
Transforming User Experience Model
To Presentation Layer Implementations

Wojtek Kozaczynski (wojtek@rational.com)
Jim Thario (jim.thario@rational.com)
Rational Software Corporation, USA

Abstract
The paper presents a simple modeling language for describing technical aspects of
interactions between users and the enterprise, and in particular Web, applications.
Such applications use screen-based user interfaces and commonly utilize a
framework, like the Jakarta Struts or Microsoft ASP.NET, to implement those
interfaces.

The presented language is defined by a UML profile and can be easily implemented
by a UML modeling tool. More interesting however, models described in the
language can be automatically, or semi-automatically, transformed into an
implementation of the interface on top of a selected framework. We describe both in
the paper.

Introduction
Our visual language is referred to as the User-Experience (UX) Modeling Language.
It is defined by a UML profile that captures concepts used for representing the
engineering aspects of screen-based user interfaces concerned with:
• The screens the user sees
• The actions the user can perform on the screens, like clicking a button, that the

system must react to (handle)
• The dynamic data the system must display (or put) on the screens
• The data the user puts on the screen that the system must gain access to
• The decomposition of screens into smaller areas that should be managed

separately from other areas, and
• Screen transitions caused by user’s actions and application’s reactions.

The engineering aspects of user interfaces are not concerned with the creative aspects
such as use of colors, fonts, layout, statically supplied graphics, etc.

The paper has the following structure. First we discuss user experience modeling and
describe the UML profile of the language. Then we give a short overview of the user
experience modeling guidelines and show fragments of UX models. We conclude
with a discussion of the transformations of UX models into code-level models for the
Jakarta Struts framework.

We also demonstrate the language and model transformations are an instance of
Model-Driven Development and as such, an example of an automated development of
enterprise applications.

User-Experience (UX) Modeling
The Rational Unified Process defines UX Models as follows: “The UX Model
describes the screens of the system, the dynamic content that appears on the screens,
and how the user navigates through the screens to execute the system functionality
(i.e., the use cases).” [1]

The following participants of the software development effort use UX models most:
• User-experience designers, who prototype the user interface in order to validate

the user interactions with the system
• Designers of the presentation logic system elements, who want to understand how

screens participate in use cases, so they can design and implement the presentation
logic elements (e.g., web pages, applets, etc.) that will implement the screens

• Designers of the business logic system elements, who must understand what
business content is required by the screens and must be provided by the business
logic elements

• Testers, to test the systems’ use cases [2]

A UX model is a visual representation of the screens, screen transitions, dynamic
screen data and user-initiated input events that need to be handled by the system. A
UX model is a diagram composed of the elements defined in the UX UML profile. A
UML profile is a collection of metamodel elements, which have been customized for
a specific domain. UML metamodel elements can have their semantics customized
using stereotypes, tagged value definitions and constraints.

Below we describe the primary modeling elements introduced in the UX UML
profile.

Stereotypes1:

Name Extends Description
screen Class An abstraction of a rendered web page in a client browser. Represents

the final visualized user interface presented to the user of the system.
compartment Class Represents a well-defined region of a screen that is reused by multiple

screens. It is an abstraction of a part of a rendered web page in a client
browser.

input form Class Represents a group of data fields that can be displayed to and
manipulated by the user

form Attribute Indicates that an attribute (field) on a screen is associated with an input
form (it is an input form field). See tag values of those attributes.

1 “A new type of modeling element that extends the semantics of the meta-model. Stereotypes must be
based on certain existing types or classes in the meta-model. Stereotypes may extend the semantics, but
not the structure of pre-existing types and classes. Certain stereotypes are predefined in the UML,
others may be user defined.” [3]

storyboard Package Designates a package containing a description of a use-case storyboard.

Tagged Value Sets2:

Attached to Metamodel Element: Transition
Tagged Value
Name

Type Default
Value

Description

System Action String One or more names of the “business domain”
components of the system that will participate in
handing the transition. This is both a bleed-through
from the design and “horizontal” link to the business-
logic modeling domain.

Attached to Metamodel Element: «form» Attribute
Tagged Value Set Name: FormAttribute
Tagged Value
Name

Type Default
Value

Description

Editable Boolean True Associated with «form» attributes/fields on a screen
Indicates if the field can be edited by the user (True)
on not (False).

Source Form String Associated with «form» attributes/fields on a screen.
Contains the name of the form that the field comes
from.

Field Visibility String:
1 – Visible
2 – Hidden

Visible Associated with «form» attributes/fields on a screen.
Indicates if the attribute is displayed on the form or
hidden.

Constraints3:

Constrains are checked before transforming a UX model to an Implementation model
to assure its well-formedness. The constraints check for the model properties
described in the UX modeling guidelines discussed later.

