Towar ds Next Generation M etamodeling Tools

Kirk Schloegel, David Oglesby, Eric Engstrom

Aerospace Electronic Systems Research Lab, Honeywell International
3660 Technology Drive, Minneapolis, MN 55418
{kirk.schloegel, david.oglesby, eric.engstrom} @honeywell.com

Abstract
In this paper, we discuss four areas in which next-generation metamodeling tools have the
potential for improvement. These include (i) support for multi-domain system modeling, (ii)
support for commercial off-the-shelf and homegrown tool integration, (iii) increased code
generation and analyses, and (iv) increased model reuse through the use of design patterns
asfirst-class modeling entities.

1. Introduction

Over the last decade, agreat deal of focus has gone into investigating and developing
metamodeling tools. Such tools provide graphical modeling capabilities for the design of
metamodels that in turn define graphical modeling notations. As such, metamodeling tools
are domain-specific visual language (DSVL) tools whose modeling domainisDSVLs
themselves. In addition, metamodeling tools compile or interpret metamodelsto result in
design tools for their specified DSVL.

Such derived modeling tools have a number of advantages over traditional modeling tools.
Since domain-specific knowledge (represented as metamodels) is separate from generic tool
and user-interface knowledge, (i) the creation of graphical modeling tools requires only
domain experts and not tool creation experts; (ii) modeling tools can be developed in little
time; and (iii) they are highly customizable and flexible. Metamodeling tools have shown
great ability to lower the cost of developing DSVL tools. Assuch, they have been
instrumental in increasing the use of DSV Ls across diverse domains, and especially in niche
domains where small user bases have previously made special-purpose tools prohibitively
expensive.

Metamodeling tools not only allow the syntax of a modeling domain to be defined, but also
allow semantics to be defined. Doing so increases the usefulness of models, as semantics can
automatically be interpreted to support various types of modeling services. Examples of such
servicesinclude (i) the generation of code and other types of textual artifacts from models,
(i) the plug-in of domain-specific analysis routines, and (iii) the implementation of other
domain-specific modeling services (e.g., constraint checking). This functionality has helped
to improve both design productivity and product quality.

" This material is based upon work supported by the United States Air Force under Contract No. F33615-00-C-
1705. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the United States Air Force.



2. Next generation metamodeling

Despite these successes, metamodeling tools can be improved in anumber of ways. Inthis
position paper, we discuss four areas in which next-generation metamodeling tools have the
potential to make significant gains. These are (i) multi-domain system modeling, (ii)
commercia off-the-shelf (COTS) and homegrown tool integration, (iii) increased code
generation and analyses, and (iv) increased model reuse through the use of design patterns as
first-class modeling entities.

A. Multi-domain modeling

The motivation behind DSV Lsis the use of languages and modeling notations that are
simpler but more expressive, narrower in focus but deeper in expressive power than general -
purpose languages. While the ratio of expressive power to linguistic ssmplicity makes DSVLs
promising for describing a single domain deeply, such a narrow focusis not sufficient for the
increasingly complex systems being designed today. There are two possible solutions to this
problem. Either DSVLs can be made broader in their expressiveness or else complex
systems can be described using a number of interacting modeling notations in which some of
the concepts from different notations interact. 1n general, we recommend the latter solution
that adheres to the principals of modularity and separation of concerns.

For example, embedded systems can be modeled as (at |east) two interacting domain models:
one describing hardware and the other describing software. The hardware and software
concepts of processors, processes, and threads interact. Embedded system design can further
benefit by allowing users to describe additional non-functional aspects such as quality-of-
service, middleware, and 1/0 [1][9] using appropriate modeling notations. As another
example, linking concepts from Unified Modeling Language (UML) [3] class diagrams and
data flow diagrams [2] provides a mechanism from which more complete code can be
generated than either type of modeling notation can easily provide alone.

