Domain-Specific Language Architecture for
Automation Systems: An Industrial Case Study

Christopher Preschern, Andrea Leitner, and Christian Kreiner

Institure for Technical Informatics
Graz University of Technology, Austria
christopher.preschern@tugraz.at
andrea.leitner@Qtugraz.at
christian.kreiner@tugraz.at
http://wuw.iti.tugraz.at

Abstract. This paper presents a domain-specific language (DSL) design
for automation systems. We describe basic components of the language,
its mapping to automation devices and to automation software elements.
The DSL design achieves low domain model complexity and is easy to
maintain. Furthermore, it allows easy and intuitive modeling of systems
in a domain. We present an industrial case study using the proposed
DSL design and evaluate it regarding its maintainability and complexity.
For this evaluation we use existing metrics to evaluate the domain model
complexity and we introduce novel metrics to evaluate the code generator
complexity.

Keywords: domain-specific language, automation system, domain model
metrics, code generator metrics

1 Introduction

Domain-specific languages (DSL) allow product modeling on a high level of ab-
straction and enable structured software reuse through code generation from
these models. To develop a DSL, a meta-model has to be constructed for a
specific product family. Meta-model development requires careful design of the
domain model structure and the mapping of DSL elements to artifacts in the
solution space. This is a sophisticated task and several guidelines on how to con-
struct a good domain model exist. Such guidelines can be more detailed if they
just address specific domain families, but are rarely present for domain families
where DSLs are not often applied. An example for such a domain family where
no detailed guideline for DSL development exists is the automation domain.

In this paper we present a flexible design to develop automation system DSLs.
We discuss design decisions and their rationale concerning the meta-model and
the mapping of DSL elements to automation devices and to generated artifacts
like the automation system software. We present and evaluate PISCAS (Piscicul-
ture Automation System), an industrial case study which applies the discussed

2 Christopher Preschern, Andrea Leitner, Christian Kreiner

DSL design guidelines. For the evaluation of the DSL complexity, we use exist-
ing domain model metrics and we introduce novel metrics to measure the code
generator complexity. Furthermore, we evaluate the DSL in terms of modeling
effort and maintainability.

2 Related Work

Issues regarding the construction of domain models for automation systems are
discussed in [9], where experiences with different domain model granularities
are presented. Hierarchical, nested domain models are suggested for automation
systems to provide different levels of granularity and abstraction. In Leitner’s
work [8] an evaluation method for the domain model complexity for DSLs and
for feature oriented modeling is presented. We use the proposed DSL metrics in
our domain model evaluation.

Graphical domain-specific languages are used in [4] to model home automa-
tion systems. Eclipse GMF is used to create DSLs where systems can be modeled
on different levels of abstraction which is shown on an industrial case study. A
graphical DSL for automation systems in the railway domain is presented in [3]
where special focus is put on safety constraints of the system. Here, the DSL is
used as a formal specification of the system containing system verification func-
tionality. The MetaEdit+ tool suite is used in [2] to model high rack warehouse
information systems. These literature examples show case studies for automa-
tion system DSLs. None of them, however, handles the topic on a more abstract
level and discusses generic design decisions for these DSLs.

Automation system modeling is handled on a more general level by the Chris-
tian Doppler Laboratory in Linz, Austria. They developed a tool for variability
management and show several case studies in the automation domain [1]. In [11]
a textual DSL for general automation systems is suggested. In a more recent work
of the Doppler Laboratory, a DSL is applied to the automation domain using
hierarchical structuring of the domain model [10]. Compared to our paper they
do not focus on specific automation domains, but address generic automation
system solutions.

3 Domain-Specific Language Design for Automation
Domains

In this section we present general design decisions for the development of au-
tomation system DSLs. First we present the required meta-meta-model which
we later use to provide guidelines for the development of a DSL for automa-
tion domains. We present the DSL mapping to automation devices and to the
automation software. Finally, we discuss the rationale of the presented design
decisions.

