
SIMtelligence Designer/J: A Visual Language to Specify
SIM Toolkit Applications

Carsten Schmidt1 Peter Pfahler1 Uwe Kastens1 Carsten Fischer2

{cschmidt,peter,uwe}@uni-paderborn.de
cfischer@orga.com

1University of Paderborn 2ORGA Kartensysteme GmbH
Department of Mathematics Am Hoppenhof 33
and Computer Science 33104 Paderborn
Fürstenallee 11 Germany
33102 Paderborn
Germany

Abstract

The SIM Application Toolkit is a standardized interface that provides mechanisms al-
lowing applications, existing in the SIM, to interact and operate with any mobile equipment
which supports the specific mechanisms required by the application. In case of Java Cards
such software is implemented in Java. To simplify software development in this rather com-
plex application domain, we developed a visual domain specific language.SIMtelligence
Designer/Jis used to create programs in that language and to translate them into Java. It is
generated by the VL-Eli system, a tool for the implementation of visual languages.

This paper gives a short introduction to the application area, presents theSIMtelligence
Designer/Jtool and discusses the VL-Eli system.

1 Introduction

Domain specific languages (DSLs) are developed for specific application domains that tend
to be rather narrow. The language constructs are usually chosen from the particular concepts
of that domain and their notation adapts the way how domain experts express their designs.
In this sense a DSL is much closer to the solution of application tasks than general purpose
programming languages are, and they allow designs on a higher level of abstraction.

This strategy of DSLs is especially supported by visual languages: Domain experts often
prefer graphical rather than textual descriptions: high level constructs and complex relations
between them are usually better captured by iconic representations, graphic connections, two-
dimensional layout; visual notations are easier to learn than textual ones.

In this paper we describe the development of a language for the design of Javacard based
SIM Toolkit applications (STK applications), e.g. additional software on SIM cards in mobile
phones. This domain is very well qualified for being supported by a visual DSL: It is a rather
narrow domain; the programs have a common structure and are composed from a small set
of high level constructs according to a few design paradigms (menu selection, event driven
reaction). The large distance from the DSL constructs to their implementation in the target
language Java is bridged by the translation of the DSL. The intended users of the DSL are
experts in the STK domain and are not expected to be familiar with programming in textual
languages like Java.

The design and implementation of visual DSLs requires a wide range of know-how: The
designer has to understand the application domain and needs techniques for drawing, layout,
and manipulation of graphical objects, in addition to most of the analysis and translation tasks
needed for textual languages. As the market for a DSL is usually small, such a large design and
implementation task should be supported by tools to balance the invested efforts.

We used our VL-Eli system [11, 12, 14] to implement our DSL for STK applications. VL-
Eli is a result of our recent research and development in visual languages. Its central paradigm
is incorporated in a set of patterns which encapsulate precoined adaptable and combinable
solutions for graphical language constructs. The language designer selects patterns from that
set and associates them with elements of the abstract syntax.

In VL-Eli conventional tasks of language implementation are supported by the huge set of
dedicated tools in the well-established Eli system [13].

The design and implementation of the STK DSL is performed as part of larger cooperation
between the University of Paderborn and the company Orga Kartensysteme GmbH. A rather
elaborated version of the language has been developed. A structure editor with a prototype
translator is generated using VL-Eli. This state has been reached with the investment of only
few person months. In the next step the language system will be evaluated and completed.

In the following sections of this paper we first introduce the domain of STK applications.
Section 3 gives an overview over the language and presents a selection of its constructs. Central
aspects of the implementation using VL-Eli are presented in Section 4.

