
Industrial Use of Domain-Specific Modeling:
Panel Summary

Juha-Pekka Tolvanen

MetaCase

Niels Brouwers

Altran

Robert Hendriksen

SoLay-Tec and Sioux

Gökhan Kahraman

ASELSAN A.S
Jeroen Kouwer

Thales

Abstract

Domain-specific languages and modeling provide a viable
solution for continuing to raise the level of abstraction
beyond coding, making development faster and easier. This
paper summarizes the panel on Industrial Use of Domain-
Specific Modeling held at the workshop on Domain-
Specific Modeling at SplashCon (Amsterdam, Netherlands
30

th
 October 2016). Panelists included Niels Brouwers

from Altran, Robert Hendriksen from SoLay-Tec and
Sioux, Gökhan Kahraman from ASELSAN A.S and Jeroen
Kouwer from Thales. Panel was moderated by Juha-Pekka
Tolvanen from MetaCase.

General Terms Design, Languages, Verification.

Keywords industry experience; panel; domain-specific
modeling; generators, modeling languages

1. Introduction

Raising the level of abstraction with languages, yet ena-
bling the generation of code and other needed artifacts, has
been a successful recipe for productivity and quality im-
provements for decades. In this panel, experienced industry
experts were asked to share their experiences, both good
and bad, on applying Domain-Specific Modeling (DSM) in
various application areas. The panel discussion offered
insight into the nature of DSM language design, implemen-
tation, and application, as well as the possibilities of di-
verse organizational introduction and use. The audience
was invited to ask questions and join with their own opin-
ions and experiences. The panelists included the following
participants:
• Niels Brouwers, Software Architect, Altran
• Robert Hendriksen, Software Architect at SoLayTec

and Sioux
• Gökhan Kahraman, Team Leader, ASELSAN A.S
• Jeroen Kouwer, Software Engineering Consultant, Tha-

les

The bios of each panelist are provided at the end of the

document.

2. Position Statements

Juha-Pekka Tolvanen from MetaCase acted as a moderator,
introducing the panelists, who then gave their position
statements as follows:

 Niels Brouwers works at Altran in a competence center
of 25 persons creating domain-specific languages (DSLs)
and software factories, while further developing Altran’s
MDE competence. Language bridges, an MDE continuous
integration environment, and portfolios are examples of
assets that increase productivity to develop and industrial-

ize the software factories and integrate them in the client’s
engineering process. Altran plays a significant role in the
MDE ecosystem, mainly concentrated in the Brainport area
in the southern part of the Netherlands. It is actively partic-
ipating in research studies, the industrialization of MDE
techniques in industry, and reporting on industrial chal-
lenges and experiences to research institutes.

Although generic modeling tools play a successful and
useful role in the MDE ecosystem, Altran believes most
gains in productivity, quality and reducing accidental com-
plexity is only achievable with usage of domain specific
software factories. These software factories provide a per-
fect fit to both the practitioner and the process in which it is
being used. Abstraction of the created DSLs reaches up
toward the problem domain to smoothen communication
with stakeholders and reduces the engineering gap from
problem to solution space.

His experiences are from several projects in which mod-
eling languages, highly advanced generators and related
tools are developed and applied in a complex industrial
context. In this setting, 8 DSLs, consisting of 50-100 small-
er DSLs, have been developed that are used by 20-50 engi-
neers on a daily basis. Together, it is estimated that multi-
million lines of code have been generated and integrated in
products build for the high-tech industry. Typical DSLs
show a productivity gain of at least a factor 5.

Niels sees that the demand for software continues to

grow rapidly, but the amount of people developing this
software does not seem to grow at the same pace. Because
it is challenging to develop all of the software for complex
machines with reasonable time to market, there is a real
problem in software development. Niels concluded that he
has not seen a technique comparable to model-based ap-
proaches that provides similar results with productivity

Figure 1. Figure 1: 8 DSL Software Factories industri-
alized in client’s engineering process

improvements. Therefore, the real question is not “if”
MDE/DSM/DSL approaches should be applied, but “how”
these techniques can be introduced into an industrial eco-
system.

Robert Hendriksen has applied DSLs at SoLayTec for

developing machines for atomic layer deposition (ALD) on
solar cells. The use of DSLs started as skunk works, with a
tool called oaw, and in a short period of time they started to
obtain immediate benefits. Later, oaw was abandoned, but
the principles continued to be applied. Robert explained the
use of DSLs and generators in this domain in more detail
(see figure below). First, a gas expert creates models of the
system on the hardware side (e.g., heating, valves and other
instruments connected with pipes). These are also used as
the source for generators – initially for HAL (Hardware
Abstraction Layer), but then also for various other purpos-
es:
• Simulation is very helpful because often the hardware is

not available; by generating simulators, development
can be started earlier.