DSL Architecture for Automation Systems 3

3.1 Meta-Meta-Model

The DSL design suggested in the next section requires the GOPPRR (Graph-
Object- Property- Port- Role- Relationship) meta-meta-model [6]. This meta-meta-
model allows defining the meta-model in form of a DSL. Objects as basic DSL
elements can be connected with Relationships which define a Role for the con-
nection to an Object. The connection to an Object can be further refined by a
Port to which the connection is attached. The Port is attached to the Object,
while the Role is attached to the Relationship. Objects and their Relationships
can be gathered in a Graph. Properties can be added to each of these elements
(Object, Relationship, Role, Port and Graph).

3.2 DSL Design

Physical automation devices connected to the automation hardware (e.g. to the
PLC) are represented as basic DSL Objects. Variants for device types are de-
fined by Properties of an Object. Automation I/O modules are also modeled as
Objects. Wire connections between the automation devices are directly modeled
as Relationships between Objects. The semantics of the Relationship is given by
the Port it is connected to. Each DSL Object has a minimum set of basic ele-
ments: Property 'Name’, Property *Voltage’, Port ’Input’, Port 'Output’. This
set of basic DSL elements represents our meta-model for the automation domain
which is shown in Figure 1. Additional Relationships or Ports can be used to
connect concrete objects with additional semantics, but concrete Objects still
have to adhere to the rules specified for the abstract automation domain object.

All GOPPRR entities apart from Roles are used in the mapping of DSL
elements to the automation domain. When using the proposed DSL design, Roles
might still be of interest for some domains which might need additional semantics
for their interfaces. The Port entity of GOPPRR is especially useful due to its
straight semantic mapping to wire connections of automation devices.

GOPPRR - —

Meta-meta- Graph| | Object I I Property l | Port | | Role | I Relationship l

model [ﬁ [ﬁ

Generi Automation | Automation Domain

eneric . . " .
Domain Object| | Name | [Voltage| [Output| [nput | [In || out || wire connection

Automation

) t 1 1 1 1 1 1 A
D
omain 1 11 ul conme[tedto| IJ ?1
Meta-model

connected to
Meta-model for a " " N
specific automation |__Concrete Object | Concrete Wire Connection |

domain

Fig. 1. Suggested meta-model for the automation domain

4 Christopher Preschern, Andrea Leitner, Christian Kreiner

In the automation software, each Object is represented by a function block.
Function blocks at least implement the interface variables 'input’ and ’output’
which represent the corresponding Ports in the DSL. Function Block parameters
allow configuring the variants modeled with Object Properties. Relationships be-
tween DSL Objects are mapped to function block connections (e.g. in a function
block diagram). Table 1 contains an overview of the mapping between the DSL,
the automation software, and the physical automation devices.

Figure 2 illustrates this mapping and shows how two different aspects of the
automation system (physical devices and source code) can be represented by
the DSL using the proposed design. This direct mapping between the DSL, the
automation software, and the physical devices is possible, because of the nature
of the automation domain, which already provides a tight relationship between
concepts in the physical world such as physical wires, and corresponding concepts
in the automation software such as function block connections representing wires.

lPhysical system ‘GOPPRR concepts‘Automation software ‘

automation plant|Graph overall software

device Object function block

wire Relationship connecting function block interface variables
- Role -

wire connection |Port function block interface variables

device attribute |Property function block parameters

Table 1. Mapping of the physical system to GOPPRR concepts and to the automation
software

3.3 DSL Design Rationale

Graphical DSL - choosing a graphical model representation allows capturing
information about the assembly and position of physical objects. This informa-
tion can be used to generate the system documentation and the visualization,
which is an essential part for automation systems.

Directly mapping of physical devices to DSL Objects - Directly mapping
physical devices to DSL Objects and physical wires to DSL Relationships, makes
modeling of the automation system more intuitive for domain experts, because
then the DSL is quite similar to function block diagrams which are well known
to automation system developers.