Figure 1: The Generated Language Environment

2 Application Domain

The owner of a mobile device, such as a cell phone, is identified by a smart card called the
subscriber identity module (SIM). It enables the access to a network and can store user specific
data such as telephone numbers. Telephone companies and handset manufacturers have agreed
upon the extension of the mobile equipment (ME) functionality in a manufacturer and provider
independent fashion by allowing to add applications to the SIM card. They defined the SIM
Application Toolkit (STK) on top of the standard SIM technology. The STK specifies the inter-
face between the ME and the SIM. It uses Short Message Service (SMS) to transfer information
between the handset and the service provider. Here are some examples of typical STK applica-
tions: For a horoscope service the user is asked for his zodiac sign. This information is sent to
a service center. The service center returns the appropriate horoscope text via SMS. An e-mail
application asks the user to enter an e-mail address and a message. The application sends this
data to the providers gateway where the e-mail is generated and sent. Or, as a last example, the
user may be offered a list of restaurants in his immediate vicinity. This list is received from
the service provider, after the restaurant application on the SIM card has transmitted the users
current position.

The SIM Application Toolkit has been a great success and has been standardized as part of
the GSM standard [1]. It defines how the application program can register menu elements and
listen to events such as timer or SMS events. When an event occurs, a procedure on the card
is executed. The procedure can invoke other functions of the ME, for example it can display a
message, ask for input or dial a telephone number.

In the last years it has become popular to use Java cards [4] as SIMs. Java cards include a
virtual Java machine which can execute byte code instructions for a subset of the Java language.
Thus Java cards can be programed in the high level object-oriented language Java. There is also
a standardized Java package implementing the STK functionality.

Although Java is a high level language it is not very convenient to implement a SIM Toolkit
application in Java. There are several reasons for this:

To implement Java card applications, the allowed language constructs are restricted: only a
certain part of the Standard API is available and some data types, e.g.String andint , are
not supported. Byte arrays and short-values have to be used instead. Furthermore, the size of
the available memory is quite small on Java cards and garbage collection is not supported by
all Java cards. So the memory consumption of programs has to be strictly limited. All these
restrictions lead to complex, sometimes “ugly”, and difficult to write (and read) Java programs.

There is another reason, why Java is not ideal for SIM Toolkit applications: The user should
be able to jump back to a previous menu action at any point in time. For example, in an e-mail
application the user is first asked for the e-mail address and then for the message text. At this
point, the user may want to jump back to the first question. In general this feature requires goto
statements and a rollback functionality to undo state changes, which is not supported directly by
Java. A Java approximation consisting of labeled nested loops is quite complex and error-prone
to be implemented manually.

We decided to implement a visual structure editor for the construction of STK applica-
tions. Its name isSIMtelligence Designer/J. The underlying domain specific language (DSL)
is designed for non-programmers to be able to construct simple SIM Toolkit programs. We
implemented astructure editor because users who are not familar with the new language need
guidance in the construction process. SIM Toolkit commands have a large set of options and
parameters. Showing them in an interactive dialog is a great help for the user. We designed a
visual languagebecause visual expressions are more intuitive and can improve the perception

of specifications. Additionally, users tend to be more motivated to learn and use a visual lan-
guage. The visual program is translated to a Java Card STK application by the code generation
phase ofSIMtelligence Designer/J.

3 Design of the Visual Language

There are two main concepts in SIM Toolkit applications. (1) At the beginning, all relevant
events and the menu structure are registered by the application. (2) Each event triggers a pro-
cedure, which has a characteristic control flow with interactive SIM-Toolkit commands and
backward move functionality. The separate procedures are independent from each other. The
whole program is obtained by associating them to events. Thus, the language is decomposed
in two types of views: (1) The top-level view specifies the relevant events and associates each
with the appropriate procedure object. (2) The Procedure view shows a procedure in full detail.
In the following, we will describe the structure of these views separately.

3.1 The Top-level view

Figure 2: The top-level view

The top-level view (Figure 2) specifies the events, which the application is interested in. At
the same time it defines all procedures of the application. (The procedure view can be opened
via context-menues of the individual objects in the top-level view.)

The top-level view consists of three parts, which are enclosed by blue boxes:

• The topmost box shows the menu structure of the application. This structure is regis-
tered, when the application is installed. It consists of the language elements “Menu item
(Executable)” and “Menu item (Submenu)”. When the user of the generated program
selects a menu item, that was specified by a “Menu item (Submenu)” construct, the cor-
responding sub-menu is shown. When he selects a menu item specified by “Menu item
(Executable)”, the corresponding procedure is executed.

