
Design of a Domain-Specific Language for Material Flow
Analysis using Microsoft DSL tools: An Experience Paper

Bahram Zarrin
Denmark Technical University

baza@dtu.dk

Hubert Baumeister
Denmark Technical University

huba@dtu.dk

Abstract
Material Flow Analysis (MFA) is the procedure of measuring and
assessing the mass flows of matter (solid waste, water, food...) and
substances (carbon, phosphorus ...) within a process or a system
for the period of time. In this paper we propose a Domain-Specific
Language (DSL) to model MFA in a waste management modeling
context. The result is that we integrate the DSL within a waste
management modeling software called EASETECH and we show
how the proposed DSL allows the domain experts to extend the
software without involving of software developers. Our future work
is to develop more features for the DSL and make it more general
to work for other flow analysis contexts.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Specialized application languages

General Terms Languages, Design

Keywords Domain-specific modeling languages, Material Flow,
MS DSL tools

1. Introduction
Domain-Specific Languages (DSLs) are languages which are spe-
cialized for a specific application domain. In recent years they have
become mostly used to improve the productivity of software devel-
opers and the quality of a software [7, 9, 10]. In this paper we show
another application of them which is to utilize a DSL by domain
experts to extend a software in order to fulfill new requirements.

EASETECH1 is a novel modeling tool for life-cycle assessment
(LCA) within the waste-management domain. The tool analyses
waste flows, environmental emissions and resource consumption
from waste-management systems and delivers a comprehensive
impact assessment in relation to photochemical ozone formation,
ozone depletion, potential global warming, acidification, nutrient
enrichment, etc. [2]. The software employs a model consisting of a
set of catalogs and material processes in order to describe scenarios
of a solid waste system. The catalogs contain all the information
related to environmental exchanges, resource consumptions, and
emissions to water, soil and air [3]. This information is required
to calculate the Life Cycle Impact Assessment (LCIA) of a waste
system. A material process in EASETECH can be either a template
material process or a composite material process based on several
of these templates. A combination of these material processes mod-
els a waste scenario.

At the moment the template material processes, which are the
basis and fundamental elements in waste scenarios, have been im-
plemented in C#. This makes it difficult for the researchers and
domain experts to add a new template material process to the soft-
ware. One of the objectives of our research is to design a domain-

1 http://www.easetech.dk/

specific language for waste-management modeling in order to de-
scribe different aspects of these waste processes and replace the
hard-coded library of EASETECH with the compiler of this DSL.
This allows the domain experts to extend EASETECH without
dealing with any software-development activity.

In this paper we propose a DSL to describe material flows
within a material process and we implement the DSL based on
Microsoft DSL tools. This paper is organized as follows: first we
have a brief introduction to Material-Flow Analysis in Sect. 2, then
we design the proposed DSL and explain its semantics in Sect. 3.
Afterwards we discuss the implementation of the DSL, related
technologies, simulation and integration of the DSL in EASETECH
in Sect. 4. We consider the related work in Sect. 5 and conclude our
work in Sect. 7.

2. Material-Flow Analysis
The objective of using material-flow analysis (MFA) is to evaluate
the totality and consistency of material flows between inputs and
outputs of a certain system or process. One of the methods used
commonly to do MFA is material-flow networks (MFNs) which
were introduced many years ago and have been used regularly for
Life Cycle Assessment (LCA)[4]. A material-flow network for a
process can be defined as a set of inputs, outputs, transformers
and transitions and it can be modeled as a directed graph such
that inputs, outputs and transformers are the nodes and transitions
are its edges. Transformers can change the material specifications,
while transitions only transfer a specific amount of a material from
a source node to a target node.

In EASETECH, a material is defined as a set of one or more
fractions (such as paper, plastic, etc.) where each fraction has a list
of substance names, amounts, and units. Based on these definitions,
two type of material transformers are required to model a material
process. One is needed to change the ratios of the fractions of a
material and the other is required to change the ratios of the sub-
stances of a material. These material transformers can be modeled
as a function that accepts a material object as input and generates a
new material object as output.

