on a single kind
of resource, with a fixed and finite number of instances. Mem-
ory requirements alone usually fall in this simple class and could
be checked with off-the-shelf model-checking techniques for dis-
crete models, nevertheless with possible minor adaptations. Yet, for
more involved models and resources, in order to precisely represent
what is happening, we may find it mandatory to write down quite
general arithmetical constraints or to handle continuous quantities
(as in real-time systems specifications for instance). As discus-

6Open Source Library for OCL, http://oslo-project.
berlios.de.
7The Eclipse Modeling Framework Technology project, http://
www.eclipse.org/emft/
8Worst Case Execution Time

sions about relevance of such models and their verification issues
are quite complex and out of the scope of this present work, we
choose for the time being to simply rule out quantitative properties
and postpone their introduction for future works. Thus, we stick to
the presentation of the overall methodology without delving upon
details.

2.3 Dynamic Informations & Property-Driven
Approach

Expressing temporal properties that have to be checked on each
model execution implies the existence of an operational semantics
that is not expressed within a metamodelling language such as the
MOF.

In our case, the execution of a process model consists in perform-
ing the different work definitions of the process. When executing
a model, every work definition must be started and the overall pro-
cess must finally reach a state where all of them are in the state
finished.

The real semantics can be arbitrary complex, and sometimes non
computer-representable in case of complex continuous systems.

Our previous works have investigated the use of operational seman-
tics [11] and translational semantics [9]. In this paper we present
a generic approach to define the abstract dynamic semantics, a se-
mantics of observable events, built upon the properties expressed at
the metamodel level.

The temporal properties expressed for every model conform to the
metamodel are built over a notion of states. The formal semantics
associated to the system can be seen as the set of maximal finite
traces which elements are model states. If the metamodel has a
well defined operational semantics, it can be easily expressed as a
modification of instances’ attributes or a modification of the topol-
ogy (dynamically creating or killing instances). On the contrary, if
the associated semantics is not formally defined, the states charac-
terised by properties allow to define an observable operational se-
mantics. Following this idea, if state properties rely on notions that
cannot be directly expressed in the model (classical OCL queries),
then the metamodel must be enriched to express these notions. The

dynamic operational semantics, i.e. the Kripke structure that al-
lows to build trace semantics, must then be approximated by defin-
ing transition between characterised states. It is the work of the
domain expert to describe them.

This approach has mainly three advantages:

• it gives a method to define a formal semantics for metamodel
that could not always initially describe it;

• this approach is incremental: the domain expert can specify
a property, that characterises new states. Then he will extend
the metamodel to represent this new dynamic information.
The expert can then introduce another property and extend
again the metamodel.

• it allows to easily define an “observable” approximation of
the trace semantics. One such approach allows to check
the properties defined, because the semantics were defined
depending on the needs expressed by these properties. It
can also help in defining a minimal abstract semantics that
gives access to formal tools allowing to check properties on
a reasonably-sized state space.

3. AN APPROACH TO VALIDATION THROUGH
PETRI NETS AND LTL

In this section, we will follow all the steps that allow us to express
temporal constraints on our SIMPLEPDL metamodel.

3.1 Characterising Properties
This first step must be realised by the expert. As expert of pro-
cesses, we say that every SIMPLEPDL model must verify the fol-
lowing properties. We separate them in two classes: universal prop-
erties that have to be satisfied by every execution and existential
properties that must be true in at least one execution.

Our universal properties are:

• every workdefinition must start,

• all started workdefinitions must finish,

• once a workdefinition is finished, it has to stay in this state,

• a workdefinition is able to start depending on worksequences
constraints. All workdefinitions that are linked to it using a
startToStart worksequence are started. Reciprocally all workdef-
initions that are linked to it using a finishedToStart workse-
quence are finished.

The same kind of properties apply for finishing each workdef-
inition.