• The box in the middle specifies additional event handlers. Currently, language elements
for timer events and SMS events are available. Each element type has its own properties
to customize the event conditions and can trigger a procedure.

• The box at the bottom defines additional procedures. They are not bound to external
events but can be called by other procedures. There are two kinds of sub-procedures:
The contents of “visual sub-procedures” is specified in the same way as other proce-
dures by Procedure views. “Java sub-procedures” are defined in plain Java. In this way
experienced users can achieve any functionality that can’t be specified visually.

3.2 The Procedure view

Figure 3: The “Restaurant finder” procedure

The Procedure view (Figure 3) shows the control flow of procedures. The nodes of the
control flow graph are SIM Toolkit function calls or sub-procedure calls. They are created by
the toolbar buttons on the left side of the window. The type of the nodes is shown by a small
icon on the left side. Since the editor is still a prototype, we only support the most common
toolkit functions, which are “display text”, “get input”, “send sms” and “select item”. This set
will be extended, when the language is fully evaluated.

In contrast to Java, we don’t support general control flow structures but only a specialized
subset. The subset is designed to make the specification of common SIM Toolkit applications
as easy as possible. For example, the “select item” command and the switch over the function
result is combined in a single statement.

Figure 3 shows the specification of the “restaurant finder” procedure. The user is first
asked whether he wants to search by name or by category. If he selects “by category”, he is

asked for the kind of desired restaurant (Italian, Chinese or Greek). The result is stored in
the variable “category”. After that, the SIM Toolkit command “provide local information” is
called, which stores the current position (derived from the active network cell) into the variable
“location”. These informations are sent to the service provider, that returns the address of the
nearest restaurant of the selected category via SMS. If the user selects the branch “by name”, a
“get input” statement asks for the name of the restaurant, which is then forwarded to the service
provider.

Figure 4: A property dialog for a “get input” object

The properties of the “get input” statement can be configured in a dialog as shown in Figure
4, which is accessible via context menu. The statement requests a text string (the alternative
would be a number) with a length between 1 and 15 characters. The input should be visible on
the display (hiding it would be reasonable if it were a password). The final value is stored in
the variable “name”. As you can see, the representation of the “get input” statement gives an
overview about this configuration, too. Additionally it contains a “query” string (“Enter name”)
and a “default” string (“(empty)”). These values are not defined in the dialog, because strings
are individual objects. They can be placed into the statements visually (Figure 3). There are
two types of string objects: String constants (with gray background) and string variables (with
blue background). They can be concatenated to build up more complex values.

One explanation is missing up to now: The “catch backstep” option. As mentioned before,
when the user initiates a backward move, the execution should jump back to the preceding
interactive statement. For example, if a backward move is initiated at the left “send sms”
statement, the program should jump back to the “enter name” request. In some cases, the
application designer wants to be able to influence the target of a backward move, which is
possible by disabling the “catch backstep” option. When a backward move occurs, the program
jumps to the last executed statement withenabled“catch backstep” option.

3.3 The Development Process

The design and implementation was mainly done by a single person, who had no previous
domain knowledge. The first step was to investigate the application area. The requirements
were discussed with the domain experts. Further, the language developer analyzed material
like STK application descriptions and hand-written implementations as well as the predecessor
"SIMtelligence designer". This phase took one month.

In the next step, the language developer designed the core language. The structure and the
visual representation were designed at the same time and discussed with the domain experts.

After both sides agreed on the core language, the language designer generated a prototype
editor for the language and presented it to the domain experts. This step took another month.

In the last step (so far) the language developer implemented a simple code generation.
Simple means, that we have not yet focused on code optimization issues. Some new language
constructs were introduced and the result was given to the domain experts to evaluate it. This
took about 1.5 months.

4 Implementation

We used the VL-Eli system [11, 12, 14] to implement the visual environment. VL-Eli generates
visual structure editors together with a multiple window environment from high level specifi-
cations. A visual language is specified by identifying certain patterns in the language structure
and selecting a visual representation from a set of precoined solutions. For example, state-
ments in procedures are arranged according to theList pattern: They are an ordered sequence
of elements, which are placed along a certain axis in a two-dimensional region. The language
developer selects a precoined specification module forList representations and parameterizes
the details of the representation by a variety of options. Visual programs are represented by
attributed abstract trees. Therefore, further phases of processing can be generated by state-of-
the-art tools for language implementation [13].