3. Material Flow DSL
The meta-model of the DSL is illustrated in Fig. 1. In order to
model the material flow in a material process, some material op-
erators are defined in the meta-model. The model is a composite of
one or more elements and each element is either a material element
or a flow.

Three kinds of material elements are defined in the model,
i.e. inputs, outputs, and operators. The model can have one or
more inputs/outputs which will be mapped to the inputs/outputs
of the material process. Operators are corresponded to material
transformers in MFNs of which they can change the composition

Process Flow

+name: String

MaterialElement

+deg : Double

Operator

Input

Output +value : Double

MaterialFlow

ResiduesFlow

HubDistributor

+sn : String

SubstanceDistributor

+fn : String

FractionDistributor

SubstanceHub

FractionHub

Element

target

source

source

target

hb

hbsd

fd

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1

1

1

1

1

0..1

0..1

Figure 1. Meta Model of the Material Process model.

of the material. Two different operators are defined in the model.
The first one is the Distributor, which can be either a Fraction
Distributor (FD) or a Substance Distributor (SD). The other one
is the Hub which can be either a Fraction Distributor Hub (FH) or
a Substance Distributor Hub (SH).

FD operators are defined to extract a specific material fraction
from the given material, while SD operators are proposed to extract
a specific substance from the material. FD or SD operators can
be directly used in a material-flow model or they can be hosted
within a Hub. Hubs (FHs and SHs) are defined in the meta-model
to be used in the material process wherever multiple substances or
fractions are to be extracted and distributed from the given material.

Flows in the meta-model are corresponded to the material tran-
sitions in MFNs and they connect two elements in the model and
transfer materials from their source elements to their target ele-
ments. Two different types of flows are defined in the model, i.e.
Material Flow (MF) and Residues Flow (RF). The first flow oper-
ator transfers a portion of the material in the source element to the
target element, while the other flow operator transfers the remain-
ing material of the source element (which is a flow operator) to the
target element.

3.1 Semantics of the Proposed DSL
In this section the formal definitions of materials is given first, and
afterwards the formal semantics of a material process are presented
and explained on the basis of these definitions.

3.1.1 Formal Semantics of Material
As mentioned before, a material is a composition of material frac-
tions (such as paper, plastic, etc.) and similarly a material fraction
is a composite of different substances (such as water, Ca, Na, etc.).
Therefore, in order to define a material, we need to define a material
fraction first. To this end, we define FN and SN as a set of fraction
names and substance names which can be used in material-process
object diagrams (they are called catalogs in EASETECH). Then,
based on these, we present the formal definition of a material frac-
tion and a material accordingly.

A material fraction is defined as f : SN 7→ R, a partial function
from substance names to its relevant amount of the substance in
a fraction. The set of all material fractions is presented as F and

f ∈ F. The following arithmetic operators are defined over material
fractions:

• The addition (+ : F × F → F) operator, merges two different
material fractions.

• The subtraction (− : F×F → F) operator, subtracts a material
fraction from another material fraction.

• The multiplication (∗ : F×R→ F) operator, rescales a material
fraction.

• The filter operator (|: F × SN → F), filters the substances of a
material fraction. The result is a material fraction with only one
substance which has a same name as the right operand.

Based on the definition of material fraction and FN which is the
set of fraction names, a material is formally defined as m : FN 7→
F, a partial function from fraction names to material fractions. The
set of all materials is presented as M and m ∈ M. According to
this definition and the arithmetic operators defined over material
fractions, the following arithmetic operators are defined on material
objects:

• The addition (+ : M × M → M) and the subtraction (− :
M×M → M) operators are respectively defined over materials
to merge two different materials or subtract a material from
another material. In the same way,

• The multiplication (∗ : M × R → M) operator overloaded to
allow for rescaling a material.

• The filter operator (|: M × SN → M, |: M × FN → M)
is similarly defined in order to create filters on fractions or
substances of a material. This operator is used to extract specific
substances or specific fractions from a material.

3.1.2 Formal Semantics of Material Process
A formal definition of a material process (P) is presented as fol-
lows:

P = (I, T,E,O) (1)
Where I and O is the set of inputs and the set of outputs. T is the set
of transition elements which can change the quantity of a material.
E is the set of transformer elements which can change the content
of a material. (I,O, T and E are disjoint sets.)