While akey characteristic of metamodeling toolsis that they can be used to quickly develop
numerous derived DSVL tools, current metamodeling tools have little or no support for
interacting DSVL tools. In order to work with multiple models from different, but interacting
domains a onetime, it istypically required that a DSVL tool be derived from asingle
metamodel in which the multiple metamodels of interest are encapsulated. In the embedded
system example above, an “embedded” modeling domain could be defined by composing the
hardware and software metamodels into a single encompassing “embedded” metamodel and
then specifying additional relationships and constraints between the interacting meta-entities.
However, this approach discourages metamodel reuse. Instead, we propose that next
generation metamodeling tools support the linking together of multiple independent
metamodels in aflexible and customizable manner.

The MILAN [1] and SAGE [9] projects have both developed embedded systems design
environments built upon metamodeling tools. (MILAN isbuilt upon Vanderbilt’s Generic
Modeling Environment (GME) [12] and SAGE is built upon Honeywell’s Domain Modeling
Environment (DOME) [4].) While these environments utilize metamodeling technology to
link modeling domains, they do so in a non-customizable way. Next generation
metamodeling tools should generalize such approaches by providing support for user-
definable cross-domain interactions.



One mechanism that has been proposed to provide this support isto create alinkage
modeling domain [25]. Linkage models explicitly specify relationships between entities that
exist in different metamodels. Essentialy, proxiesto these meta-entities are instantiated in a
linkage model and then various types of relationships (e.g., equivalence, inheritance,
composition, etc.) are specified among them. The tool environment can interpret specific
types of relationships automatically and users can extend these by defining and implementing
new types of relationships. We have implemented such alinkage DSVL using DOME. This
DSVL is specified by a stand-alone metamodel. Top-level system models may contain
pointers to one or more linkage models. Any cross-domain relationships that are specified
are automatically supported across DSVL tools.

B. COTSTool Integration

While significant, the increase in popularity of metamodeling tools has paled in comparison
with that of COTS design tools such as Rational Rosel] [23] and MATLABL and Simulink[]
[16]. Thesetools have captured large industrial projects, while metamodeling tools have
been primarily relegated to niche domains.

Since most COTS tools contain little or no domain-specific semantics, they often provide
only apartial design solution (e.g., incomplete coverage in code generation). The remainder
requires additional domain-specific or cross-domain information and semantics.
Furthermore, we would argue that each incremental increasein atool’s usefulness dropsits
applicability to a certain market segment. Sinceit isinthe vendors' best interests for their
tools to be applicable to the widest possible market, it is unlikely that the remainder will ever
be made up. And so, manual effort or at least the devel opment of special-purposetoolsis
usually required. Another disadvantage of COTStools is that they can be notoriously
difficult to integrate and maintain in an integrated environment [5].

However, while they suffer in comparison with DSVLsin many respects, COTS tools are till
useful and they represent major user bases and increasing amounts of legacy models. In fact,
the popularity of COTS tools (along with effective marketing) has often led users to
downplay the significance of cross-domain interactions. Instead, users often regard COTS
tool suites as complete solutions (even though they do not generate complete code). COTS
tools are well supported and well tuned to common software design approaches (e.g., OO and
dataflow). They represent de facto industry standards. They typically support modeling
within multiple interacting domains (e.g., UML class diagrams interacting with collaboration
and state diagrams), although in rigid and non-customizable ways. They provide useful
modeling service functionality as well as automatic code generation and certain types of
model analyses.

The conclusion is that metamodeling tools should be able to plug into COTS tools
effectively. Thisintegration should be nearly transparent to the user. Metamodeling tools
should be able to import (and export) data from (and to) external tools easily, even asfile
formats evolve.

While the realization of such functionality poses real challenges, recent effortsin tool
integration via metamodeling tools [11][14][21] have shown promising results. In[11], a
two-step approach is described in which first a syntactic mapping of modeling notationsis
performed followed by a semantic mapping. The authors argue that such an approach
provides a separation of concerns that simplifies the tool integration problem. The authors of



[14] describe efficient model transformation algorithms in support of tool integration. In
[21], ahigh-level model transformation language is described that maps down to XSLT [27].
Here, textual metamodels are specified using XML Document Type Definitions (DTDs) [26].
IBM AlphawWorks XSLerator [28] tool can also generate XSLT scripts from mappings that
are defined using avisual interface.

