
Mixed Generative and Handcoded Development
of Adaptable data-centric Business Applications

Pedram Mir Seyed Nazari Alexander Roth Bernhard Rumpe
Software Engineering

RWTH Aachen University
{nazari,roth,rumpe}@se-rwth.de

Abstract
Consistent management of structured information is the goal
of data-centric business applications. Model-driven development
helps to automatically generate such applications. However, cur-
rent approaches target full or one shot generation of business appli-
cations and often neglect simplicity and adaptability of the code
generator and the generated code. Moreover, it is necessary to
inspect the generated code in order to add functionality. Thus,
here we discuss mechanisms for a code generator to generate a
lightweight and highly customizable data-centric business applica-
tion that is targeted for a variety of users including generated appli-
cation users, tool developers, and product developers. We achieve
simplicity by reducing the mapping of the input model to the gen-
erated code to a minimal core of easily understandable concepts.
As a consequence, the generated code does not need to be read or
understood, since the input model clearly describes what is gen-
erated. High customizability is achieved by providing a variety of
mechanisms to extend the generator and the generated code. These
include template overriding and hook points to extend the code
generator. Moreover, to extend the generated code we use hot spots
and additional manual extension approach. It is even possible to
fully control the code generator and the entire generation process
via a scripting language.

Keywords Data-centric Business Application, Generative Devel-
opment

1. Introduction
Data-centric business applications provide management function-
ality for structured and consistent information. They offer CRUD
(create, read, update, and delete), search, and persistence function-
ality [16, 17]. Existing model-driven development approaches al-
low nearly full code generation [14]. Such generators can be pow-
erful tools when used by experienced users. However, developers
not familiar with such approaches hardly accept them, because of
the their complexity and the loss of control [12, 15]. Consequently,
adapting and customizing the code generator or the generated out-
put becomes a labor-intense and time-consuming task.

Even if nearly full code generation is achieved, simplicity (the
amount of languages needed to describe the business application
and the amount of approaches to integrate handcoded extensions),
ease-of-use, and adaptability is not much addressed by current re-
search [2, 3, 9, 18]. Previous work has proposed an infrastructure
for generating enterprise applications [11, 13]. This infrastructure
consists of multiple code generators and languages, which describe
the enterprise applications in a generative way. Nevertheless, the
provided code generators and infrastructures employ a variety of
modeling languages and may require to develop entire code gener-
ators when changes to the generated software system are required.

In this paper, we present a generator that aims at demonstrat-
ing the power of the generative software development methodol-
ogy using the generator framework MontiCore [10]. Our main con-
tribution is a demonstration of easy-to-use generation of almost
ready-to-use business applications from abstract models as shown
in Fig. 1. This approach is different to existing work as it only re-
quires one input language to describe the data to be managed, pro-
vides clear customization approaches for the code generator and the
generated systems, and presents a code generator that is designed to
automatically integrate handwritten and generated code. In partic-
ular, we use a variant of UML class diagrams and produce running
Java applications. The generated applications provide a graphical
user interface to manage instances of the modeled system. Further-
more, they allow to persist instances in the cloud and share them
among users, which may have different roles and rights.

qualified_association

Class

Type attribute

Class

Type method()

«interface»

Interface

qualifier

1

*

composition

role

CD

Generator

m = parse(model)

generateCore(m)

generateGui(m)

...

Groovy

handwritten adaptations
for generator and product

configuration script

generated product

input model

Figure 1. Overview of generation process.

The proposed generator provides an approach to design highly
customizable and adaptable code generators by offering a variety
of extension mechanisms to even allows to fully control the entire
generation process.

The rest of this paper is structured as follows. We first give a
brief description of the input language and the generated output in



Sect. 2. Then, we describe how we achieve high customizability by
using hook points, hot spots, template overridings, and a control
script in Sect. 3. Finally, we conclude our paper in Sect. 4.

2. Generated Applications from UML Class
Diagrams

The input language of our generator is a variant of UML class di-
agrams that allows to focus on data modeling (without addressing
methods). From this input the generator produces (parts of) busi-
ness applications. The generated product is an executable applica-
tion for managing data that conforms to the UML class diagram
description. It offers CRUD (create, read, update, and delete) man-
agement functionality to manage objects and associations. Addi-
tional support is provided by the graphical user interface that allows
browsing, searching, and filtering. On invalid input the generated
interface offers instant feedback. In addition, database and multi-
user support with role-based access control is generated to allow
specification of users, roles, and CRUD operations. Both function-
ality is provided without employing additional modeling languages.

To simplify the usage of the code generator, we identified three
roles with different requirements. First, end users of the generated
product are unaware of the technical details but simply want to use
the generated application. Their main focus is a user interface that
is systematically structured and easy to use. In contrast, product de-
velopers need to handle and manage the generated code to provide
extensions and customizations. However, they are usually not inter-
ested in the implementation details but mainly in the interfaces and
provided APIs. Finally, tool developers are highly interested in the
implementation and how the overall architecture of the generated
application is to be able to adapt and extend functionality of the
generated code. As a consequence, we provide a highly customiz-
able code generator and additional concepts to adapt the generated
code without the need for a detailed inspection.