....

Set
Form Line

Generator of visual language implementations
Abstract program tree
Graphical representation, layout, editing
Analysis and transformation

!

!

!

VL-Generator

Visual Patterns

! Language
processing

! Graphical
user-interfaces

! Constraint
solver

Eli Tcl/Tk Parcon

Figure 5: The VL-Eli System

The main concepts of VL-Eli are described by the three layers shown in Fig. 5: The VL-
Generator generates visual structure editors from attribute grammar specifications. It is built
on top of tools for graphics (Tcl/Tk), layout (the constraint solver Parcon) and for language
implementation in general (Eli). The topmost layer contains variants of visual patterns, each of
which encapsulates the implementation of visual language elements in terms of specifications
for the VL-Generator. The visual patterns are applied by associating computational roles with
certain contexts of the attribute grammar.

In the following we describe the implementation of (1) the visual structure editor and (2)
interesting aspects of the translation to Java in more detail.

4.1 Specification of the Structure Editor

The visual representation is mainly specified by associating visual patterns to the language
grammar. A visual pattern represents an abstract concept like alist visualization, which dis-
plays the language elements side by side in a row. For each abstract visual pattern concrete

implementation variants are defined in terms of composable specification modules. Such a pat-
tern variant encapsulates operations that are needed for a visual structure editor to implement a
certain graphical representation of the structural abstraction. These are operations which

• draw graphical components, e.g. the oval surrounding a set,

• layout components of the structure, e.g. the elements of a set within its oval,

• provide facilities for user interactions, e.g. insert and delete elements.

We have chosen to provide automatic layout for all language constructs: The user only
has to select new language elements and insert them into the desired place. The layout of the
new structure is computed automatically. Often visual languages suffer from editors with a too
general layout concept: After a small change, the user has to spend much time to achieve a
clear layout again.

The SIMtelligence Designer/Jlanguage is a typical example for a language with a rich,
list-based tree structure, which is ideal for automatic layout. Because the language is com-
pletely implemented by applying visual patterns, the automatic layout comes almost for free.
Of course, automatic layout may have drawbacks, too: The user is not able to modify the layout
to introduce secondary notations [9] or to optimize the layout for printing.

The language is mainly implemented by using theList andFormpattern. TheList pattern is
used to specify the menu tree (which are nested lists), the statement sequence, the branches of
the select statement, and the concatenation of string values. AForm is a compact visual object
with a constant number of sub-elements, which have a fixed relative position. TheFormpattern
is used as root for both views and to specify the representation of the SIM Toolkit function
calls. The sub-elements of the latter form are the parameters of the function call.

The applied patterns support direct manipulation [19]: The user can drag new language
elements from toolbars on the left side and drop them where appropriate. The elements can
be selected, and moved or deleted as required. Editing is assisted by highlighting the nearest
location for inserting a moved language element.

4.2 Code Generation

We used attribute grammars and other tools of the Eli system [13] to specify the code genera-
tion. The visual environment generates Java source code that can be compiled, converted into
cap-files (a standard format for Java card packages), and loaded onto the SIM card.

We decided to implement Java source code rather than Java bytecode even though the gen-
eration of bytecode would prevent a serious problem: The lack of goto-statements in Java.
However, the generation of Java source code is easier and the result can be checked with less
expense during the development. Further, application developers like to have the source code,
so that it is possible to make changes by hand if necessary.

One of the most serious problems is the lack of goto-statements: Whenever a backward
move is triggered, the execution has to proceed at the preceding interactive statement. We
solved this problem by introducing a state variable for interactive statements. The frame of a
procedure is a loop with a nested switch statement over the state variable. Thus, to jump to
another interactive statement the state variable is changed and a new loop iteration is initiated.