Explicit modeling of I/O modules integrates the physical view of the au-
tomation system into the DSL and allows capturing all physical wires of the
project. Information on the system topology and the electrical wiring is then

DSL Architecture for Automation Systems 5

Automation | SwWitch-Component ‘ Mapping Light-Component
Source Switch[1].output := Light[1].input := IF Light[1].input = TRUE THEN

Switch[1].input; Switch[1].output Light[1].output := TRUE;
Code END_IF

. » (/7. Output
Domain Specific | Port
Language
Hardware
Devices

Fig. 2. Mapping between the DSL, physical devices, and automation software

present in the model. Explicit modeling of the I/O modules is not absolutely
necessary, because the information about the I/O module type to which a de-
vice has to be connected to, is implicitly present in the device type. This would
allow automatic generation of the wiring connections, which might not always
be desired. To model systems with already installed hardware, this automatic
wiring plan generation would most likely be inconsistent. The labels for wiring
closets can be generated from the information of the module connections. The
Property *Voltage’ adds the necessary information to a model with explicitly
modeled I/O modules for generating the complete wiring plan for the automa-
tion system as well as the list of hardware parts required for the automation
project.

Abstract DSL Object - The convention that each Object has an Input’ and
’Output’ Port and a Property 'Name’, makes the code generators much sim-
pler, because they can use this abstract Object interface. The generators for
the visualization, the graphical system overview in the documentation, and the
mapping between automation system function blocks can be made independent
from the Object type. Therefore, adding new Object types to the DSL or chang-
ing existing ones does not affect those code generators. The reason for explicitly
making Object types rather flexible is that in the automation domain the ba-
sic automation elements, which are represented as Objects in our meta-model,
change rather often [9].

6 Christopher Preschern, Andrea Leitner, Christian Kreiner

4 Case Study: PISCAS

In this section the industrial case study is presented. The automation domain
and the developed DSL are described and advantages regarding the use of the
proposed DSL design are evaluated.

PISCAS is a product line for fish farm automation systems. The project was
carried out as a master’s thesis at the Institute for Technical Informatics at Graz
University of Technology [12]. The core functionality of PISCAS includes water
oxygen control and fish feeding. Additionally, water level supervision including
an alarm system and standard automation system functionality like steering
actuators, such as lights, are part of PISCAS. The automation system can be
controlled and configured with a visualization integrated into a web portal. Typ-
ically fish farms just vary in the amount of ponds and the functionality for ponds
like feeding and oxygen supervision. Fish farm automation elements are rather
independent from each other and do not interact a lot. Further information on
the PISCAS project can be found on the PISCAS website!.

A graphical DSL was developed to model fish farm projects. The information
in the model is used to parametrize a generic fish farm automation software. Fully
executable automation code is created including the hardware mapping and the
visualization of the automation project. Additionally PISCAS generates a system
documentation including an electrical wiring plan and a list of needed hardware
components. Configuration files for the web portal and for network devices are
generated. For the web portal, SQL configuration files needed for system ini-
tialization are generated. The network routers installed for PISCAS automation
systems require configuration of a VPN connection which is needed for remote
maintenance of the fish farm automation systems. Furthermore, Configuration
files for the router to set up this VPN connection are generated. Figure 3 gives
an overview of generated artifacts.

Hardware mapping
Automation IEC 61131 source code
Software Visualization

Configuration Web portal SQL files
Files Network device configuration
00 Metakdir + [documentation Graphical overview
Wiri |
PISCAS Model [N pan

List of parts
Labels for wiring closet

—_

Fig. 3. PISCAS - generated artifacts

! http://www.piscas.eu

DSL Architecture for Automation Systems 7

Bernecker+Rainer? (B&R) automation products were used for the PISCAS
project. The reason for choosing B&R is that compared to other automation sys-
tem vendors, the B&R software is easier to generate. All project files including
the visualization and hardware mapping files are stored in XML format. There-
fore, they are easy to parse and to modify. Metaedit+> was used for development
of the DSL and for system modeling. Several DSL tools were evaluated accord-
ing to an evaluation method suggested in [7]. The tools were evaluated regarding
technical, management, and product line related criteria. The full evaluation is
available in [12]. MetaEdit+ implements the GOPPRR meta-metamodel [5] and
is therefore suitable to apply the DSL design proposed in Section 3.2.