Below we give examples of three constraints defined in the UX UML profile4:

Constraint:

context «Storyboard»Package inv Storyboard Package Content:

‘ if the context package is stereotyped «storyboard», it must contain a class
diagram called “Participants” and a state machine with the same name as the

2 “A name-value pair. In a tagged value, the name is referred to as the tag. Certain tags are predefined
in the UML; others may be user defined.” [3]
3 “A semantic condition or restriction. Certain constraints are predefined in the UML, others may be
user defined.” [3]
4 Here the constraints are described in English. There is an OCL version of the constraints, but they
would be hard to explain without additional meta-model discussion.

name of the package. The class diagram shows the UX elements participating in
the use-case storyboard and the use-case screen transitions. The state machine
shows the specific distinct states of the use case and refines (disambiguates) the
flows of the use case. The name of the main state machine diagram must be equal
to the name of the storyboard package.’

Constraint:

context Association inv Screen Transition End Names:

‘ if the context directed association represents a transition from screen (or
compartment) A to screen (or compartment) B then (a) the name of provider-end
(the A screen in our case) of the association should be equal to a name of one of
the operations on screen A AND (b) the association must have a name. The
consumer end name must be empty.’

Constraint:

context Transition inv Screen Transition Source and Target:

‘the source of the context transition can be a screen, a compartment or an input-
form. The target of a transition can be only a screen or a compartment’

User-Experience Modeling Guidelines
Profiles describe modeling elements that should be used while describing a specific
aspect of an application and the syntactic rules of well-formed models. They don’t tell
the developer, however, how to construct a meaningful and an easy-to-read model.
This is done in the modeling guidelines. Below are a few excerpts from the UX
modeling guidelines:

The primary UX modeling elements are:
• Screens (represented by classes stereotyped as «screen»)
• Screen compartments (represented by classes stereotyped as «compartment»)
• Input forms and (represented by classes stereotyped as «input form»), and
• Data structures (represented by classes with no stereotypes)

An attribute on a screen or a screen compartment can be stereotyped as «form» as
shown in Figure 1. The «form» stereotype indicates that the screen field represented
by the attribute comes from (is a part of) an input form. Each such field has two
tagged-vale attributes that contextualize the use of the field on the form:
1. Editable, which is set to “True” if the field can be edited by the user and to

“False” if the field cannot be edited
2. Source Form, which contains the name of the form the field belongs to (this is in

case there are multiple fields with the same name that come from different forms).

An attribute without a stereotype represents a screen field, which output “directly” on
a screen.

Operations can be placed on screens, screen compartments and forms. An operation
represents an action that the user can initiate and the system has to handle.

Figure 1. Explorer view of a Screen description

Screen compartments can be used everywhere screens can be used. A screen
compartment is always a “part” of a screen, which is represented as a composition as
shown in Figure 2.

Figure 2. Example of a Screen containing Screen Compartments

A storyboard is a description of the screen flow of a use case. A storyboard is
represented by (described in) a package stereotyped as «storyboard» as shown in
Figure 3.

Figure 3. Example of a storyboard package

Placing the storyboard information in a package is a modeling requirement, as the
convention is used during model transformations. A storyboard package must contain
two elements:
1. A class diagram called Participants showing screen-flow dependencies between

the UX model elements participating in the storyboard, and
2. A state machine named exactly like the storyboard package. The state machine

refines the flow of the storyboard and introduces distinct, named states of that
flow.

A participant diagram is shown in Figure 4. A directed association between two
screens or an input form and a screen indicates that there is a flow from the “from”
screen/form to the “to” screen initiated by an action preformed by the user on the
“from” screen/form. There cannot be flows to forms or compartments, but only to
screens.

In an association the name of the “from” end must be the same as the name of one of
the screen operations. Each flow is also uniquely named. Since it is not common to
model both an association name and a role name, it is worth describing the need for
both. The role name matches user actions, which makes it easy to see the outgoing
transitions resulting from a particular user action. The same user action can cause
multiple transitions (outgoing associations) with the same role name (see the “submit”
action of the “auction info form” in Figure 4). The different/unique association names
allow us to distinguish these transitions and are also used on the state diagrams
described in the next section.