4.3 Related Work

There are a lot of tools to support the implementation of visual languages. Most approaches
agree, that there should be an underlying abstract structure. There are two ways to implement
the relation between the visual expressions and the underlying structure: Some systems [5, 6,
15] support a free, almost generic visual editor and use parsing techniques to derive the abstract
structure. Other systems [2, 3] use structure-editors to modify the underlying structure directly.
Often, the visual representation is derived from the abstract structure by unparsing and pretty-
printing techniques. Some approaches support free editingandstructure editing [15, 18]. Since
VL-Eli belongs to the systems that generate structure-editors, we will focus on this area.

The abstract structure of a visual language can be specified in many different ways. Two
important methods are graph-grammars [15, 18] and model-based specifications [16, 7, 10]. In
model-based specifications object types and relations between them are specified in a declar-
ative way. A popular language for such specifications is UML structure diagrams [17]. We
count the tree-grammar based approach of VL-Eli to this group, because tree grammars also
specify certain object types and (hierarchical) relations. The main advantage of tree grammars
in this respect is, that they allow for efficient attribute evaluator generators, which can be used
to specify the visual representation and the code generation.

Again, there are many ways to specify the graphical representation of a visual language.
Metacase tools provide a high level, but fixed visual specification mechanism. The specifica-
tion concept is usually restricted to graph-like visual languages, i.e. there is no support for deep
nesting of language constructs. Other approaches use a more general specification concept. In
[3, 18] graphical primitives and layout constraints are associated to the language structure. The
layout is computed by a constraint-solver. Constraint-solver based specifications are very con-
venient for certain kinds of visual representations, but in some cases they are too restricted and
sometimes there are efficiency problems. Other systems [2, 8] and Vl-Eli use attribute com-
putations to specify the representation. Those specifications are more complex, but they allow
a wider range of visual representations. VL-Eli addresses this by an additional specification
level: A predefined set of visual patterns. In this way, VL-Eli achieves both, a wide application
area and a high specification level.

Not all tools have a sufficient support for code generation. Metacase tools have specialized
"report generator" languages. In MetaEdit+ [16] the object structure can be traversed and object
attributes can be sent to the output stream. This is suitable for documentation- and simple code
generation, but not suitable in the presence of more complicated dependencies. VL-Eli as well
as other tools [15] use attribute computations to specify the translation. Since VL-Eli is based
on the Eli tool-set [13] for translator construction, it offers many tools which solve a wide range
of general language implementation tasks.

5 Conclusion

SIMtelligence Designer/Jis a tool that has been created to assist the design and implementation
of SIM application toolkit software. Such software extends the functionality of mobile phone
SIMs in a manufacturer and provider independent fashion. In the case of Java Card SIMs, STK
software is written in the Java card subset of the Java language. STK software turns out to be
rather complex to write manually due to memory restrictions, missing language features and
the necessity to provide a back-step function.

SIMtelligence Designer/Jis based on a visual structure editor for a domain specific language
and is generated from specifications by the VL-Eli generator. The language is tailored to the

design of SIM Toolkit software. It provides constructs to specify the top level menu structure
as well as language elements to describe the control flow of individual functions. It does not try
to support mechanisms of general programming languages. For example, there is no support
for arithmetic expressions or string processing. We think, that it is not reasonable to transfer
these features to the visual level, because there is no gain of abstraction and the visual language
would be more complex. Instead, we provide mechanisms to integrate Java code for these
aspects.

We consider the current state as core language. The development is not finished yet. Future
evaluation will surely disclose features that are missing in the language. In the future we will
elaborate the support for other events in more detail. Additionally, we will develop concepts for
a more general control flow structure. The difficulty is, that the support of the backward move
has to be considered for each new control flow construct. For example it is not obvious how a
backward move should behave in the case of a loop.

Although the language was designed for non-programmers, developers of the Orga com-
pany evaluated the language, too. Their first comments were very encouraging. To comply
with their needs, we plan to integrate a more flexible method to extend the visual specification
by pieces of java code.

References

[1] 3rd Generation Partnership Project; Specification of the SIM Application Toolkit
for the Subscriber Identity Module - Mobile Equiplent (SIM - ME) interface.
ftp://ftp.3gpp.org/specs/archive/11_series/11.14/.