Transition elements are directed arcs and they connect the trans-
formers to each other and transfer materials between them. We
identify the two ends of a transition t ∈ T by writing ↑ t as the
source of the transition and ↓ t as the target of transition, with the
understanding that material moves from ↑ t to ↓ t, ↑ t ∈ I ∪ E, ↓ t ∈
E ∪ O and ↑ t 6=↓ t.

According to the meta-model defined for the DSL, different ma-
terial transformers are defined. Therefore, the set E of transformers
is the disjoint union (denoted]) of four sets: the set EFD of frac-
tion distributors, the set ESD of substance distributors, the set EFH
of fraction hubs, and the set ESH of substance hubs:

E = EFH] ESH] EFD] ESD (2)
The following functions are defined in order to assign different

attributes to the different kinds of transformers: deg : E → R , is a
function that assigns a real as degradation value to e ∈ E.
sn : ESD → SN, is a function that assigns a substance name to each
substance distributor in ESD.
fn : EFD → FN, is a function that assigns a fraction name to each
fraction distributor in EFD.
hb : EFD] ESD 7→ FH] SH, is a partial function which specifies
the hub that uses the given distributor as a port.
sd : ESH → P(ESD), is a function that assigns a set of substance

distributors as ports to each substance hub in ESH.
fd : EFH → P(EFD), is a function that assigns a set of fraction
distributors as ports to each fraction hub in EFH.

According to the meta-model, the set T of transitions is the
disjoint union of two sets: the set TMF of material flows, and the
set TRF of residues flows:

T = TMF] TRF (3)

A function, value : TMF → R, is defined to assign a real
value as the amount to the material flows. This value specifies the
percentage amount of the material which the flow transfers from its
source to its target. This value is undefined for residues flows.

In order to give semantics to the DSL, the following semantic
functions for each syntactic category in process P for given material
input I0 : I → M are defined as follows:

• J KI : I × (I → M)→ M, determines the material value for an
input element.

• J KO : O × (I → M) → M, determines the material value for
an output element.

• J KE : E × (I → M)→ M, calculates the transformed material
by a transformer.

• J KT : T × (I → M) → M, calculates the material value
transferred by a material transition.

Two more semantic functions J KEin and J KEout need to be defined
in order to calculate J KE . The first function evaluates the total ma-
terial transferred into a material transformer by a set of transitions.
The second function calculates the total material transferred out
from a transformer through a set of transitions. Based on these se-
mantic functions, we can define the semantic equations as follows:

For each input (i ∈ I), the evaluated material is the value
assigned to i in the given material input.

JiKI(I0) = I0(i) (4)

For the material transitions MF, the value is the percentage of
the transformed material specified by its source element, while this
value for the residues flows RF is the subtraction of the transformed
material and the total material output of its source:

JmfKT (I0) = value(mf)
100

∗

{
J↑mfKI(I0), ↑mf ∈ I
J↑mfKE(I0), ↑mf ∈ E

JrfKT (I0) = J↑ rfKE(I0)− J↑ rfKEout(I0)

(5)

The total material input, J KEin, for each material transformer,
if the transformer is a distributor and it belongs to a hub, is the
material value of its hub J KE , otherwise it is the sum of all the
material transferred to the transformer by the transitions.

JeKEin(I0) =

Jhb(e)KE(I0), e ∈ EFD ∪ ESD ∧ hb(e) 6= ⊥∑
t∈T∧↓t=e

JtKT (I0), else

(6)
The total material output, J KEout, for each fraction distributor and

substance distributor is defined as follows:

JfdKEout(I0) =
∑

t∈T∧↑t=fd
JtKT (I0)

JsdKEout(I0) =
∑

t∈T∧↑t=sd
JtKT (I0)

(7)

The total material output, J KEout, for each fraction hub or sub-
stance hub is the sum of material outputs of their distributors;

JfhKEout(I0) =
∑

fd∈fd(fh)
JfdKEout(I0)

JshKEout(I0) =
∑

sd∈sd(sh)
JsdKEout(I0)

(8)

The semantic equations for the material transformers are de-
fined as follows:

JfhKE(I0) = 100−deg(fh)
100

JfhKEin(I0)
JfdKE(I0) = 100−deg(fd)

100
JfdKEin(I0) |fn(fd)

JshKE(I0) = 100−deg(sh)
100

JshKEin(I0)
JsdKE(I0) = 100−deg(sd)

100
JsdKEin(I0) |sn(sd)

(9)

The semantic function for output elements is defined as follows:

JoKO(I0) =
∑

t∈T∧↓t=o

JtKT (I0) (10)

Based on these semantics functions, we can give semantics to
a material process P as well. Since the purpose of the material
process is to calculate the outputs of the process based on given
inputs, then the semantic function for a process P and given input,
I0 : I → M, is defined as follows:

JPK : P× (I → M)→ (O→ M)
JPK(I0) = λo : O.JoKO(I0)

(11)

4. Implementation
The Visualization and Modeling SDK (VMSDK) is used to build
powerful domain-specific development tools which can be inte-
grated into Microsoft Visual Studio. In the core of VMSDK is the
model definition (meta-model) of the DSL used to symbolize the
concepts of the specific domain. The model is surrounded by a
range of tools, such as a diagram editor, code generator, APIs to
interact with the IDE of Visual Studio, etc. In the following sec-
tion, the implementation of the proposed DSL based on VMSDK
is explained.

4.1 Syntax of the Proposed DSL
The DSL definition diagram for the proposed DSL in Visual Studio
is illustrated in Fig. 2.As presented, a domain class called Material
Process is used as the root element of the diagram which represents
the model. Two abstract domain classes called Element and Materi-
alElement derived from Element are used in the model as the base
classes. The Element class is used as the base class for all of the
model elements and the MaterialElement class is the base class for
all of the material elements in the model.

An abstract domain class called MaterialOperator derived from
MaterialElement is defined as the base class for all of the operators
that can be defined for a material process. Another abstract domain
class called FlowOperator is added to the diagram to be used
as the base class for all of the material flow operators that are
dealing with material transformation. This class is derived from
MaterialOperator. Two abstract domain classes called Hub and
Distributor which are inherited from MaterialOperator are defined
in the model as the base class for Hub and Distributor operators.

According to the meta-model, for each different type of the hub
and distributor operators (Fraction Hub, Substance Hub, Fraction
Distributor and Substance Distributor), a related domain class de-
rived from the related abstract class is defined and added to the
diagram. Finally, for all of the non-abstract domain classes, which
should appear as an element in the DSL diagram, an embedding
relationship is defined between the domain class and MaterialPro-
cess. A shape class is also defined for each of them and mapped to

