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Abstract

Domain speci�c visual languages are generally used to specify signi�cant con�gurations and be-

haviours of systems of interest for the users and diagrams of di�erent types can be used to specify
di�erent components of a single system. At an abstract level, all these diagrams express some

form of transformation of the system, which can be characterised by its pre- and post-conditions

and by a policy presiding at its execution. We propose a uniform approach to the management
of these transitions, independently of the adopted diagrammatic notation, which can be used for

bidirectional binding between modi�cations of the visual representation and the transformations

of the underlying model.

1 Introduction

Domain speci�c visual languages are generally used to specify signi�cant system con�gurations and

behaviours (i.e. possible con�guration changes) of interest for the users. The choice of the model to

use for behaviour speci�cation is often bound to characteristics of the problem at hand. We restrict

our study to discrete event models, among the most common in the �eld of visual languages.

Complex models may require the composition of systems speci�ed in di�erent ways, e.g at di�erent

layers. For example, a producer-consumer system can be modelled as a Petri net when one wants

to focus on the dependence between the two activities, while the speci�c behaviours of the systems

acting as producers or consumers can be de�ned in completely di�erent ways, maybe using di�erent

visual languages. In these cases, one is either forced to adopt one single model of visual speci�cation,

thus renouncing to domain-speci�c notations, or one has to connect the di�erent processes at some

abstract level.

In this paper, we propose the WIPPOG (from the initials of WHEN, IF, PROCESSES, PRO-

DUCES, OUTS, and GETS) language and computational model, which is based on an abstract notion

of transition. WIPPOG is able to accommodate a set of di�erent concrete models of diagrammatic

transformation, so as to decouple the visual appearance of the speci�cation from its semantical con-

tent in terms of the represented transition, also decoupling the speci�cation of a transition from the

application mechanism de�ning a transformation step. The combination of a WIPPOG interpreter

and of a policy manager, plus mechanisms to manage import and export of resources, constitute a

WIPPOG machine.

Section 2 presents the basic concepts at the heart of WIPPOG in the context of literature on

linear logic programming and meta-model approaches. Section 3 illustrates the WIPPOG rationale

and syntax and Section 4 discusses various aspects related to the implementation and use of WIPPOG

speci�cations. Some conclusions are drawn in Section 5.
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2 Related work

The WIPPOG computational model is tied to the LO framework [AP91, ACP93], which is based

on the multiplicative fragment of linear logic [Gir95, And92]. In a nutshell, a computational step

consumes and produces a �nite set of resources in a pool, with the possible transmission of another

�nite set of resources in a broadcast way to other agents. Transmitted resources are internalised to

the agents in the same way as those internally produced. Di�erently from the LO model, we do not

allow creation of new pools, and we consider a registration mechanism through Import and Export

interfaces, rather than using broadcast communication. Such interfaces were also used in Forumtalk

[And95], where resources could be transmitted both to other agents in the same virtual location, and

to agents whose locations had registered for import.

WIPPOG exploits these ideas to provide an underlying language to express discrete event sys-

tems, independent of any speci�c visual language. In this sense, our work is in the line of metalevel

approaches, which o�er frameworks for the creation and de�nition of language syntax and semantics.

Moses [EJ01] follows the approach of [Erw98] to work on an abstract syntax description of visual

sentences through attributed graphs. From this speci�cation a syntax-checker is de�ned. Moses

provides an environment in which a user can de�ne a sentence, with the syntax-checker operating in

the background. Semantics is dealt with by producing speci�c interpreters in the form of Abstract

State Machines for any given visual language. In our approach, we use WIPPOG both to express the

legal actions in a syntax-directed editor generated from the de�nition of a visual language, and to

express the behavioural semantics attached to a diagram in the language, as both are seen as discrete

event systems.

The problem of interconnecting components (for system simulation) expressed with di�erent visual

formalisms is particularly addressed in the AToM3 environment [dLV02]. Here, general meta-meta-

models generate meta-models in which to de�ne the type of systems to be simulated. Finally, a

model de�nes a speci�c instance of system. All models are expressed in some visual formalism and

model transformations are de�ned through graph grammars. Component interconnection is solved by

mapping di�erent components to a common formalism. In our approach, component interconnection

is automatically given by their WIPPOG expression independently from the original visual formalism.