4.1 PISCAS DSL

The PISCAS DSL consists of Objects representing basic fish farm automation
devices, such as a feeder or an oxygen control unit. Each Object implements an
abstract Object definition as presented in Figure 1. The abstract object con-
sists of two Ports (Input and Output) and two Properties (Name and Voltage).
Different variants of a concrete Object (e.g. different feeder types) are config-
ured via additional Properties. The DSL consists of one Relationship type (wire
connection) and two Roles. A Relationship represents an actual physical wire
connection.

Basics | Types | Bindings || Subgraphs | Constraints
Relationships Roles Objects

>In 8 Pond

Out 2 Switch

0 Aerator

Jl Feeder

£ Light

[Module

€ TimeSwitch

@ TwilightSwitch
PHvalue

@ waterlevel

(©) TemperatureSensor
(@ MuddinessSensor

Fig. 4. MetaEdit+ DSL elements of the PISCAS language

Figure 4 gives an overview of PISCAS language elements. PISCAS consists
of 7 basic DSL elements (2 Roles, 1 Relationship, 2 Ports, (at least) 2 Proper-
ties). These elements are needed to use the proposed DSL design. Additionally,
18 Properties and 12 Objects, are used for domain-specific elements. Therefore,
the PISCAS DSL consists of overall 37 elements. Code generators are kept as

2 http://www.br-automation.com
3 http://www.metacase.com

8 Christopher Preschern, Andrea Leitner, Christian Kreiner

independent as possible from the Object type. This means that each Object pro-
vides a well defined interface (defined minimum set of Properties and Ports)
which is accessed by the code generators. General code for the generation of the
visualization, the wiring plan, the documentation and the automation software
function block parametrization and connection can be generated by Object in-
dependent generators which access this interface. The DSL is independent from
basic functional changes or bug fixes in the automation code, because model
is just used to configure a generic fish farm automation software. This generic
software has a well defined interface to the DSL through the function blocks and
their interface variables. Therefore, the generic fish farm automation software
can be maintained independently from the DSL as long as the interface between
the automation software and the DSL is not affected by a change. Figure 5 shows
an example for a fish farm model constructed with the PISCAS DSL.

PDIPEIPBEOOOAROE®A T o=

£ § pond IS ~| Mandatory
[rase [l 2 3 4 5 &6 Properties
Teich3
1 :W':‘ InPUt Port B Aerator: Obje
“-Switch
OAeramr

Blocktame: 119)
l Feeder Voltage: 230V v
Ught
=01 (0] — Name: Aerator1
o

OxygenType: | Aerator v
- Output port”| Automation o) (o= (=] |
Dewce Object °
Property Value
Object type| Aerator
BlockName | Aerator o
Voltage 230V N \i/

Name Aerator1

OxygenTyp| Aerator g§

Wire Relation [0o 5 6 |

v

>
Active: Aerator: Aerator Subgraph(s): None Grid: 10@10 snap [show | @ 15\1%\@

AN
B&R I/0 Module

Fig. 5. Example for a PISCAS fish farm model in MetaEdit+ Modeler

4.2 Evaluation

This section contains experiences from applying the suggested DSL decisions
presented in Section 3.2 to the PISCAS project.

Application modeling - Two fish farm systems were modeled with the PISCAS
DSL and are currently in operation. Both systems could actually be modeled dur-
ing meetings with the fish farm owner. This was possible due to the intuitive

DSL Architecture for Automation Systems 9

Fish Farm element|B&R I/O module
modeling (ponds,|modeling
switches, lights, ...)

Fish farm A 2h 3h
Fish farm B 1h 1.5h
Add new components to Bl|lh 2h

(model approximately doubled)
Table 2. Time spent on application modeling for the PISCAS systems

system representation and allowed the fish farm owner to directly check the fish
farm DSL model.

Explicitly modeling the hardware connections took the most time during
the modeling process. Table 2 shows the effort (in hours) required for system
modeling for different PISCAS fish farms. The high modeling effort is caused by
the high number of connections in the hardware mapping. To reduce this effort,
we suggest to generate the hardware mapping in the model automatically the
first time. The mapping can still be changed in the model after initial generation.

Bug fixes - Most PISCAS changes were related to bugs in the automation
software. Therefore, decoupling automation software maintenance from the DSL
maintenance is very important for PISCAS and allows decreasing the overall
maintenance effort.