In related work, the development of the Meta-object Facility (MOF) [18] and XML Metadata
Interchange (XM1) [19] formats provide standards for metamodel specifications. Such
standards are crucial for the transparent integration of models between metamodeling tools
and should be the base upon which future integration support is built.

C. Increased Code Generation

Code generation within modeling domains has seen a tremendous improvement in recent
years. However, in order to generate a complete system, code generation across DSVLsis
required. That is, single-domain code generation istypically not sufficient to provide high
levels of coverage for the complex applications of today. Instead, increased code generation
requires at least interaction, and often cooperation, between different modeling domains
and/or tools.

To this point, little general metamodeling support has been developed for cross-domain code
generation. The result isthat many point solutions have been developed. Thesetypically
consist of hand-written, stand-alone programs that read in data from models of different tools
(e.g., through a COM interface) and combine and format the data appropriately for output.
Such techniques are exceedingly slow and painful to develop, even harder to maintain,
extend, or verify, and vulnerable to changesin tool interfaces. As such, cross-domain code
generation would benefit from a more flexible and customizable approach. Since cross-
domain code generation requires cross-domain modeling support, this remains an open area
of research.

D. Modda Reuse

Support for reuse is an important feature for any model-based devel opment tool.
Metamodeling tools also need to support reuse, and on three distinct levels: (i) metamodel
reuse, (ii) model reuse, and (iii) modeling entity reuse. One dimension of metamodel reuse
involves being able to customize metamodels while still supporting legacy models. The
authors of [13] describe a metamodel -inheritance approach to reuse for this purpose. Another
dimension of metamodel reuse isthe ability of multiple DSVL tools that are derived from
independent metamodels to interact. The importance of this issue has been discussed above.
The second level ismodel reuse[22]. A number of tools, such as MetaEdit+[] [17] and
GME, provide good support for model reuse. Thethird level of reuseis model entity reuse.
Thisincludes reuse (i) within asingle model (i.e., copy-and-paste), (ii) across models, and
(iii) across modeling domains. The former two are typically well supported. However,
current metamodeling tools do not provide adequate support for reuse of model entities
across domains. Support for cross-domain reuse is extremely useful for cross-domain
modeling.

Therealization of design patterns[7] as first-class graphical modeling entities holds the
potential of greatly increasing reuse on the levels of model and modeling entity. However,



the variant and cross-domain nature of design patterns has led to difficulties in modeling and
interpreting them in graphical modeling notations. V arious approaches to capturing patterns
for reuse have been investigated in [6][8][10][15][24]. However, all of these approaches
have been tied to a single modeling domain. We believe that widespread use of design
patterns as first-class modeling entities requires extensive cross-domain support. Thisisone
of the reasons that new design patterns are typically described both with models and text.
When a single notation (usually UML) isinsufficient to describe them in adequate detail, text
is used to compensate.

We have developed archetypes [20] to support the modeling and reuse of design patterns.
Archetypes have mechanisms that specifically address the variant and cross-aspect nature of
design patterns. They can have multiple implementations that can cut across modeling
domains, portals through which information can flow between modeling domains, and
implementation- or archetype-specific operations to accommodate their interpretation from
within different domains. Archetypes insulate developers from their implementations and
can interact with native modeling entities according to the syntax and semantics of the
domain in which they are applied. They support reuse through a user-accessible shelf of
previously designed archetypes as well as powerful composition capabilities. For example,
archetype implementations can contain archetype instances. In thisway, higher-level design
patterns can be model ed.

3. Conclusions

We have described four areas in which next generation metamodeling tools can be improved
to support the increasing complexity of current systems. The common thread among theseis
metamodeling support for cross-domain interactions, regardless of whether these occur
between DSV Ls derived by different metamodels or between derived DSVLs and external
tools. Itisour opinion that this key enabling technology is an important area for future work.

4. References

[1] A.Bakshi, V.K. Prasanna, and A. Ledeczi. MILAN: A Model Based Integrated Smulation Framework for Design of
Embedded Systems, In Proc. of Workshop on Languages, Compilers, and Tools for Embedded Systems, 2001.