Our existential properties are:

• every workdefinition must take more than min_time and less
than max_time to be performed,

• the overall process is able to finish, i.e. when all workdefini-
tions are finished in a good state (i.e. between min_time and
max_time).

3.2 Characterising States
The second step consists in characterising different states for the
metamodel elements from the properties. From the aforementioned
temporal properties, we can identify two orthogonal ideas for the
workdefinition element. First, a workdefinition can be not started,
started and finally finished. Secondly, there is a notion of time
and clock associated to each workdefinition; but this time is only
relevant for transition enabling conditions (in our case transitions
that start and finish a workdefinition) and is not explicit in state
properties. Thus it can be represented into the finite set of states
{ tooEarly, ok , tooLate }. This second orthogonal idea is only
relevant when the progress is finished. Therefore we add a fourth
state: notFinished.

3.3 Extending the Metamodel to Represent Dy-
namic Information

We now have to express these states by extending the WorkDefini-
tion elements in order to introduce attributes that reflect dynamic
information, i.e. the state of the current workdefinition. We choose
to add three variables: state ∈ {notStarted, started, f inished},
time_state ∈ {notFinished, tooEarly, ok, tooLate} and clock ∈
R+.

An observational abstraction of the operational semantics of our
processes with respect to our properties can now be defined.

The expert has again to formalise the initial states and the transition
relation. In our case, it is quite natural: the initial states are the
singleton {w 7→ (notStarted,notFinished)| w ∈W D}. We define
the transition relation for one workdefinition in W D in Figure 2.

3.4 Expressing Temporal Properties : Tempo-
ral OCL

A few temporal extensions of OCL have already been proposed in
a UML context (see related works section). We have chosen the
proposal of [27] for two main reasons:

1. The semantics of the temporal expressions is formally de-
fined on a trace semantics. Such traces are finite sequences
of system states, describing a snapshot of the running sys-
tem. Even if this work was initially defined on UML models,
the trace semantics can be easily generalised to arbitrary state
sequences while keeping the original semantics of temporal
operators.

2. The syntax of this OCL extension is quite natural. It intro-
duces usual future-oriented temporal operators such as next,
existsNext, always, sometimes as well as their past-oriented
duals. We will only use the future-oriented ones because we
intend to effectively check properties using the Tina model
checker [2], which does not support past-oriented operators.

Let us go back to our process example to introduce our generalisa-
tion. A snapshot of our process has to describe precisely the state of
each workdefinition. We take as given a finite set S of such states.
Let W D be the set of workdefinitions of the model. Let Σ be the
set of the process state: Σ = W D 7→ S .

A trace σ̂ of the process is a maximal finite sequence of process
states 〈σ0, . . . ,σn〉,σi ∈ Σ, where σ0 denotes the initial process

Let w be the considered Work Definition.

∀ws = w.predecessor,(ws.linkType = startToStart&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToStart&&ws.linkToPredecessor.state = f inished)

notStarted,notFinished,clock → started,notFinished,0
∀ws = w.predecessor,(ws.linkType = startToFinished&&ws.linkToPredecessor.state = started)

||(ws.linkType = f inishedToFinished&&ws.linkToPredecessor.state = f inished)
started,notFinished,clock < min_time → f inished, tooEarly,clock
started,notFinished,clock ∈ [min_time,max_time] → f inished,ok,clock
started,notFinished,clock > max_time → f inished, tooLate,clock

Figure 2: Event-based Transition Relation for WorkDefinitions

state. Semantically, we have two kinds of transitions. First, contin-
uous time-passing transitions that are here unobservable and consist
in incrementing all workdefinition clocks by a quantity dt simulta-
neously. Second, event-based transitions that change the states of
workdefinitions as defined by the expert above. Two consecutive
events in a sequence are related through a combination of the time-
passing transition followed by an event-based transition.