«compartment»
account home

+ last operation status msg
+ total of pending payments
+ user name

+ manage account ()
+ create auction ()

«screen»
auction info

+ auction help msg

«input form»
auction info form

+ auction category
+ auction end date
+ auction end time
+ image
+ item description
+ item name
+ minimum bid increment
+ time zone
+ starting price

+ cancel ()
+ reset ()
+ submit auction info ()

«screen»
auction info confirmation

+ auction start date
+ auction start time
+ «form» item image
+ «form» auction category
+ «form» auction end date
+ «form» auction end time
+ «form» item description
+ «form» item name
+ «form» minimum bid increment
+ «form» time zone
+ «form» starting price

+ cancel auction ()
+ confirm auction info ()
+ update auction info ()

«input form»
auction payment form

+ card expiration
+ card holder name
+ card number
+ card type

+ cancel ()
+ reset ()
+ submit ()

«screen»
auction payment info

+ «form» card expiration
+ «form» card holder name
+ «form» card number
+ «form» card type

«screen»
auction creation success

+ auction category
+ auction end date
+ auction end time
+ auction start date
+ auction start time
+ image url
+ item description
+ item name
+ minimum bid increment
+ starting price
+ time zone

+ nav igate to account home ()

create auction

+ create auction

invalid information

+ submitt

cancel create auction

+ cancel

v alid info

+ submit

update

+ update auctino info

cancel payment

+ cancel

confirm

+ confirm auction info

nav igate to home

+ nav igate to account home

submit payment info

+ submit

reset

+ reset

+ cancel auction

cancel

start over

+ reset

Figure 4. Example of a use-case storyboard

A state machine associated with a storyboard complements and refines the description
of the flow of a use case. The state machine associated with the storyboard shown in
Figure 4 is shown in Figure 5. Below are the highlights of the state machine
representation:
• Each state is associated with at least one screen and represents the state of the

flow at the time the user initiates an action that resulted in a transition
• Each state transition, except a transition to a choice point (see more about choice

points below), has the same name as the corresponding flow association in the
participants diagram

• The standard UML tagged-value Action on a transition gives a name to the system
action that supports (or handles) the transition

• The UX Change Event associated with a transition gives the name of the screen
operation that represents the user action that initiated the transition

• A transition from a state to a choice point has no name. However, the transitions
from a choice point have names of the corresponding screen-flow associations in
the participant diagram of the storyboard. A choice point disambiguates
alternative flows initiated by the same user action.

Transformations of UX Models to Implementation
Models
UX models can be directly transformed into implementation models that in turn can
be used to generate code. The UX-to-implementation model transformations illustrate
the conceptual framework of Model-Driven Development (MDD). The framework

provides a set of concepts that can be used to think about the artifacts and activities of
complex software systems development. The framework is based on three principles:
• The principle of Separation of Concerns
• The principle of Abstraction and Refinement, and
• The principle of Reuse.

Although these principles a strongly interrelated, we will attempt to describe them one
at a time.

Figure 5. Example of a state machine associated with a use-case storyboard

Separation of Concerns
A complex software system has a number of “aspects” that have to be considered and
designed for. These aspects are not equally important to all stakeholders. Stakeholders
look at a system from different “viewpoints” and may be interested in seeing only
those aspects that concern them the most.

UX models are an example of a system view that addresses the engineering aspects of
the interactions of the user with the system.

Abstraction and Refinement
The process of system design and development is a process of transforming a set of
domain (or business) requirements into working code (the system) that meets those
requirements. Practice shows that it is very hard, if not impossible, to map domain

requirements directly into working code. Instead, we progressively map the
requirements into sets of more and more specific concepts starting from concepts that
bridge the requirements and design spaces and ending with concepts representing the
programming model and the target platform. The progressive mapping of more
abstract to more concrete concepts is usually referred to as refinements.

Transformations of use-case descriptions and user scenarios into UX models and then
transformation of those models to implementation models are examples of refinement
transformations.

Reuse
It is recognized, that best system designs are based on proven solution patterns. The
MDD framework assumes that separation of concerns as well as the abstractions and
refinements should naturally lend themselves to capturing and reuse of best design
experiences.

A specific set of transformations that take a UX model and generate a Java model for
the Jakarta Struts framework is an example of encoding a design style (a collection of
design principles) in a set of design patterns.

Transformations between models capture particular design styles. A design style is a
prescribed way of transforming structures of a higher-level model into the structures
of the lower level model(s) while taking into account the system requirements5.

Our set of UX-model-to-Java-model transformations captures a particular style of
designing and implementing the web presentation layer using the Jakarta Struts 1.0.2
framework. The rules of the style are as follows:
• Transform each use-case storyboard into a subclass of the Struts Action class.

Give the Action class the same name as the use case. Correct the name so that it is
a Java compatible class name.

• Transform each UX screen into a Java Server Page. Give the JSP the same name
as the UX screen. Correct the name so that it is compatible with the file system
naming requirements.

• Transform the set of attributes on each UX screen into a value object with get/set
methods for each attribute of the screen.