For the generation of a concrete PISCAS system, a generic fish farm automa-
tion software is configured with the information in the DSL model. The generic
automation software is a complete automation program which compiles and can
be used to maintain and debug the automation code without the need to work
with the DSL tools. This from the DSL decoupled, generic code allowed easy
bug fixes and did not require PISCAS DSL modifications often.

Decoupling the generic automation software allows to test new features in the
generic automation system without the need work with MetaEdit+. Therefore,
MetaEdit+ did not have to be installed on the computer which was used to
develop the fish farm automation software. New automation code can easily be
integrated later on into the DSL as long as the interface constraints regarding the
automation software (physical automation elements are mapped to configurable
function blocks with input and output interfaces representing wire connections)
are met. Taking this thought one step further, the generic automation software
could even be programmed by someone who does not construct the DSL, as long
as the constraints regarding the automation code interfaces where the DSL is
mapped to, are met.

DSL Complexity - To assess the complexity of the DSL, two different metrics
were used. One metric describes the domain model complexity and one describes
the code generator complexity.

10 Christopher Preschern, Andrea Leitner, Christian Kreiner

The domain model was assessed with the metrics suggested by Leitner [8].
The domain model complexity consists of values describing the complexity of in-
terfaces, elements, and properties. These complexities are defined in general and
explicitly for the GOPPRR meta-meta-model used in MetaEdit+. The metrics
are shown in Equation 1 where C' stands for the complexity and n is the number
of items. We modified the element complexity metric, by taking the number of
Ports (nport) into account. This number is added to the element complexity,
because Ports are attached to Objects. The reason for preferring these metrics
to other domain model metrics such as presented in [13] is that they separately
handle the complexity of DSL interfaces and DSL elements which allows us to
reason about the element complexity, which is especially interesting in the au-
tomation domain due to the high semantics these elements usually carry [9].

Cinterface = NRelationships + NRoles + NConstraints
Celement = NObjects + Nports (1)

Cproperties = N Properties

To assess the code generator complexity, Leitner’s metrics [8] have been
adopted. The interface complexity of the code generators consists of the number
of lines of code (#LOC) where any Role or Relationship type is explicitly used
in the generator source code. The element complexity describes the same for the
number of Objects and Ports and the properties complexity handles the occur-
rence of Property types in the code generators. Equation 2 shows these metrics
which describe the dependence (D) of the code generators on DSL items. The
code generator dependence is a metric describing the affect of domain model
changes on the code generator. A lower code generator dependence value sug-
gests less necessary changes in the code generators if DSL items are changed.

Dinterface = #LOCRelationships + #LOCRoles + #LOCConstraints
Delement = #LOCObjects + #LOCPorts (2)
-Dproperties = #LOCProperties

We calculated the two metrics for two versions of the PISCAS DSL. The
first version (PISCASv1) did not follow the DSL design guidelines given in Sec-
tion 3.2. The interface Roles carried semantic information which was in some
cases redundant. In some other cases this semantic information was later, in
the second version, put into the simple ’input’ and ’output’ Ports. The sec-
ond version (PISCASv2) is a refactored version of PISCASv1 and adheres to
the guidelines given in this paper. Objects follow the specified interface conven-
tions (input Port, output Port, name Property, voltage Property) and, therefore,
most Relationships became unnecessary for the PISCAS DSL. This makes the
domain model a lot simpler, because many Roles could be deleted. For the tran-
sition from PISCASv1 to PISCASv2, the two Port types 'input’ and ’output’
had to be added. The Properties and the number of Objects did not change.
Most of the Roles were removed leading to a much lower interface complexity
(see Figure 6(a)). This reduced domain model interface complexity, obviously,
lead to a decrease of the code generator interface dependence (see Figure 6(b)).