In order to ease the definition of our properties we introduce the
new operator precedes. Such an operator can be described using
the previous ones:

e1 precedes e2 = always!(e2) until e1

Expressions of our TOCL extension are now OCL expressions over
the model elements using these temporal operators. We also allow
these expressions to be built over state names defined in the afore-
mentioned set S . The universal temporal properties can now be
expressed as:

always (notStarted =⇒ sometime started)
always (started =⇒ sometime finished)
finished =⇒ always finished
always ((predss.state = started &&

pred f .state = finished &&
notStarted) =⇒ sometime started)

The existential ones have to be rewritten in order to be checked:
we will verify the negation of each formula. If the analysis gives
a correct answer, there is no trace satisfying the property. On the
contrary, if the analysis gives a negative answer with a counter-
example, the existential property is verified and the counter-example
is one of the traces satisfying the temporal property. We only give
here the first existential property.

always (not wd.time_state = ok)
≡ always (wd.time_state = tooEarly

||wd.time_state = tooLate)

We have given the textual concrete syntax and the associated se-
mantics of our extension of TOCL. In order to integrate it into a
metamodelling approach (i.e. defining properties at the metamodel
level), it is necessary to define, at the MOF level, the OCL abstract
syntax and its temporal extension. To give the ability for any DSL
to use TOCL, we start from the OCL metamodel defined in [24]
and promote it at the MOF level [23] (fig. 3). We also add the
set of temporal operators defined in [27] and in the aforementioned
extension (fig. 3).

We have now introduced the concrete and abstract syntax and se-
mantics of our temporal OCL extension. With these temporal con-

MOF::Core::Basic

Type

Property

constrainedElement

1..*

properties
0..*

OCL::Expression

OclExpressionbody
0..1

TOCL

ToclOperator

arguments
1..2
{ordered}

Figure 3: Temporal OCL integration to MOF

straints we are now able to express complex properties on the be-
haviour of the model to be checked. One immediate application of
these constraints is the transformation of every invariant as defined
in OCL as the first kind of properties. We now consider executing
models and each invariant has to be checked in every process state
of all possible traces. Therefore, we rename invariant expressions
e to always e.

The next part introduces how these model states can be built using
OCL over model attributes.

3.5 Denotational Semantics to Petri Net and
LTL

In this study, we choose to use the technical space of Petri nets as
the target representation for formally expressing our process mod-
els. We also choose to express our temporal formulae as LTL for-
maluae (Linear Temporal Logic) over the Petri net associated to a
process model. Then we manipulate Petri nets and LTL formulae
within the Tina9 toolkit.

TINA (TIme Petri Net Analyser). is a software environment to
edit and analyse Petri nets and timed nets [2]. The different tools
constituting the environment can be used alone or together. Some
of these tools will be used in this study:

• nd (NetDraw) : nd is an editing tool for automatas and timed
networks, under a textual or graphical form. It integrates a
“step by step” simulator (graphical or textual) for the timed
networks and allows to call other tools without leaving the
editor.

• Tina : this tool builds the state space of a Petri net, timed or
not. Tina can perform classical constructs (marking graphs,

9http://www.laas.fr/tina/

Figure 4: Petri Nets Metamodel

covering trees) and also allows abstract state space construc-
tion, based on partial order techniques. Tina proposes, for
timed networks, all quotient graph constructions discussed
in [3].

• selt: usually, it is necessary to check more specific properties
than the ones dedicated to general accessibility alone, such
as boundedness, deadlocks, pseudo liveness and liveness al-
ready checked by tina. The selt tool is a model-checker for
formulae of an extension of temporal logic seltl (State/Event
LT L) of [6]. In case of non satisfiability, selt is able to build a
readable counter-example sequence or in a more compressed
form usable by the TINA simulator, in order to execute it step
by step.