The translation from domain speci�c languages to their WIPPOG translation has to simultaneously

consider the metalevel de�nitions of both the semantics and the syntax of the language. An explicit

and automated management of these de�nitions, exploiting the meta-meta-level approach could be

bene�cial to WIPPOG as currently the translation of operational semantics from the visual formalism

to WIPPOG has to be explicitly coded case by case.

Referring to discrete event systems, the DEVS framework has to be considered [ZPK00]. This

framework distinguishes between internal and external transitions, rather than resources, and allows

a system to maintain an internal de�nition of its timebase, and of its connections to other systems.

In the WIPPOG approach, transitions are de�ned as WIPPOG rules, and external connections are

managed at the WIPPOG machine level, without having to revise the rule de�nition.

While WIPPOG is based on multiset rewriting, graph rewriting is used in several environments

as a uniform way to express syntax and semantics [BMST99]. Each tool is however tied to a speci�c

application policy and has to recur to hybrid (textual and visual) forms, to steer rule application in

some desired way.

3 A presentation of WIPPOG

WIPPOG exploits an abstract notion of transition performed by a discrete event system, and details

di�erent aspects of its pre- and post-conditions. A set of rules de�nes the set of the system's possible

behaviours, and a pool of resources describes its state at any given moment. A resource is a typed

item, of the form

Item = TypeName '('['id' = Ident ';'] CSLOFAVP ')'



where TypeName is a string from a set TN identifying the resource type in a set T , Ident is a string

uniquely de�ning the item, CSLOFAVP is a comma-separated list of attribute-value pairs. The resource

type determines the names of the attributes from a set Nms, while values are taken from domains

associated with the attributes. No attribute can appear twice in the same item. In the current

implementation, values can be taken from the domains of the basic types, int, string, boolean, Id,

and from lists of these types. A type Object is provided for user-de�ned types. The set of all resources

de�nable on T is called W (T ).

A transition is conditional resource consumption and production. WIPPOG distinguishes internal

resources, to be present in the system, from external ones, received from other systems, or in general,

from the environment (this may include resources representing user inputs). In a similar way, resources

can be produced to remain in the agent state, or to be di�used in the environment, possibly to be

utilized by other agents. Transition preconditions may include checks on the values of attributes of

the internal or external resources to be consumed. Values for the attributes of the resources to be

produced are computed in a dedicated component of the transition. To meet these needs, variables

can be used in the transition to refer to the value of an attribute, and matching is performed against

values of existing resources. Variables with the same name are bound to assume the same value.

A WIPPOG transition is therefore formed by six components:

� WHEN: resources which must be available internally to the agent. Attributes can be mentioned,

with either a constant value, or a variable name.

� GETS: externally produced resources which must be available to the agent. Attributes can be

mentioned, with a constant value or a variable name.

� IF: conditions on variables in the WHEN or GETS components.

� PROCESSES: computational activities associated with the transition and considered to be

always successful. Assignments can be speci�ed here for attribute values for the resources to be

created. Variables introduced in the WHEN or GETS components can be used in the expressions.

� PRODUCES: resources to be created by the transition. If variables appear, their names must

occur either in the WHEN or GETS components, or in the left-hand side of an assignment in

the PROCESSES component.

� OUTS: resources to be made externally available. If variables appear, their names must occur

either in the WHEN or GETS components, or in the left-hand side of an assignment in the

PROCESSES components.

The application of a WIPPOG transition: a) removes from the resource pool available to an an

agent (internal or external) those mentioned in the WHEN and GETS components, if the conditions

in the IF component are satis�ed; b) executes the activities speci�ed in the PROCESSES component;

and c) produces (either for internal or external use) the resources speci�ed in the PRODUCES and

OUTS components.