[2] L. Bichler, A. Radermacher, and A. Schurr. Combining Data Flow Equations with UML/Realtime. In Proc. 4th Int.
Symp. on Object-Oriented Real-Time Distributed Computing, pages 403-410, 2001.

[3] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison-Wesdley, 1999.
[4] DOME isan open source research project and is available from http://www.htc.honeywell.com/dome.

[5] A.EgyedandR. Balzer. Unfriendly COTS Integration — Instrumentation and Interfaces for Improved Plugability. In
Proc. of 16" IEEE Conference on Automated Software Engineering (ASE2001), November 2001.

[6] G.Florijn, M. Meijers, and P. van Winsen. Tool Support for Object-oriented Patterns. Lecture Notes in Computer
Science, Vol. 1241, 1997.

[71 E.Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wedley, 1995.

[8] J. Hannemann and G. Kiczales. Design Pattern Implementation in Java and AspectJ. In Proc. of OOPSLA 20002,
20002.

[9] Honeywdll International, The Systems and Applications Genesis Environment (SAGE),
htttp://Amww.honeywell.com/SAGE.

[10] G.Karsai. Tool Support for Design Patterns. NDIST 4 Workshop, 2001.

[11] G.Karsai and J. Gray. Component Generation Technology for Semantic Tool Integration. Proc. of the |[EEE
Aerospace 2000, CD-Rom Reference 10.0303. 2000.



[12]

[13]

[14]

[19]

[16]
(17]
(18]

(19]

[20]

[21]
[22]
[23]
[24]

[29]

[26]
[27]
[28]

A. Ledeczi, A. Bakay, M. Maroti, P. Volgyes, G. Nordstrom, J. Sprinkle, and G. Karsai. Composing Domain-specific
Design Environments. Computer, pages 44-51, November 2001.

A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M. Maroti. On Metamodel Composition. In Proc. of IEEE
CCA 2001, 2001.

T. Levendovszky, G. Karsai, M. Maroti, A. Ledeczi, and H. Charaf. Model Reuse with Metamodel-based
Transformations. In Proc. of 7" International Conference on Software Reuse, 2002.

D. Maplesden, J. Hosking, and J. Grundy. Design Pattern Modelling and Instantiation using DPML. In Proc. of the
Tools Pacific 2002, February 2002.

The MathWorks, Inc. MATLAB User Guide. Natick, MA 01760-1500, 1998.
MetaCA SE Consulting. MetaEdit+, Version 3.0 User Guide, 2000.

Object Management Group (OMG). Meta-object Facility (MOF), Version 1.4.
http://www.omg.org/technol ogy/documents/formal/mof.htm.

Object Management Group (OMG). XML Metadata Interchange (XMl), Version 1.2.
http://www.omg.org/technol ogy/documents/formal/xmi.htm.

D. Oglesby, K. Schloegel, D. Bhatt, and E. Engstrom. A Pattern-based Framework to Address Abstraction, Reuse, and
Cross-domain Aspects in Domain Specific Visual Languages. In Proc. of OOPSLA 2001, 2001.

M. Pdltier, F. Ziserman, J. Bezivin. On Levels of Model Transformation. In Proc. of XML Europe 2000, 2000.
R. Pohjonen and S. Kelly. Domain-specific Modeling. Dr. Dobb's Journal, #339, pages 26-35, August 2002.
T. Quatrani. Visual Modeling with Rational Rose and UML. Addison-Wesley Object Technology Series, 1997.

A. Radermacher. Support for Design Patterns through Graph Transformation Tools. In Proc. Applications of Graph
Transformations with Industrial Relevance (AGTIVE'99), pages 111-126, 1999.

K. Schloegdl, D. Ogleshy, E. Engstrom, D. Bhatt. A New Approach to Capture Multi-model Interactionsin Support of
Cross-domain Analyses. Honeywell Laboratories Technical Report, 2001.

World Wide Web Consortium (W3C). Extensible Markup Language (XML), Version 1.0. http://www.w3.0org/XML/.
World Wide Web Consortium (W3C). XS Transformations (XS.T), Version 1.0. http://www.w3.org/ TR/xslt.
XSL Accelerator (XSLerator) is described and available at http://www.a phaworks.ibm.com/tech/xdl erator.