• Transform each operation on the UX screen into an HTML anchor on the Java
Server Page with the target of the anchor being the UX screen on the opposite end
of the directed association.

• Transform each UX compartment into a Java Server Page. Give the JSP the same
name as the UX compartment. Correct the name so that it is compatible with the
file system naming requirements.

5 Our definition of design styles is similar to the definition of architecture styles: “An architectural
style defines a family of software systems in terms of their structural organization. An architectural
style expresses components and the relationships between them, with the constraints of their
application, and the associated composition and design rules for their construction.” [4].

• Transform the set of attributes on each UX compartment into a value object with
get/set methods for each attribute of the compartment.

• Transform each UX input form into a Java Server Page. Give the JSP the same
name as the UX compartment. Correct the name so that it is compatible with the
file system naming requirements.

• Create an HTML form in the JSP with an input field and label for each attribute
on the UX input form.

• Transform the set of attributes of each UX input form into a subclass of the Struts
ActionForm class.

• Transform each state in the storyboard state machine into a handler method on the
storyboard Action class. Implement the Action perform() method so that it routes
control to the correct handler method based on the known state of the storyboard.

Automating Transformations with Modeling Tools
The transformations described above can be either performed by hand in an IDE or
code editor, or they can be automated with a modeling tool. Below we briefly discuss
how we use Rational XDE (a new generation of Rational modeling and code
generation tool) to automate the transformations.

The XDE has a facility to define and apply model templates called the Pattern Engine.
The developer applies a transformation pattern by providing arguments for each
template parameter and a target expansion location. In our case, each time the
developer applies a UX transformation, he/she provides elements from the UX model
as arguments and chooses a location in an implementation model for the expansion.
As a result, information from a UX model is used to generate fragments of
implementation model(s).

Even though this approach provides large gains in productivity, it can become tedious
when transforming large UX models or even transforming the same model multiple
times after modifications. To help alleviate this issue, the authors wrote an XDE add-
in that applies the transformations automatically. The add-in analyzes a UX model,
selects appropriate transformations and controls their application. In other words, the
add-in uses the individual patterns as atomic transformation units and executes a
design strategy we discussed earlier.

To use the add-in the user first creates a UX model following the guidelines discussed
earlier. Then she/he selects the root of that model and the root of each implementation
model. In common cases there will be a model for Java classes and a model for web
elements such as Java Server Pages. From here the add-in is able to navigate the
model, find the appropriate UX model elements and perform a complete (hands-free)
creation of the implementation models with classes and web elements.

Author’s Experience with UX Transformations
Early users of UX models found them bit overcomplicated. In particular, the state
diagrams provide information that can be inferred, with some additional information,

from the participants diagrams. Hence, the next version of the UX profile will most
likely extended the participant diagram semantics, but will have no state diagrams.

One of the requested domain extensions is access control. UX models can be
enhanced to describe aspects of application security by tagging screens with access
control information and then this information can be passed to the code via templates.

Although the described transformations can save quite a bit of work, the developers
still need to hand-code the connection from the generated code to data and business
services of the enterprise. Generation of complete, executable code brings us back
into the MDD discussion. In order to do that, the enterprise business services would
have to be described by a related UML profile and a third profile may have to be
created to “connect” the two specifications.

After writing the described transformations, we wrote the transformation driver (or
engine) using the “brute force” of coding it in a programming language. This makes
changes to the driver difficult. Describing the transformations steps using
“transformation” UML profile would be a useful leap.

Finally, as soon as we showed the forward application of UX-to-Struts
transformations, the dreaded question about reverse engineering came up.

Conclusion
In the paper we have described a simple visual modeling language based on UML.
The language has no name, but the domain it is used for has. It is called User-
Experience (UX) Modeling and is used to describe the technology aspects of the
user’s interaction with a Web-based system.

Both the language and the transformations of the UX models into code-level models
for the Jakarta Struts framework are an example of what is commonly referred to as
Model-Driven Development (MDD). In MDD an application is described in a number
of problem (or domain) oriented “small” languages capturing specific aspects of the
application. The UX modeling language is one of them. Other common specification
languages include data modeling language, workflow modeling language or business
components modeling language.

References
[1] Rational Software Corporation, Rational Unified Process®,
http://www.rational.com/products/rup, 2002
[2] Rational Software Corporation, RUP® Configuration for Java™ Developers,
Rational XDE Professional v2002 Release 2 — Java Platform Edition Kit,
http://www.rational.net, 2002
[3] Object Management Group, Unified Modeling Language Specification, Version
1.4, http://www.omg.org/uml, 2001

[4] Buschmann, Meunier, Rohnert, Sommerlad, Stal, A System of Patterns (England,
West Sussex: John Wiley & Sons, Ltd., 1996)