As an example, a transition in a �nite state machine, going from one state A to a state B when

receiving the input c, as shown in Figure 1a), would be encoded by the rule3:

WHEN: current(id=A)

GETS: input(value=c)

PRODUCES: current(id=B)

In another example, a transition in a Place/Transition Petri Net removing two tokens from a place

pl1, one token from a place pl2, and inserting a token in place pl3, as speci�ed in Figure 1b), would

be encoded by the rule:

WHEN: place(id=1; tkns=X) place(id=2; tkns=Y) place(id=3; tkns=Z)

IF: X � 2 Y � 1

PROCESSES: X1 := X -2 Y1 := Y -1 Z1 := Z +1

PRODUCES: place(id=1; tkns=X1) place(id=2; tkns=Y1) place(id=3; tkns=Z1)

3Actually, the correct syntax of WIPPOG is expressed in XML through a DTD. For the sake of conciseness we adopt

a simpli�ed syntax here.
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Figure 1: a) A transition in a �nite state machine. b) A transition in a PT Petri Net

4 WIPPOG in application contexts

We discuss here some aspects relative to the management of WIPPOG speci�cations, in particular in

the context of visual languages.

4.1 WIPPOG Machines

A WIPPOG machine (WM) provides a computational environment for the execution of WIPPOG

rules. It consists, as portrayed in Figure 2, of a WIPPOG Interpreter, applying one WIPPOG rule

at a time, from those present in the Rule base, coherently with the role of the di�erent components

and according to an activation policy managed by the WIPPOG Manager. The process acts on both

the Resource Pool which contains the resources describing the state of the system, and the Input and

Output compartments of the WM, which represent the system's connection with the other systems.

Several WMs can communicate among them. In particular, let T1 and T2 be the set of types for

the rules associated with two machines WM1 and WM2, called the sets P1 and P2. A machine WMi

can declare a set Ii � Ti of types as Import and a set Ei � Ti as Export. Now, for i; j 2 f1; 2g,
each resource of a type t 2 Ii \ Ej which is declared in the OUTS component of a rule in Pj and

produced during a transition, will be placed in the Output compartment ofWMj. The communication

mechanism removes them from there and places them in the Input compartment of WMi. A rule in

Pi, exploiting a resource of type t in its GETS component, will be able to use such resource and

remove it from the Input component.

The WIPPOG Manager is responsible for activating the interpreter, according to an activation

policy, thus realising the notion of a step. Three basic activation policies may be de�ned: sequential,

concurrent, and maximally concurrent.

In the sequential policy, the interpreter selects only one set of resources satisfying the preconditions

of at least one rule for application. In the concurrent policy, a set of non con
icting sets of resources

satisfying the preconditions for some rule for application is selected. The maximal concurrency policy

applies all possible concurrent rules in such a way that any other application would con
ict with the

selected instances. All the resources appearing in the sets of preconditions for the applied rules are

removed from the pool, while all resources in the sets of postconditions for such rules are added. The

completion of a step can trigger some speci�c activity by other objects in the system. In particular,

it triggers the movement from the Export of one machine to the Import compartment of another

machine, and enables possible external observers to refer to the new content of the Resource Pool.

4.2 From domain speci�c languages to WIPPOG speci�cations

In order to use a WIPPOG machine to support execution of visual speci�cations, we consider that

behaviour speci�cations are generally of three types.

In a �rst case, diagrammatic notations are used to specify transformations following some proto-

typical model such as �nite state automata, data
ow diagrams (and their derivations like Prograph

[CGP89]), or Petri nets. These models use a diagram to implicitly de�ne the content of the transfor-

mation (which can be represented as diagram animation), while adopting an explicit representation of

the transition elements, but rely on an external de�nition to specify its actual operational semantics.
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Figure 2: The architecture of a WIPPOG machine

The second family groups those speci�cations which express transformations as before-after visual

rules, following the pioneering works of BITPICT [Fur91], Agentsheets [RS95] or KidSym [SCS94].

These are based on a simple operational semantics (remove the antecedent and substitute it with

the consequent), but cannot provide much variance in the application policy, generally using either a

sequential or a concurrent one.

Finally, visual rules can be associated with sophisticated application policies or embedding mech-

anisms, as in graph grammars (for the di�erent approaches to this �eld, see [Roz97]). In this case,

however, rules operate more on an abstract representation of the diagram, rather than on the actual di-

agram. Transformations can be mapped back to the actual diagram, generally by way of programmed

routines [Tae00], or layered transformations [Bar02] (for a survey on applications see [BTMS99]).