FlowConnector
Connector

EASETECHDiagram
Diagram

MaterialInputShape
GeometryShape

MaterialOutputShape
GeometryShape

FractionHubShape
GeometryShape

SubstanceHubShape
GeometryShape

FractionDistributorPort
Port

SubstanceDistributorPort
Port

ResiduesFlowConnector
Connector

FractionDistributorShape
GeometryShape

SubstanceDistributorShape
GeometryShape

ElementShape
GeometryShape

Domain Properties

DecoratorsDomainRelationship

MaterialProcessHasMaterialInputs

DomainRelationship

MaterialProcessHasMaterialOutputs

DomainRelationship

FractionHubHasFractionDistributors

DomainRelationship

SubstanceHubHasSubstanceDistributors

DomainRelationship

MaterialProcessHasFractionHubs

DomainRelationship

MaterialProcessHasSubstanceHubs

DomainRelationship

MaterialFlow

DomainRelationship

ResiduesFlow

DomainRelationship

MaterialProcessHasFractionDistributors

DomainRelationship

MaterialProcessHasSubstanceDistributors

MaterialInput
DomainClass

MaterialOutput
DomainClass

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

MaterialInput
DomainClass

MaterialOutput
DomainClass

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

FractionHub
DomainClass

SubstanceHub
DomainClass

Element
DomainClass

Element
DomainClass

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

MaterialProcess
DomainClass

MaterialElement
DomainClass

MaterialOperator
DomainClass

Hub
DomainClass

Distributor
DomainClass

FractionHub
DomainClass

SubstanceHub
DomainClass

Element
DomainClass

FlowOperator
DomainClass

MaterialProcess

0..1

SubstanceDis…

0..*

MaterialProcess

0..1

FractionDistri…

0..*

FlowOperators

0..*

Element

0..1

SourceElements

0..*

TargetElements

0..*

MaterialProcess

1..1

SubstanceHubs

0..*

MaterialProcess

1..1

FractionHubs

0..*

SubstanceHub

0..1

SubstanceDis…

0..*

FractionHub

0..1

FractionDistri…

0..*

MaterialProcess

0..1

MaterialOutp…

0..*

MaterialProcess

0..1

MaterialInputs

0..*

Figure 2. Meta Model of the Material Process model. This diagram is modified in order to fit in one page.

the domain class to describe the concrete syntax of the operator in
the model diagram.

In order to provide connectivity between the model elements
and show the material-transformation flow between the material
operators, two reference relationships are defined. The first rela-
tionship is defined between Element and itself, which allows each
element of the diagram to be linked to the other elements. This
reference relationship is called MaterialFlow and is described by
means of a domain relationship class. The relationship class has
one property called value which specifies the percentage amount
of the material that should be transferred from the source element
to the target element of the relation. The other reference relation-
ship called ResiduesFlow is defined between FlowOperator and
Element, which allows one to transfer the residues material from
a flow operator to any element in the diagram. To represent the
links between the elements in the model diagram, for each refer-
ence relationship in the model a connector shape class is created
and mapped to the relation.

4.2 Semantics of the Proposed DSL
This section describe the implementation of the static and dynamic
semantics of the proposed DSL. There are two types of links in
the model; MaterialFlow and ResiduesFlow. Both of these links
should be validated regarding the type of the elements which can
be used as source or target of the link. The accepting element types
for source and target of these links are listed in the following table.

Table 1. Valid connectivity table between the elements
Material Flow Residues Flow

Element Types Source Target Source Target
Input X
Output X X
Fraction Hub X X X
Substance Hub X X X
Fraction Distributor X X X X
Substance Distributor X X X X
Aggregator X X X

The DSL designer provides some mechanisms to allow the de-
velopers to control and customize the creation or modification of
the links. For each type of link defined for the model, a connection
builder node will be created automatically. In order to apply cus-
tomization to the link, an object called Link Connect Directive can
be used that allows the DSL developers to define the valid types for
source and target of the Link.

In order to apply the constraints in the table to the links, for
each link, a Link Connect Directive is defined according to the
above constraints, and added to the related connection builder in
the designer. The other static semantics related to validating the
value of the properties for the diagram elements are done through
extending the domain classes with partial classes and writing a
custom validation function for them.

In order to implement the dynamic semantics explained in
Sect. 3.1, The generated codes for the proposed DSL are extended.
To achieve this goal, a material property is added to the Materi-
alElement domain class which is the base class for all the material
elements of the model. This property is defined as a calculated
property for the domain class, which means that the DSL designer
will generate a GetMaterialVlaue in the generated code for the do-
main class and expects this method to be implemented in the related
partial class. A partial class is created for each domain class in the
DSL definition, and since they are inherited from MaterialElement,
they can override GetMaterialVlaue with their own calculation ac-
cording to the semantic functions J KI , J KO and J KE explained in
Sect. 3.1.

4.3 Simulation
To enable the user to generate material in order to simulate the
model, two properties are added to the MaterialInput domain class.
The first property is the amount of the material that should be
generated, and the second property is a list of the fractions which
should be included in the material composition. On the basis of
these properties, a material will be generated and considered as the
process input for the simulation.

Two different views are created to visualize the material compo-
sition and material generation. Another view called MaterialView
is created, which surrounds the other views and swaps the views
based on the selected element in the diagram. If the selected ele-
ment is a material input element, it shows the material-generation
view, otherwise it shows the material-composition view. In order to
show the material view for the selected element in Visual Studio,
MaterialFlowWindow class is defined. This class creates a tool win-
dow in Visual Studio IDE and shows the MaterialView whenever a
DSL diagram is loaded in Visual Studio.