• State modeling can be used for machine description and
control code behavior. Also, many stakeholders who are
not software engineers can understand state machines
and the importance of the states to their domain.

• Models can serve as a user interface for both a real
system and a simulator.

• Models include information also from the hardware
target, such as a PLC platform from a different compa-
ny. The hardware interfaces can be generated, too. Tests
can also be created from models for new acquired
hardware (e.g., new panels from suppliers).

While SoLayTec has not measured the improvements in
development speed, there really has not been a need to do
so as it became obvious that the use of generators offered
demonstrated benefit. The next challenge is to apply model
checking, which has strong potential, but has not been
applied yet at SoLayTec.

Gökhan Kahraman works at Aselsan in the role of sen-
ior expert engineer. He acts as a team leader of a DSL de-
velopment research group that has developed many DSLs
in various projects, as well as their maintenance while in
use. Gökhan has completed a PhD in the area of DSL Qual-
ity by creating a framework for measuring and assessing
the quality of DSLs. He has been directly involved in creat-
ing two DSLs targeting different needs (GVDYS and ATA,
see Figure below). Both of these DSLs are in active use and
maintained.

Göhkan summarized his group’s experiences in terms of
the benefits and challenges as follows:
+ Increase in productivity (5-7 times)
+ Maintain the created models easily and quickly
+ Decrease in the number of errors via automatic code

generation
+ Multiple artifacts generated from interface definitions,

like Communication Middleware, Test Driver, ICD
– Tooling maturity is often a challenge (Eclipse GMF:

trouble in using it, especially when it comes to evolving
the language, debugging!)

– Lack of support for large-scale projects (theoretically
and tooling); in particular, when using multiple DSLs
that need to be integrated

Jeroen Kouwer is a software architect at Thales serving
as an engineering consultant. Thales has applied modeling
and generators for developing sensors for over 10 years,
e.g., a sensor suite in a ship monitoring the environment
using radar. After 10 years, they have evaluated whether
the effort has been worthwhile and the answer is clear that
their investment has produced great benefit. Jeroen intro-
duced the TCO approach (Total Cost of Ownership) to
modeling (Figure below).

In particular, he emphasized that a DSL helps to define
the terminology of the domain. He gave a simple example
to illustrate the benefits: nobody is expected to speak about
a ‘boat’ as the domain concept is a ‘ship’. A prerequisite
for successful modeling is a (rich) domain-specific plat-
form. Having this domain data in a model is very useful
because it can be used for various generation purposes.

Figure 2. Stuff we generate, SoLayTec

Figure 4. Total Cost of Ownership to investigate if
MSDE is worth.

Figure 3. ASELSAN background to DSLs

Thales is using Capella, a system modeling language, and
an internal framework. The modeling is done with UML
and stereotypes on top of this platform.

Jeroen told the workshop attendees that they do not have
measurements based on calculated gains and investments,
but they know that the second sensor they built took only a
few weeks, but the first effort took a few months. This
gives a clear indication that there are productivity im-
provements in place with their TCO approach.

3. Audience questions and discussion

Because all the panelists were clearly in favor of modeling
and the use of generators, the audience asked if someone
could play the role of “devil’s advocate.” This led the audi-
ence to ask how panelists deal with the challenges they
have faced. The following topics were addressed by the
panel.

3.1 How to deal with legacy code and how to introduce it
when moving to modeling with DSLs?

Robert told that if there is an existing system, its evolution
can be handled by module revolution: take changes of the
system apart and redo them with a model-driven way, he
called “System evolution by module revolution”.

Gökhan agreed with Robert and mentioned that their
DSLs are also based on existing code, but they re-generate
code based on the DSL. He has observed that a legacy
system is not an obstacle to using DSLs. He believes that
DSLs bring a great opportunity to legacy system evolution.

Jeroen stated that if a legacy system can be included as
a reusable asset, then the maintenance is easier. A chal-
lenge observed at Thales is that the interfaces to legacy
components and the code generator need to be consistent
(i.e., code is generated according to the interfaces). He sees
that before the language can be implemented first recurring
patterns need to be identified and used as candidates for
language constructs. Since with legacy there were clear
interfaces and components having those interfaces it be-
came natural that they should have a system modeling
language using these concepts while modeling too.