2.1 Input Models
The input language is a reduced variant of UML class diagrams and
provided in textual form designed using current understanding of
semantics and domain-specific design guidelines [7, 8]. Certainly,
it does not provide much application-specific functionality. There-
fore, various extension and adaption mechanisms are introduced to
extend the functionality of generated products. Nevertheless, the
input language is sufficient to describe the managed data and gen-
erate a working application.

1 classdiagram SocialNetwork {
2 abstract class Profile {...}
3

4 class Person extends Profile {...}
5

6 association Person -> (friend) Profile [1] ;
7 }

Listing 1. Input model example

The input language focuses on the most important concepts of
UML class diagrams especially suited for documenting analysis re-
sults. An example is given in Lst. 1. It contains classes, interfaces,
and abstract classes. Classes may extend other classes and imple-
ment interfaces. We use associations with navigation directions and
cardinalities. An association as well as each of its role ends may
have names. Associations can be ordered or qualified. Ordered as-
sociations are marked using the ordered stereotype and qualified
associations require a qualifier. Classes have attributes with asso-
ciated types. Compositions are omitted in the model, but they are
supported as a special form of associations.

2.2 Generated Applications
The generated application is a typical 3-layered architecture com-
posed of the graphical user interface, the application core, and the
persistence management to structure its products. The application
core realizes only business functionality. As illustrated in Fig. 2,
the layers are independent and can easily be exchanged by differ-
ent implementations. Each leayer has its own runtime environment
and standard components for accessing predefined not generated
functionality.

generated
Runtime

Environment

standard

components

Application Core

generated
Runtime

Environment

standard

components

GUI

generated
Runtime

Environment

standard

components

Persistence

generated GUI code
references generated
application core code

Figure 2. Overview of the generated appliction’s architecture.

Since not every functionality can and needs to be generated
from the input model, already existing code is reused. There are
many sources for this kind of reuse. In order to make use of this
kind of reuse, the generated architecture relies on a run-time, which
is deployed with the generated application and provides access to
external libraries. An example for the need of external libraries
is role-based access control. The generated applications allow for
create users, roles, and to define the CRUD operations of each role.
Since generating role-based access control from abstract models is
hard, we generate code that is compatible with Apache Shiro [1].
Hence, no need for introducing a new modeling language is given
and developers can rely on existing infrastructure. A major benefit
of employing Shiro is the possibility to be very fine grained and for
example to define rights on attribute or association level.

3. An Intelligent and Customizable Generator
A code generator becomes helpful, when it effectively assists de-
velopers to speed up their work. This is only possible, when the
generator actually takes some burden from the developer. For ex-
ample, by making certain decisions and generating corresponding
functionality. Our generator for example targets desktop applica-
tions with a layered architecture. Based on that choice, it embodies
a variety of additional functionality that can be generated automat-
ically.

Besides taking some burden from the developer, it is an intrinsic
property of a good generator to be able to adapt either the gener-
ation process or the generated code. In particular, for algorithms
that usually cannot be described in a more abstract form than the
implementation of the algorithm itself, manual implementation is
necessary. Due to this, we provide a variety of extension mecha-
nisms to allow for high customizability of the code generator and
the generated code.

For the code generator, we provide explicit hook points, which
are dedicated spots in templates that are intended to be customized
and extended. Additionally, a more detailed level of customization
is provided by allowing to replace every templates of the code gen-
erator with a custom template. Finally, in order to give developers
full control of the generation process, which includes parsing mod-
els, checking context conditions, and generating code, we employ
Groovy [6] as a scripting language to control the generator. Hence,



the generator becomes an active library [4], where only parts of
the code generator can be executed and the generated code can be
adapted.

For the generated applications, we offer hot spots as a dedicated
spot in the generated code, which is usually known from frame-
works as provided methods that have to be overridden, and concepts
to extend the generated classes [5]. We strictly separate handcoded
artifacts from generated artifacts to allow complete regeneration
without loss of the customizations and adaptations. This provides
from overriding handcoded extensions by generated code and re-
quires developers to only version the input model and the hand-
coded artifacts. The code generator detects handwritten extensions
and adapts the generated code accordingly to regard it. As Fig. 3
shows this kind of extensions are supported on each layer of the
generated architecture.

Runtime

Environment

standard

components

Application Core

Runtime

Environment

standard

components

GUI

Runtime

Environment

standard

components

Persistence

hand

coded

hand

coded

hand

coded

generated

generated

generated

Figure 3. Overview of the generated appliction’s architecture with
handwritten extensions.

4. Conclusion
Generating data-centric business applications is a complex task and
currently requires deep knowledge of multiple modeling languages
and the underlying code generators. To tackle the low acceptance of
model-driven development approaches to generate business appli-
cations, a simplified approach to generated business applications,
which requires only one UML class diagram and provides clear
customization concepts, is helpful.