For all these cases, a style of translation to a WIPPOG speci�cation can be devised, exploiting

metamodel de�nitions of both the semantics and the syntax of the visual language of interest. The

metamodels can be expressed in the UML style via an abstract syntax, typically in the form of class

diagrams, and a collection of constraints on the relations among elements of the abstract syntax. The

metamodel characterisation of the syntactical aspects of the visual language, as de�ned in [PG02],

assigns the language to a family, such as containment-based, graph-like, adjacency-based, etc. The

translation from visual to WIPPOG elements thus depends on the families of models as discussed

above, and the speci�c way of representing relations among elements.

The translation is based on a metalevel de�nition of the semantics of visual speci�cations. This

relies on the identi�cation of Semantic Elements, i.e. of those visual elements through which semantics

is de�ned. In this set, one can distinguish between Con�guration Support Elements and Transition

Elements. Con�guration Support Elements can be in turn divided into Holders and Tokens. A Con�g-

uration is a set of Semantic Elements and a Transition expresses a relation between two Con�gurations

(pre- and post- Con�guration).

For the �rst family of visual languages, this metamodel is re
ected at the visual level, by expressing

Con�guration Support Elements as Identi�able Elements, so that a Visual Con�guration is a set of

such elements (possibly with speci�c values of their appearance attributes, e.g. colour may identify

the position of the current Token in the representation of a �nite state automaton). Transitions are

mapped to peculiar Identi�able Elements, which can be Referrable Elements, as happens in Petri nets,

or Connections, as in Finite State Automata. Attributes of Con�guration Support Elements relevant

to de�ne their state are mapped into visual attributes of the Identi�able Elements. The last mapping

is now to the WIPPOG level. Identi�able Elements corresponding to Con�guration Support Elements

are mapped into WIPPOG Elements, i.e. resources. In any case, a WIPPOG Rule is created for each

Identi�able Element corresponding to a Transition.

For the second family of visual speci�cations, the main di�erence at the visual level is the lack of

a visual element that explicitly represents a transition. This is anyway expressed by the di�erences

between the pre- and post- Visual Con�gurations. WIPPOG Rules are directly derived from these

two Visual Con�gurations. The third family relies on a similar mapping, but in addition, it requires

a speci�c coding of the di�erent execution policies.



4.3 From WIPPOG execution to visual representations

The transitions in a WM need, of course, to be mapped back to the pictorial level. On the other

hand, the types of attributes involved in the management of a WIPPOG transition may be di�erent

from those relevant to the management of the graphical appearance of an item representing a resource.

Moreover, one could be interested in observing global properties of a collection of resources, for instance

how many resources exist for each di�erent type. Finally, some speci�c values of an attribute for a

resource may need to be re
ected through some special appearances of the graphical items.

To this end, we rely on the distinction between Observers and Executors as de�ned in the CVE

architecture [BBMP93]. In this architecture, Executors are responsible for managing computational

resources and activities, while Observers are responsible to format views to be displayed by Presenters.

Observers are also able to interpret the events generated by the user on the presentation elements

and to consequently generate requests to the executors, or adjust presentation aspects, according to

the meaning of the event. A noti�cation mechanism ensures that state changes in the Executor are

reported to the registered Observers to update the connected presentations.

An Observer for a WM (i.e. an instance of WIPPOGObserver) needs to be aware of the set of

types T used by the WM, and to de�ne a set of visual types V T , together with an injective mapping

� : T ! V T connecting the WIPPOG type to the visual type. As the attributes in a type v = �(t)

may di�er for any t 2 T , the observers must also be equipped with partial mappings �t : Dai
! Daj

for some ai 2 atts(t), aj 2 atts(�(t)). In this way, an Observer, once informed of the completion of

a step, can update the pictorial presentation of the current con�guration of the system, which may

involve removal or insertion of items, or modi�cations of the appearance of modi�ed items, according

to the outcomes of a step.