DSL Architecture for Automation Systems 11

The code generator element dependence also decreased even though the element
complexity of the domain model increased. The lower code generator dependence
suggests, that the DSL can easier be modified, because less changes to the code
generators are required if domain model items are changed. In particular changes
of Objects in the domain model seem to have lower affect on the code generators
in PISCASv2 due to the decreased code generator object dependence.

w B

o o

»
N
a
=}

w

o
~n
=3
=]

o
.
@
o

Complexity
[n N
w o

=

o

o

=
o

I

o

Code Generator Dependence

o wu

Interface Element Property Interface Element Property
#-=PISCASV1 == PISCASv2 «=4—=PISCASV1 ~i—PISCASV2

(a) Complexity of the PISCAS domain (b) Dependence of the code generators
models from the domain model

Fig. 6. Complexity of the PISCAS domain models

5 Conclusion

In this paper, we presented design decisions to develop a flexible DSL for au-
tomation systems. We presented the domain model design and the mapping of
automation elements to the DSL. The presented design decisions can be taken
as a guideline for automation system DSL developers and can help to develop a
flexible and easily maintainable automation DSL.

The proposed DSL design was applied to a fish farm automation system
DSL (PISCAS) which was evaluated in terms of modeling effort and maintain-
ability. The maintainability is evaluated by measuring the DSL complexity with
domain model and code generator complexity metrics. The introduced code gen-
erator dependence metric used for this evaluation works very well to describe the
PISCAS code generator complexity. For future work it would be very interesting
to evaluate the maturity of the proposed code generator metric by applying it to
other code generator based systems. It would also be of high interest to evaluate
the proposed DSL design, by developing automation DSLs in other domains by
following the proposed DSL guidelines.

Acknowledgments. We would like to thank the company HOFERNET IT So-
lutions and the FFG for financing the PISCAS project with an ’FFG Innovations-
scheck’.

12 Christopher Preschern, Andrea Leitner, Christian Kreiner
References
1. Dhungana, D., Griinbacher, P., Rabiser, R.: The dopler meta-tool for decision-

10.

11.

12.

13.

oriented variability modeling: a multiple case study. Automated Software Engi-
neering 18 (2011)

. Haselsberger, A.: Design and implementation of a domain specific architecture for

programmable logic controllers. Master’s thesis, Graz University of Technology,
Institute for Technical Informatics (2009)

Haxthausen, A.E., Peleska, J.: A domain specific language for railway control sys-
tems. In: Proceedings of the Sixth Biennial World Conference on Integrated Design
and Process Technology. ACM (2002)

Jiménez, M., Rosique, F., Sanchez, P., Alvarez, B., Iborra, A.: Habitation: A
Domain-Specific Language for Home Automation. IEEE Software 26 (Jul 2009)
Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE Environment. In: Proceedings of CAiSE’96, 8th Intl. Conference
on Advanced Information Systems Engineering. Springer (1996)

Kern, H., Hummel, A., Kiihne, S.: Towards a Comparative Analysis of Meta-
Metamodels. In: 11th Workshop on Domain-Specific Modeling. ACM (2011)
Leitner, A.: A software product line for a business process oriented IT landscape.
Master’s thesis, Graz University of Technology, Institute for Technical Informatics
(2009)

Leitner, A., Kreiner, C., Weif}; R.: Analyzing the complexity of domain models.
In: IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (2012)

Maga, C., Nasser, J., Gohner, P.: Reusable Models in Industrial Automation: Ex-
periences in Defining Appropriate Levels of Granularity. In: 18th World Congress
of the International Federation of Automatic Control (IFAC). vol. 18 (Aug 2011)
Prahofer, H., Hurnaus, D.: Monaco - a domain-specific language supporting hier-
archical abstraction and verification of reactive control programs. In: 8th IEEE
International Conference on Industrial Informatics (2010)

Prahofer, H., Hurnaus, D., Wirth, C., Méssenbock, H.: The Domain-Specific Lan-
guage Monaco and its Visual Interactive Programming Environment. In: IEEE
Symposium on Visual Languages and Human-Centric Computing. IEEE (2007)
Preschern, C.: PISCAS - A Pisciculture Automation System Product Line. Mas-
ter’s thesis, Graz University of Technology, Institute for Technical Informatics
(2011)

Rossi, M., Brinkkemper, S.: Complexity metrics for systems development methods
and techniques. Information Systems 21(2), 209-227 (Apr 1996)