3.5.1 Denotational Semantics of SIMPLEPDL

PetriNet. In this case study, we use timed Petri nets as a paradigm
to express the semantics of our processes, models of SIMPLEPDL.
The semantics is now a denotational one defined as a mapping from
SIMPLEPDL to Petri nets. The Petri nets metamodel is given in
Figure 4. A Petri net (PetriNet) is composed of nodes (Node) that
denote places (Place) or transitions (Transition). Nodes are linked
together by arcs (Arc). Arcs can be normal ones or read-arcs (Ar-
cKind). The attribute tokensNb specifies the number of tokens con-
sumed in the source place or produced in the target one (in case of a
read-arc, it is only used to check whether the source place contains
at least the specified number of tokens). Petri nets markings are de-
fined by the tokensNb attributes of places. Finally, a time interval
can be expressed on transitions.

Mapping. The translation schema that transforms a process model
into a Petri nets model (SIMPLEPDL2PETRINET) is given in Fig-
ure 5. Each workdefinition is translated into four places charac-
terising its state (NotStarted, Started, InProgress or Finished). A
WorkSequence becomes a read-arc from one place of the source
workdefinition to a transition of the target workdefinition. The state
Started records that the workdefinition has been started.

We also add five places that will define a local clock. The clock will
be in state TooEarly when the workdefinition ends before min_time
and in the state TooLate when the workdefinition ends after max_time.

Our transformation has been written in ATL, ATLAS Transforma-
tion Language [19]. A first rule expresses one workdefinition in

terms of places and transitions. A second one translates a work
sequence into a read-arc between the adequate place of the source
workdefinition and the appropriate transition of the target workdef-
inition. Finally a third rule considers the whole process and builds
the associated Petri net.

In order to manipulate the obtained Petri net inside a dedicated tool
such as Tina, we have composed the preceding transformation with
a transformation PETRINET2TINA that translates a PetriNet model
into the textual syntax of the Tina tool.

Traceability. The set of translation choices (i.e. the mapping)
defined in the SIMPLEPDL2PETRINET transformation is captured
in the ATL source code. The benefit of this language is that it is
itself defined as a metamodel. It allows to obtain a model (con-
form to the ATL metamodel) corresponding to the transformation.
This transformation model can be reused as an entry model for an-
other transformation (Higher Order Transformation). We can re-
mark that it is possible to enrich traceability information as pro-
posed by [17].

3.5.2 Denotational Semantics of TOCL
The transformation model defined during the translation to Petri
nets is used to instantiate a generic transformation that defines LTL
properties from the initial metamodel properties, instantiated rela-
tively to the initial process model.

Our experiments show a lack in current MDE technology that does
not allow to parameterise a model transformation. The use of a
programming language such as Java, as well as a specific library
such as EMF, is necessary to handle such a transformation.

3.6 Models Validation and Feedback
Model checking results have to be interpreted at the SIMPLEPDL
model level in order to provide a complete front-end to the end-
user. Properties verified in the Petri net correspond to a double in-
stantiation of the properties expressed at the metamodel level. The
interpretation of the results must be the conjunction of the results
obtained for the different instantiations of a metamodel property.

The feedback of properties results (catching in a first time the truth
value of the property) in the model, can be automatically computed
using the transformation model defined during the translation SIM-
PLEPDL2PETRINET. This translation captures the set of choices
that have been done during the transformation (i.e. the mapping ta-
ble). This technique uses a Higher Order Transformation that takes
a transformation model and allows to trace back the model checker
interpretation into the DSL model.

In a first time, we only handle the boolean value returned by the
Tina analyser. When the LTL properties associated to one SIM-
PLEPDL properties are satisfied, the property is satisfied. In the
other case, the transformation model allows to identify in the model
the faulty element and to update its dynamic information in order
to visualise the state in which the property failed. We have to take
care of the kind (universal or existential) of temporal properties ex-
pressed. In case of an existential one, the negation of the result has
to be returned.