[2] B. Backlund, O. Hagsand, and B. Pherson. Generation of visual language-oriented design
environments.J. of Visual Lang. and Comp., 1(4):333–354, 1990.

[3] Roswitha Bardohl. GenGed: A generic graphical editor for visual languages based on
algebraic graph grammars. In1998 IEEE Symp. on Visual Lang., pages 48–55, September
1998.

[4] Zhiqun Chen. Java Card technology for Smart Cards: architecture and programmer’s
guide. Java series. Addison-Wesley, Reading, MA, USA, 2000.

[5] Sit Sen Chok and Kim Marriott. Automatic construction of intelligent diagram editors.
In Proc. of the 11th Annual Symp. on User Interface Software and Technology, pages
185–194, 1998.

[6] G. Costagliola et al. Supporting hybrid and hierarchical visual language definition. In
1999 IEEE Symp. on Visual Lang., pages 236–243. IEEE Comp. Soc. Press, 1999.

[7] Robert Esser and Jörn W. Janneck. Moses: A tool suite for visual modeling of discrete-
event systems. InSymposia on Human-Centric Computing, pages 272–279. IEEE Com-
puter Society, September 2001.

[8] Paul Franchi-Zannettacci. Attribute specifications for graphical interface generation. In
G. X. Ritter, editor,Inform. Proc. ’89, pages 149–155. North-Holland, 1989.

[9] T. R. G. Green and M. Petre. Usability analysis of visual programming environments: A
‘cognitive dimensions’ framework.J. of Visual Lang. and Comp., 7(2):131–174, 1996.

[10] Honeywell, Inc. Dome guide, 1999. http://www.htc.honeywell.com/dome/
DOMEGuide.pdf.

[11] Matthias Jung, Uwe Kastens, Christian Schindler, and Carsten Schmidt. A Pattern-Based
Generator for Implementation of Visual Languages. InProceedings 2000 IEEE Inter-
national Symposium on Visual Languages, pages 71–72, Seattle, Washington, September
2000. IEEE Computer Society Press.

[12] Matthias Jung, Uwe Kastens, Christian Schindler, and Carsten Schmidt. Visual languages:
Generating structure-editors from pattern-based specifications. Technischer Bericht,
Reihe Informatik tr-ri-00-214, Universität Paderborn Fachbereich Mathematik-Informa-
tik, October 2000. http://www.uni-paderborn.de/fachbereich/AG/agkastens/paper/vleli-tr-
ri-00-214.ps.gz.

[13] Uwe Kastens, Peter Pfahler, and Matthias Jung. The Eli system. In Kai Koskimies, edi-
tor, Proceedings 7th International Conference on Compiler Construction CC’98, number
1383 in Lecture Notes in Computer Science, pages 294–297. Springer Verlag, March
1998.

[14] Uwe Kastens and Carsten Schmidt. VL-Eli: A generator for visual languages. In Mark
van den Brand and Ralf Lämmel, editors,Electronic Notes in Theoretical Computer Sci-
ence, volume 65. Elsevier Science Publishers, 2002.

[15] O. Köth and M. Minas. Generating diagram editors providing free-hand editing as well as
syntax-directed editing. InJoint APPLIGRAPH/GETGRATS Workshop on Graph Trans-
formation Systems (GraTra’2000), 2000.

[16] MetaCase Consulting. MetaEdit+ User’s Guide, 2002. http://www.metacase.com/fs.asp?
vasen=vasen.html&paa=products.html.

[17] Object Management Group.OMG Unified Modelling Language Specification, 2001.
http://www.omg.org/cgi-bin/doc?formal/01-09-67.

[18] J. Rekers and A. Schürr. A graph based framework for the implementation of visual envi-
ronments. In1996 IEEE Symp. on Visual Lang., pages 148–155. IEEE Comp. Soc. Press,
1996.

[19] B. Shneiderman. Direct manipulation: A step beyond programming languages.IEEE
Computer, 16(8):57–69, August 1983.