It is to be noted that in a WIPPOG transition the modi�cation of a resource is possible only if it

appears with the same identi�er in both the WHEN and the PRODUCES components. In this case,

the resource is �rst removed and then reinserted with the same identi�er. Attributes whose value

has not been computed in the PROCESSES component maintain the same value. At the graphical

level, we do not need to show deletion and reinsertion (and generally we do not want), so that a

WIPPOGObserver generally waits for the completion of a step to perform the updating, thus being

able to show only the net result. Such a mechanism can however be overriden. As a WIPPOGObserver

needs to implement the WIPPOGListener interface, which declares methods to capture the di�erent

WIPPOGEvents, one can choose to perform (partial) updates when resources are removed or inserted

in any compartment of a WM.

4.4 Using WIPPOG to specify dialogue control in a syntax directed editor

In [BCM99], a construction is presented to translate a set of conditional attributed visual rewriting

rules, de�ning a visual language, into an interaction control automaton enabling or disabling rule

application, according to the user selection of possible rule antecedents. The GenIAL system provides

an interactive environment where users can de�ne visual alphabets, collections of visual rules and sets

of axioms. The user can then construct correct sentences in the corresponding visual language, in a

way governed by the generated control automaton. GenIAL exploits the CVE architecture, so that it

is possible to integrate it with executors embedding WMs into them and with WIPPOGObservers.

As shown in Figure 3, an EACBuild executor translates the speci�cation of a visual language

alphabet and rules into two WIPPOG speci�cations. One, managed by the automaWWM, de�nes the

control automaton; the other, managed by the sentenceWWM, is an adaptation of the original rules to

the WIPPOG syntax. While visual rules may contain attributes pertaining to both the graphical and

the semantical aspects, sentenceW is only involved in the semantics of the visual language. Graphical

attributes are managed by an observer OACesec, responsible for the visualisation of the current state

of the sentence, according to the criteria discussed in Section 4.3. OACesec captures the user gestures

relevant to the evolution of the sentence and translates them into an alphabet of actions understood

by automaW.

The observer OACesec is connected to an executor EACesec encapsulating automaW and sentenceW.

User actions are inserted in the Input pool of automaW and consumed by its transitions. In particular,



WippogSpecification
LanguageSpecification

RuleAlphabet

Translator
(EACBuild)

reads
produces

2

Interprets

(EACEsec)

produces

SentenceObserver

observes

ExecObserver
EditorObserver

(OACEsec)

observes

SentenceEditor

WIPPOGMachine

SentenceExecutor

21

Figure 3: A class diagram de�ning the GenIAL conceptual architecture

each transition in automaW presents exactly one action resource in its GETS component, while the

current state of the automaton (consumed in WHEN and regenerated in PRODUCES) is described

by one current resource. Selection actions may be valid or not. In either case, a noti�cation is

re
ected back to OACesec, possibly starting an error dialogue. Visualisation is again managed by

OACesec, while the control logic is managed in automaW. If the action is a request for activation of

an enabled rule, then automaW exports to sentenceW two resources: one specifying the requested

rule and one describing the current list of selected elements. The sentenceW WM tries to execute

the corresponding transition and exports the boolean resource conditionRule back to automaW to

communicate the outcome. According to the value of conditionRule, one of two transitions will take

place in automaW. In either case, the outcome will be noti�ed to OACesec, which visualises the new

con�guration, or starts an error dialogue.

The visual language rules can in turn be annotated with WIPPOG rules de�ning the behaviour of

the transition. This way, the creation of transitions in a visual sentence is associated with the creation

of a WIPPOG speci�cation connected with the visual sentence created. The latter can be executed

in a new WM (called a SentenceExecutor) and its behaviour observed by an observer managing

suitable graphical representations of the resources in the sentence.

5 Conclusions

The paper has presented the executable language WIPPOG for speci�cation of discrete event sys-

tems, and shown how to connect its execution environment to a visual environment in which a user

can specify processes based on some notion of transition. The WIPPOG language can have several

applications in the visual language area. A generic system for generation and use of domain speci�c

visual languages can support di�erent visual languages in a uniform way, without having to attach

di�erent execution mechanisms for any language. Moreover, a syntax-directed editor can be gener-

ated, which allows the creation of sentences in a visual language speci�ed through before-after rules.

The editor results from the coupling of two WIPPOG speci�cations, one for an automaton enabling

or disabling user actions, and one for the actual rules for sentence evolution.
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