There was also a question about general guidelines on
identifying architectural concepts and if there is known
literature on the topic. A suggested book on the topic was:
Domain-Specific Application Frameworks, edited by Mo-
hamed E. Fayad and Ralph E. Johnson.

3.2 If technology changes at a fast pace, how can we manage
the changes to the modeling solution?

Jeroen spoke about how he and his colleagues have seen
management support important to handle the evolution in
the past. Now they are introducing a new framework that
requires a new language and expects management support
for that too. In this time the new language will be used by
current engineers and rely on existing toolsets as well.

Niels mentioned that they handle the evolution of lan-
guages and generators for their customers. When the mod-
els do not match a new metamodel, they create migrators as
needed. Altran also ships the migrators, if needed, with the
developed modeling solutions to their customers. Meta-
model co-evolution of other artefacts such as concrete
syntax, code generators and validation rules is still a prob-
lem that currently negatively impacts the productivity of
the toolsmiths.

Gökhan shared his experience that minor changes are
manageable, but larger changes are still challenging; in
particular with their case when the domain changes several
times over a year (~4/year). Tools could help ease the chal-
lenge and make the process easier. When asked how the
model changes are done – automatically or manually – he
stated that changes are done manually.

3.3 Why certain industries, like those presented in the panel,

are ready to use modeling, but others not?

Robert voiced his opinion that one reason for his group is
that the language they are using fits well to the domain they
are working with. He also sees their language as easy to
adopt by domain experts. Perhaps other fields do not yet
have such suitable languages.

It was also discussed among the panelists that perhaps in
some areas it is just hard to identify a good language, or
that there is no support from the company side to try new
things.

The panelists and participants (30) of the workshop were
all software developers. It was observed that if technology
experts do not have a problem domain it may make chal-
lenging to identify appropriate language constructs.

3.4 How to introduce DSM/DSL/MDD?

The discussion ventured into a reflection on how to best
introduce DSLs and modeling into the culture of a devel-
opment organization. A comment from the audience was
that there is a simple solution: Budget. “You make the
budget for the project so small that no other technology
than model-based development with domain-specific lan-
guages can solve the issues.” This somewhat strong pro-
posal seemed to receive general acceptance among the
workshop attendees.

Niels added that the introduction of DSLs will be suc-
cessful only if both architects/engineers and management
are convinced about the benefits and return on investment.
From a technical perspective, it is helpful to be able to
demonstrate how DSL/MDE techniques work using con-
crete examples (e.g., application of general software tech-
niques instead of magic, how it increases quality, supports
architecture and improves communication with stakehold-
ers). Management can be convinced by productivity gains,
platform independence (risk) and adoption of techniques at
peer companies. Secondly, depending on the company, the
strategy used to introduce DSL/MDE techniques might be
chosen differently. In one company, it may be beneficial to
start bottom-up; i.e., implement a horizontal DSL within a
single project and gradually increase the level of abstrac-
tion and/or expand to multiple projects. Alternatively, start
from top-down, where the MDE solution is defined at the
correct level of abstraction (up until problem area) and
gradually implemented to support all aspects. Niels has
seen both strategies work successfully.

3.5 Role of “reverse” engineering / creating or updating
models

In addition to code generation, the audience asked about
other reasons for using models. A question was asked, “Is
there work being done on updating the models based on
external sources, like asking computers to do part of the
work, rather than humans?”

Robert emphasized the use of models to visualize the
system to show errors while design or during execution.

Niels also told that in theory they could use models also
to examine external behavior of legacy components with
models, if needed.

Also, applying models in debugging mode, as presented
in the workshop, was mentioned by the audience as a bene-
fit, as well as incorporating the test results or simulation
results to the models or to the generated artefacts from the
models. It was also emphasized that models can be used
just to visualize things for customers so that validation (are
we solving the right problem) is done together with the
customer.

3.6 How to sustain the momentum and move to the next

domain within the company?

Although panelists have testified about several cases of
success (5x productivity or improved quality), it is some-
times hard to “sell” the idea of DSLs again to a new project
in the company. A key question to the panelists was how
they created several DSLs across different projects, and
how they then managed to move to the next DSL creation
project?

Jeroen mentioned that they are currently in a process of
having a software architecture language already in place
and leverage it now projects using it in France and in the
Netherlands. Once management smells money due to bene-
fits gained then it makes re-applying modeling easier. In
Thales case they could show improvements with data re-
ducing development time from 3 weeks to 3 days. Those
kinds of numbers make a success and they have now 50%
of all code generated.

Robert told that they have had similar experiences – al-
beit not having used DSLs so long yet.