The next step consists in handling counter-examples. Such counter-
examples generated by the model checker could be expressed on

 <<WorkDefinition>>
Conception

temps_min = 10
temps_max = 16

<<Ressource>>
Machine

nbOccurence = 4

2

 <<WorkSequence>>
ws

wd1_started wd2_start
ws.linkType = startToStart

wd1_finished wd2_start
ws.linkType = finishToStart

wd1_started wd2_finish
ws.linkType = startToFinish

wd1_finished wd2_finish
ws.linkType = finishToFinish

Figure 5: Translation schema from SIMPLEPDL to PetriNet

the model and be then injected in the model animator (in our case,
the one defined on SIMPLEPDL) defined in the Topcased project.

4. RELATED WORKS
4.1 Models Semantics
The formal semantics definition of modelling languages is an active
research field in the MDE community. Beside our previous works
presented in [11] and [9], we have identified other projects that
consider this important subject.

The ISIS laboratory of the Vanderbilt University focuses on MDE
for many years. They proposed the MIC approach (Model-Integrated
Computing), in which models are at the heart of the integrated soft-
ware development. Recently, they propose, in [7], a semantics an-
chored to a model of formal semantics built upon ASM (Abstract
State Machine) [16], using the transformation language GReAT
(Graph Rewriting And Transformation language) [1].

Xactium10 is a company created in 2003. Its objectives are to pro-
vide practical solutions for the development of systems based on
MDE principles. It developed the XMF-Mosaic tool [8] that al-
lows to define a DSL, to simulate and to validate models using a
extension of the OCL language named xOCL (eXecutable OCL).
XMF-Mosaic also provides means to transform models and to de-
fine translations to other technical spaces.

These works are very near to the objectives of the TOPCASED en-
vironment, i.e. to propose a modular modelling environment based
on a modular generative approach (like GME, XMF), as well as
a formal semantics that provides simulation and model validation
tools. Our works based on Kermeta follow an approach similar to
the ones of xOCL inside the XMF-Mosaic tool.

The semantics anchoring proposed by the ISIS laboratory is similar
to the denotational semantics such as the mapping to Petri nets we
propose. The main difference is that we want to give more flexibil-
ity in the choice of the semantics model and to allow easier feed-
backs from simulations or verifications inside a particular model.
However, they do not propose the use of models rewriting rules to
define the operational semantics.

4.2 Models verification

Verification of UML models. In order to specify structural
properties on UML models, OCL was introduced. It is therefore
accepted as the standard language to express structural properties
on UML models. There also exists a bunch of tools to check OCL
properties for any model.

As for temporal properties, some recent works intend to extend the
usual OCL syntax and semantics to give the capability to express
temporal constraints. All these works address OCL extensions in
an UML context. They do not address how the transition system is
derived from the model.

The aforementioned work of [27] proposed to extend OCL with
usual temporal operators and defined their semantics on the trace
semantics of the UML model. This work is a first step towards the
simulation of temporal properties over traces using the USE tool.

10http://www.xactium.com

Some works, such as [14] and [15], are focused on the expression of
real time constraints while keeping the original OCL syntax. They
relied on StateChart states to express the dynamic constraints of the
system. Then, they mapped their constraints into Clocked-CTL.

[5] proposed to express real time constraints using two new classes
Time and Events. A new OCL template is introduced and the usual
ones (pre-post, inv and action) are translated in it. The semantics is
also defined as a trace semantics.

In [13], the authors expressed non temporal OCL constraints into
their object-oriented version of CTL. They defined formally what
is a state of the UML model. They are able to check whether a
property expressed in OCL can be checked in every reachable state.

The work of [4] introduced new OCL templates. They mapped
them into Oµ(OCL)-calculus, an observational µ-calculus, which
expressions are OCL expressions. The semantics of their Oµ(OCL)-
calculus is defined over the states of [13]. Using model checking
tools, the author intends to check the property on a CCS term mod-
elling their UML system.