4.4 Code Generation
For generating codes from the proposed DSL model, Microsoft
Text Template Transformation Toolkit (T4 template) is used. Two
different types of code are generated from the proposed DSL
model. The first type is the generated code to do the material
calculation for each element in the model, and the other type is
the generated code used to add a material process template to the
EASETECH process library.

4.4.1 Generating Code for Material Calculation
In order to generate material-calculation code, a T4 template is de-
fined for each domain class in the DSL definition. The template
generates a class for each element in the model which has the
same type as the domain class of the T4 template. The template
also adds the following functions to the classes; GetMaterialInputs,
GetMaterialValue, GetResiduesMaterial and GetMaterialOutputs.
The implementation and availability of these functions are gener-
ated according to the type of the element and the semantic of the
element, which is explained in Sect. 3.1.

4.4.2 Integrating with EASETECH
In order to make the generated code simple and reusable, some
base classes are defined in a new assembly, which is called
EASETECH.DSL.Lib. These classes are TCMaterialProcessTem-
plate, MaterialProcessTemplate and MaterialOutputTemplate, and
are derived from the related classes in EASETECH. They are im-
plementing some basic functionalities which are required by the
generated classes. To generate a material process template which
can be used in EASETECH, two T4 templates are defined on the
basis of an instance of the proposed model. One of them, called
TCTableCodeGenrator, is used to generate a class based on TCMa-
terialProcessTemplate that is responsible for material calculation
of the material-process outputs. The other template, which is called
MaterialProcessCodeGenerator, is used to generate a material-
process class based on MaterialProcessTemplate. Whenever an
instance of the DSL is compiled, an assembly will be generated to
be used in EASETECH.

At the end, some changes have been applied in the loading
method of the material-processes library in EASETECH to im-
port the generated material process. The loading method has been
changed in such away that it dynamically loads all the assemblies
which are generated from the instances of the proposed model. Af-
ter that, it adds all the types within these assemblies which are
based on MaterialProcessTemplate, to the material processes li-
brary.

5. Related Work
In recent years, material-flow networks [6] have been known as one
of the appropriate methods of doing MFAs [5]. Different tools and
approaches have been proposed to model and simulate MFA within
different contexts, and the most relevant of these are mentioned in
this section. Umberto was developed in 1997 as an initial material-
flow analysis tool[8]. This tool is one of the powerful material-
flow analysis tools and it provides interfaces to other programs. It
also allows the users to extend the transitions based on their needs
by using Microsoft Active Scripting. In 2006, the Vienna Univer-
sity of Technology developed a freeware software for MFA called
STAN (short for subSTance flow ANalysis), which supports MFA
according to the Austrian Standard ONORM S 2096 and allows
consideration of data uncertainties [1]. Unlike the mentioned tools,
a component-based approach to MFA is presented in [11] which in-
tegrates material-flow analysis and discrete event simulation into a
component-based framework to ease both model development and
maintenance.

In comparison of our work with the related work, most of
these approaches offer a generic tool for material-flow analysis,
which has been developed based on non-model-driven approaches.
In contrast, we propose a specific material-flow analysis tool in
the context of waste-management, and we use a model-driven and
language-oriented approach to address the problem.

6. Results and Discussions
On the basis of this experience, we found that DSL tools are mature
enough to develop a complete DSL project. VMSDK provides a
special editor to describe a meta-model together with a graphical
notation for a DSL. It generates a strongly typed implementation
of the domain classes for the model, which runs in a transaction-
based store, a model explorer and a diagram editor, serialization
objects which store the models in XML format, and mechanisms
for generating code or other artifacts from the model by using
text templates. All the generated features can be customized and
extended in a way that still allows the developers to update their
DSL definition and regenerate the features without losing their
extensions and customization code.

One of the drawbacks of implementing DSLs based on this
framework is the lack of support to formalize the semantic of
the DSL, which led us to implement the DSL semantic in an
informal way twice for simulation and code-generation purposes.
This made the semantic verification and maintenance of the DSL
more difficult.