Gökhan told that when presenting the modeling and
code generation idea he collected data from the projects
done and presented this data to the management. It helped
then to make the change for the next project.

3.7 What are the current challenges?

When asked about the challenges, Niels summarized the
main issues as follows:
• How to quantify gains of adopting MDE in the engi-

neering process? Especially when working with a new
customer, it is hard to estimate the gains in terms of
productivity and quality.

• How to remove resistance by software engineers that
prevent adoption of MDE? While some people fear be-
ing replaced by “code generators” (he does not see this
as a valid concern), this issue could be addressed better.

• How to reduce complexity to develop the software
factories?

Gökhan mentioned the following challenges met at

ASELSAN:
• How compatible are new DSLs when integrated into the

software development lifecycle of large-scale and dis-
tributed systems?

• How can we provide language interoperability whereby
DSLs and GPLs can co-exist and work together, such as
when multiple DSLs and GPLs capture different system
aspects in a large system.

• How can we obtain high-quality languages, which may
be a key toward obtaining high quality software?

• How do we address language evolution concerns when
the DSL specification changes? DSLs evolve as the
concepts in a domain evolve. This is a relevant chal-
lenge in EMF/GMF within Eclipse.

• Poor tooling (user friendly tooling, insufficient debug-
ging tools) remains a deep concern.

Jeroen raised the essential question about whether we

are modeling the right kinds of things. Thales does not
create only system architectures, but sensors and sensor
systems as well as integration, yet they model system and
software architectures. After many years of modeling he is
wondering whether they are modeling the right thing.
Should they model sensors and sensors systems rather than
architectures?

4. Closing Remarks

Jeroen restated the key question he made earlier: Are we
modeling the right thing? Is the language operating at the
right level of abstraction?

Gökhan emphasized the challenge of creating good
quality languages and keeping up their quality during the
maintenance phase.

Robert pointed to the future and mentioned integration
with models and AI, and the use of guidance for making
generators. He does not see that AI provides all of capabil-
ity for implementing generators, but AI can offer new ca-
pabilities over past approaches.

Niels wants to see more use of modeling with DSLs be-
cause he does not envision any other technology that is able
to provide similar results.

5. About the Panelists

Niels Brouwers is a software architect at Altran and spe-
cialized in the field of model-driven engineering. His pas-
sion for model-driven engineering originated in 2007 and
was further pursued by joining Altran in 2011, a global
leader in innovation and high-tech engineering consulting
that strongly believes in model-driven engineering. For
more than 5 years, he has led multiple teams in the devel-
opment of DSLs and advanced code generators that are
applied in a large industrial software organization.

Robert Hendriksen joined Sioux, which is based in
Eindhoven, the Netherlands, in 2006. He has been involved
in various projects for Sioux, but at the moment, he works
on a full-time basis as software architect for SoLayTec’s
products. Any time left after his core responsibilities is
devoted to the construction and application of DSLs.

Gökhan Kahraman received the M.Sc. and Ph.D. de-
grees in Electrical and Electronics Engineering from Hacet-
tepe University, and Middle East Technical University
(METU), Ankara, Turkey, respectively. He is currently
working as a senior expert software engineer at ASELSAN
A.S. in Turkey. He has over 10 years of experience in em-
bedded software development using model-driven devel-
opment and DSM approaches, taking on developer, archi-
tect and team leader roles in large scale and complex sys-
tem projects. He is the team leader of the DSL development
team in the ASELSAN-REHIS group. His team designed
and implemented many DSLs that are used in several pro-
jects. These DSLs continue to evolve and are maintained.
His Ph.D. work focused on the assessment of DSLs and his
current research interests include the quality of DSLs and
cyber-physical systems.

Jeroen Kouwer started his career in 1998 at Thales and
has worked since then for various companies, and then
rejoining Thales at the end of 2006. Upon returning to
Thales, he started work on a software service framework
and the modeling methodology on top of this framework.
Since then he has applied his modeling and software skills
in various projects. He has experience with C, Java, model-
ing, meta-modeling and DSL development. He has a strong
focus on enhancing and simplifying developing and testing
of software.

Juha-Pekka is the CEO of MetaCase, a company provid-
ing MetaEdit+ tool for DSM. Juha-Pekka has worked with

model-driven development and tools, notably metamodel-
ing and domain-specific languages and models, since 1991.
He has acted as a world-wide consultant for modeling lan-
guage development, authored a book on Domain-Specific
Modeling, and written over 70 articles for various software
development magazines and conferences. Juha-Pekka holds
a Ph.D. in computer science from the University of
Jyväskylä, Finland.