All the previous works only specify the way OCL must be extended
to deal with temporal formulae in order to verify or simulate them
later but do not reach this last step, at least not in an automatic
manner. For instance, the point of generating the transition system
from the initial UML is not solved.

Verification of DSL models. OCL was initially defined on
UML but was quickly defined for every metamodel. It is the main
tool to express structural properties in DSL. Existing OCL checkers
are also model independent.

5. CONCLUSION & FUTURE WORKS
The context of this article was to integrate formal methods for re-
fining DSL semantics. DSL semantics is usually restricted to struc-
tural properties and dynamic aspects are often only informally de-
scribed or are even implicit. As our aim is to express and vali-
date behavioural and operational properties within a metamodelling
framework, the first step was to introduce and handle an opera-
tional semantics, instantiated in this article to our process meta-
model SIMPLEPDL. This semantics is introduced with respect to
properties of interest, given by an expert of the domain. First, a no-
tion of state is introduced, followed by the definition of transitions
and executions. Temporal operators, forming temporal properties,
are also introduced. In order to check these properties, first a deno-
tational semantics is provided as a mapping from SIMPLEPDL pro-
cesses to Petri nets, second a front end to the Tina model-checker
is defined.

Few things still remain to be done. In particular, the current pre-
sentation is focused on SIMPLEPDL, it still needs to be abstracted
away to get a more general approach. The formal connection be-
tween the observational operational semantics and the denotational
semantics induced by the ATL transformation have to be validated.

Currently, we are implementing a prototype allowing us to define
metaproperties through an Ecore modelling language extension given
by the Eclipse EMF plugin. The expression of temporal proper-
ties uses an extension of OCL metamodel provided by the EMFT
plugin on which we add the set of temporal operators described
above, in the article. An interface associated to the TOCL textual

concrete syntax will be integrated using generators such as Sintaks
[20] or TCS [18]. Our prototype must also integrate the set of ATL
transformations and provide a front end to Petri nets using the Tina
toolkit, through the SIMPLEPDL language. We still have, in case
of a negative answer from the model checker, for a given property,
to retrieve the generated counter-example. It can then be injected
within both the model animator currently developed with the TOP-
CASED project and the SIMPLEPDL model graphical editor defined
with TOPCASED.

ACKNOWLEDGEMENTS
I would like to thank Benoît Combemale, Pierre-Loïc Garoche,
Xavier Crégut and Xavier Thirioux from FéRIA-IRIT ACADIE
team and François Vernadat from FéRIA-LAAS OLC team for the
design and implementation of the case study this paper presents.

6. REFERENCES
[1] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and

A. Vizhanyo. The design of a language for model
transformations. Technical report, Institute for Software
Integrated Systems, Vanderbilt University, Nashville, TN
37235, USA., 2005.

[2] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA
– construction of abstract state spaces for Petri nets and time
Petri nets. International Journal of Production Research,
42(14):2741–2756, 15 juillet 2004.

[3] B. Berthomieu and F. Vernadat. Réseaux de Petri temporels :
méthodes d’analyse et vérification avec TINA. Traité IC2,
2006.

[4] J. C. Bradfield, J. K. Filipe, and P. Stevens. Enriching OCL
using observational mu-calculus. In Fundamental
Approaches to Software Engineering, pages 203–217, 2002.

[5] M. V. Cengarle and A. Knapp. Towards OCL/RT. In
International Symposium of Formal Methods Europe on
Formal Methods (FME) - Getting IT Right, pages 390–409,
London, UK, 2002. Springer-Verlag.

[6] S. Chaki, M. E, Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/event-based software model checking. In 4th
International Conference on Integrated Formal Methods
(IFM), volume 2999 of LNCS, pages 128–147, avril 2004.

[7] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson.
Semantic anchoring with model transformations. In Model
Driven Architecture - Foundations and Applications, First
European Conference (ECMDA-FA), volume 3748 of LNCS,
pages 115–129, 2005.