The other problem we found in this experience is the visual-
ization of the meta-model for a DSL which is presented in Fig. 2.
Although the mapping between the abstract syntax and concrete
syntax of the DSL is presented well here, understanding the meta-
model of the DSL in this diagram, compared to the meta-model di-
agram in EMF (Fig. 1), is more difficult, especially when the DSL
definition is more complex.

While in other frameworks, like EMF, the meta-model of a DSL
can be reused to design different types of DSL (such as textual
or graphical languages), DSL tools can only be used to develop
graphical languages, and the DSL definition cannot be reused to
develop textual languages.

7. Conclusions
In this work we proposed a Domain-Specific Language for Material-
Flow Analysis with a stand-alone tool support. This DSL can help
researchers to model and simulate material flows of a material
process. We also shared our experience in developing DSLs with
Microsoft DSL tools.

In addition, in this paper we showed that, thanks to DSL tech-
nologies, a software like EASETECH can be extended with new
requirements directly by the domain experts. Before this, the en-
vironmental scientists had to ask the developers of EASETECH to
add new contributions or requirements to the software. Now, by
using this DSL, they will be able to do it themselves.

Our future work will develop more features for the DSL and
make it more general to work for other flow analysis contexts.

References
[1] O. Cencic and H. Rechberger. Material flow analysis with software

STAN. In M. S. E. Andreas Moeller, Bernd Page, editor, Shaker
Verlag, pages 440–447. Shaker Verlag, 2008.

[2] T. Christensen, G. Bhander, H. Lindvall, A. Larsen, T. Fruergaard,
A. Damgaard, S. Manfredi, A. Boldrin, C. Riber, and M. Hauschild.
Experience with the use of LCA-modelling (EASEWASTE) in waste
management. Waste Management and Research, 25:257–262, 2007.

[3] J. Kirkeby, H. Birgisdottir, T. Hansen, T. Christensen, G. Bhander,
and M. Hauschild. Environmental assessment of solid waste systems
and technologies: EASEWASTE. Waste Management and Research,
24(1):3–15, 2006.

[4] H. Lambrecht and M. Schmidt. Material flow networks as a means of
optimizing production systems. Chemical Engineering and Technol-
ogy, 33(Issue 4):610–617, 2010.

[5] H. Lambrecht and M. Zimmermann. Combination of optimization
methods and material flow analysis for improvement of operational
material use (KOMSA): Concept and its implementation. In M. S. E.
Andreas Moeller, Bernd Page, editor, Shaker Verlag, pages 310–318.
Shaker Verlag, 2008.

[6] L. e. a. Möller A., Stoffstromnetze. In Hilty. Material flow net-
works as a means of optimizing production systems. Informatik und
Umweltschutz, 33(Band 2):610–617, 1994.

[7] A. L. Santos, K. Koskimies, and A. Lopes. Automating the construc-
tion of domain-specific modeling languages for object-oriented frame-
works. Journal of Systems and Software, 83(7):1078 – 1093, 2010.

[8] H. Schmidt, Möller and Beilschmidt. Environmental material flow
analysis by network approach. In 11th International Symposium of
the German Society for Computer Science (GI), pages 768 – 779.
Umweltinformatik, 1997.

[9] B. Selic. Personal reflections on automation, programming culture,
and model-based software engineering. Automated Software Engi-
neering, 15(3-4 SPEC. ISS.):379–391, 2008.

[10] M. C. Viana, R. A. Penteado, and A. F. do Prado. Domain-Specific
Modeling Languages to improve framework instantiation. Journal of
Systems and Software, 86(12):3123 – 3139, 2013.

[11] V. Wohlgemuth, B. Page, and W. Kreutzer. Combining discrete event
simulation and material flow analysis in a component-based approach
to industrial environmental protection. Environmental Modelling and
Software, 21(11):1607 – 1617, 2006.

	Introduction
	Material-Flow Analysis
	Material Flow DSL
	Semantics of the Proposed DSL
	Formal Semantics of Material
	Formal Semantics of Material Process

	Implementation
	Syntax of the Proposed DSL
	Semantics of the Proposed DSL
	Simulation
	Code Generation
	Generating Code for Material Calculation
	Integrating with EASETECH

	Related Work
	Results and Discussions
	Conclusions