In this demonstration, we present a code generator that uses a
variant of UML class diagrams as input to generate lightweight but
feature rich business applications. The code generator’s main focus
is on simplicity and adaptability. This is achieved by reducing the
input language to one simplified language, adapting the code gener-
ator to take some decisions from the developer, and simplifying the
mapping of input language concepts to output language concepts.
However, since no application specific logic as well as behavior
can be expressed, we provide a variety of adaptation mechanisms
to adapt the code generator and the generated applications. It is
even possible to customize the complete code generation process.

References
[1] Apache Shiro website http://shiro.apache.org/.
[2] W. L. d. S. Carlos Eduardo Cirilo, Antonio Francisco do Prado and

L. A. M. Zaina. Interactive Multimedia, chapter Building Adaptive
Rich Interfaces for Interactive Ubiquitous Applications. 2012. ISBN
978-953-51-0224-3.

[3] A. Cicchetti, D. Di Ruscio, and A. Di Salle. Software customization
in model driven development of web applications. In Proceedings of
the 2007 ACM Symposium on Applied Computing, SAC ’07, pages
1025–1030, New York, NY, USA, 2007. ACM. ISBN 1-59593-480-4.

[4] K. Czarnecki, U. Eisenecker, R. Glck, D. Vandevoorde, and T. Veld-
huizen. Generative programming and active libraries. In M. Jazayeri,
R. Loos, and D. Musser, editors, Generic Programming, volume 1766
of Lecture Notes in Computer Science, pages 25–39. Springer Berlin
Heidelberg, 2000. ISBN 978-3-540-41090-4.

[5] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir
Seyed Nazari, K. Müller, A. Navarro Perez, D. Plotnikov, D. Reiss,
A. Roth, B. Rumpe, M. Schindler, and A. Wortmann. A Compari-
son of Mechanisms for Integrating Handwritten and Generated Code
for Object-Oriented Programming Languages. In S. Hammoudi, L. F.
Pires, P. Desfray, and J. F. Filipe, editors, Proceedings of the 3rd In-
ternational Conference on Model-Driven Engineering and Software
Development, pages 74–85, Angers, Loire Valley, France, February
2015. INSTICC and ESEO, SciTePress.

[6] Groovy Programming Language website
http://www.groovy-lang.org/.

[7] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics
of “Semantics“? Computer, 37(10):64–72, 2004.

[8] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Völkel. Design Guidelines for Domain Specific Languages. In
Proceedings of the 9th OOPSLA Workshop on Domain-Specific Mod-
eling.

[9] S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full
Code Generation. Wiley, 2008. ISBN 978-0-470-03666-2.

[10] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: Modular Develop-
ment of Textual Domain Specific Languages. In Proceedings of Tools
Europe, 2008.

[11] V. Kulkarni and S. Reddy. Model-driven development of enterprise
applications. In N. Jardim Nunes, B. Selic, A. Rodrigues da Silva,
and A. Toval Alvarez, editors, UML Modeling Languages and Appli-
cations, volume 3297 of Lecture Notes in Computer Science, pages
118–128. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-25081-
4.

[12] V. Kulkarni and S. Reddy. A model-driven approach for developing
business applications: Experience, lessons learnt and a way forward.
In Proceedings of the 1st India Software Engineering Conference,
ISEC ’08, pages 21–28, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-917-3.

[13] V. Kulkarni and S. Reddy. A model-driven approach for developing
business applications: Experience, lessons learnt and a way forward.
In Proceedings of the 1st India Software Engineering Conference,
ISEC ’08, pages 21–28, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-917-3.

[14] V. Kulkarni, R. Venkatesh, and S. Reddy. Generating Enterprise
Applications from Models. In J.-M. Bruel and Z. Bellahsene, editors,
Advances in Object-Oriented Information Systems, volume 2426 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002.
ISBN 978-3-540-44088-8.

[15] V. Kulkarni, S. Reddy, and A. Rajbhoj. Scaling up model driven
engineering experience and lessons learnt. In D. Petriu, N. Rouquette,
and y. Haugen, editors, Model Driven Engineering Languages and
Systems, volume 6395 of Lecture Notes in Computer Science, pages
331–345. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-16128-
5.

[16] R. Mohan and V. Kulkarni. Model driven development of graphical
user interfaces for enterprise business applications experience, lessons
learnt and a way forward. In A. Schrr and B. Selic, editors, Model
Driven Engineering Languages and Systems, volume 5795 of Lecture
Notes in Computer Science, pages 307–321. Springer Berlin Heidel-
berg, 2009. ISBN 978-3-642-04424-3.

[17] A. Schramm, A. Preuner, M. Heinrich, and L. Vogel. Rapid ui de-
velopment for enterprise applications: Combining manual and model-
driven techniques. In D. Petriu, N. Rouquette, and y. Haugen, editors,
Model Driven Engineering Languages and Systems, volume 6394 of
Lecture Notes in Computer Science, pages 271–285. Springer Berlin
Heidelberg, 2010. ISBN 978-3-642-16144-5.

[18] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013.


	Introduction
	Generated Applications from UML Class Diagrams
	Input Models
	Generated Applications

	An Intelligent and Customizable Generator
	Conclusion