[8] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied
metamodelling - a foundation for language driven
development. version 0.1, 2004.

[9] B. Combemale, X. Crégut, B. Berthomieu, and F. Vernadat.
SimplePDL2Tina : Mise en oeuvre d’une Validation de
Modèles de Processus. In 3ieme journées sur l’Ingénierie
Dirigée par les Modèles (IDM), Toulouse, France, 2007.

[10] B. Combemale, X. Crégut, I. Ober, and C. Percebois.
Evaluation du standard SPEM de représentation des
processus. Génie Logiciel, Modèles et Processus de
développement, 77:25–30, Juin 2006.

[11] B. Combemale, S. Rougemaille, X. Crégut, F. Migeon,
M. Pantel, C. Maurel, and B. Coulette. Towards a rigorous
metamodeling. In 2nd International Workshop on
Model-Driven Enterprise Information Systems (MDEIS),
Paphos, Cyprus, May 2006. INSTICC.

[12] P. Cousot. Methods and logics for proving programs. In
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 841–994. 1990.

[13] D. Distefano, J.-P. Katoen, and A. Rensink. Towards model
checking OCL. In ECOOP Workshop on Dening a Precise
Semantics for UML, 2000.

[14] S. Flake. Temporal OCL extensions for specification of
real-time constraints. In Workshop Specification and
Validation of UML models for Real Time and Embedded
Systems (SVERTS) at UML’03, San Francisco, CA, USA,
October 2003.

[15] S. Flake and W. Mueller. Formal semantics of static and
temporal state-oriented OCL constraints. Journal on
Software and System Modeling (SoSyM), 2(3), October 2003.

[16] Y. Gurevich. The abstract state machine paradigm: What is
in and what is out. In Ershov Memorial Conference, 2001.

[17] F. Jouault. Loosely Coupled Traceability for ATL. In
Proceedings of the European Conference on Model Driven
Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany, 2005.

[18] F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the
Specification of Textual Concrete Syntaxes in Model
Engineering. In Proceedings of the fifth international
conference on Generative programming and Component
Engineering (GPCE), Portland, Oregon, october 22-26 2006.

[19] F. Jouault and I. Kurtev. Transforming models with ATL. In
Proceedings of the Model Transformations in Practice
Workshop at MoDELS, Montego Bay, Jamaica, 2005.

[20] P.-A. Muller, F. Fleurey, F. Fondement, michel Hassenforder,
R. Schneckenburger, S. Gérard, and J.-M. Jézéquel.
Model-driven analysis and synthesis of concrete syntax. In
9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS), volume 4199 of LNCS,
Genova, Italy, october 1-6 2006.

[21] Object Management Group, Inc. UML Object Constraint
Language (OCL) 2.0 Specification, oct 2003. Final Adopted
Specification.

[22] Object Management Group, Inc. Software Process
Engineering Metamodel (SPEM) 1.1 Specification, janvier
2005. formal/05-01-06.

[23] Object Management Group, Inc. Meta Object Facility (MOF)
2.0 Core Specification, jan 2006. Final Adopted
Specification.

[24] M. Richters and M. Gogolla. A metamodel for OCL. In
R. France and B. Rumpe, editors, UML’99 - The Unified
Modeling Language. Beyond the Standard. Second
International Conference, Fort Collins., volume 1723 of
LNCS, pages 156–171, USA, 28-30 Octobre 1999.

[25] M. Richters and M. Gogolla. Validating UML models and
OCL constraints. In UML 2000 - The Unified Modeling
Language. Advancing the Standard. Third International
Conference, volume 1939 of LNCS, pages 265–277, York,
UK, octobre 2000.

[26] J. Warmer and A. Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[27] P. Ziemann and M. Gogolla. An extension of OCL with
temporal logic. In Critical Systems Development with UML –
Proceedings of the UML’02 workshop, volume TUM-I0208,
pages 53–62, September 2002 2002.

