
Generating Code using Reflection in the Context of Computer-assisted

Legacy System Analyses and Reengineering

Peter Krall

Dr. Peter Krall IT Consulting

peter.krall.it@googlemail.com

Abstract

The paper presents a two-step approach for DSM-based generat-

ing of substantial parts of tools for legacy-system analysis. In the

first step a parser is generated from a formal grammar, represent-

ing the syntax of the legacy system's code. This parser is able to

recognize the constructs of the legacy code but unaware of any

analytic functionality. In the second step the code for the analytic

functionality and glue code for integrating the parser-generated

code into a framework is generated from a domain-specific model

capturing properties of and relations between code constructs to

be analyzed. Integration with parser functionality generated in

first step and framework is achieved by loading classes and re-

trieving information using reflection and annotations in the second

step.

Categories and Subject Descriptors: Specialized application lan-
guages, Computer-aided software engineering

General Terms Languages, Theory

Keywords Domain Specific Modeling, Code Generation, Legacy
System Analysis, Reflection.

1. Introduction

Legacy system analysis and reengineering is based on associating
the existing code with additional semantics by applying additional
rules for interpretation of the language. This task, whether done
by a computer or a human engineer, requires understanding of the
legacy code’s syntax. Due to the complexity of such traditional
languages as SQL or COBOL, a parser generated from a formal
grammar will therefore be part of solutions for legacy system
analysis by a computer program. If the tool for legacy code analy-
sis is to be generated from a model, the formal grammar will
therefore need to be embedded into the model and transformation
of the grammar into a parser, lexer and so will be part of the trans-
formation of the model into a solution.

The generated SQL-, COBOL-, parser will capture language
recognition concepts but not the more specific concepts of a nar-
rower domain, following the standard DSM paradigm with respect
to model semantics [2,5]. Somehow the functionality required for
the concrete task has to be implemented by weaving generated
language recognition code and more domain specific generated
code into a framework.

YACC-style parser generators accomplished the task by cap-
turing semantic actions as grammar annotations and projecting
them into the generated code. This is not optimal with respect to
support generation of code for the semantic actions themselves,

unless this were to be done by generating annotations in a formal
definition from some other source. The new antlr4-architecture
supports stricter separation by generating a parser that will build a
parse tree from parsed sources, together with a listener [8]. This
architecture is the background for the solution presented in the
rest of this paper.

2. Reference Project: Data-Flow Analyses

While presenting a concrete project is not the purpose of this
paper, reference to a particular project allows drawing illustrations
from this project. Therefore this reference project shall be intro-
duced to the extent necessary for understanding the illustrations.

The task of the reference project is analyzing dependencies
and data flows in a database by parsing and interpreting SQL
sources. Important forces shaping the solution are:

 Since SQL sources must be interpreted, the solution must be
able to parse SQL-statements. Therefore the solution will in-
clude a parser. Therefore a formal representation of SQL-
grammar will be part of the model for generating the solution
and a parser generator will be part of the tool-chain.
 Writing a custom parser generator based on a custom DSL
for representation of SQL grammar would require a lot of ef-
fort. Using an existing parser generator and representing SQL
syntax with means of a formal grammar accepted by the parser
generator is thus almost enforced.

 While concepts of formal language recognition domain are
part of the relevant concepts, the application cannot be re-
duced to these concepts. Rather, it needs additional concepts
like data-flow or dependency which are more specific to the
narrower domain. An example may illustrate this. Consider the
very simple Create-View Statement:

 CREATE VIEW Cute_Animals AS SELECT id, given_name
 FROM Animals WHERE species = ‘cat’;

From the viewpoint of language recognition, this is just a code
construct, which is an instance of the construct:

 create_view_stmt

 : K_CREATE (K_TEMP | K_TEMPORARY)?

 K_VIEW (K_IF K_NOT K_EXISTS)?

 qualified_view_name K_AS select_stmt;

The semantics of the statement are irrelevant for pure lan-
guage recognition. From the viewpoint of dependency analy-
sis, the CreateView Statement is interpreted as information
concerning the relation between two database objects: View

Cute_Animals depends on Table Animals and, moreover on
the value of columns species, id given_name.

 Reusability is a major concern. The solution is conceived as a
pioneer project for a family of solutions addressing similar but
not identical themes in legacy system analysis and computer-
assisted refactoring.

The forces of the concrete project are more or less typical for
legacy code analysis. In particular the code which is to be ana-
lyzed will usually be written in some feature-rich language and
therefore there is no way around the requirement for the applica-
tion to understand such languages.

3. Generating solutions from composite DSMs

including formal grammar

In projects where recognition of language plays a major role, the
models used for generating code can be conceptually separated
into two parts: First the grammar and second the part capturing
the semantic concepts of the narrower domain, which will be
called nDSM (for narrow DSM) subsequently. Any DSM in this
scenario can thus be conceived as a composite: DSM = gram-
mar+nDSM. In the reference projects the nDSM-part would cap-
ture concepts like ‘dependency’ or ‘information-flow’. Some
future variants, say: for generating scripts for data-model normali-
zation – will share the grammar part but vary with respect to the
nDSM-part. Other variants will require modification of the gram-
mar, e.g. due to vendor-specific extensions of standard SQL or
because the customer uses a specific preprocessor.

By virtue of capturing semantic domain concepts from a nar-
row domain, the role of the nDSM part in this scenario corre-
sponds to the standard DSM-role described in literature [2,5]
while the grammar-part may be seen as the model for a more
general, or at least different domain. In this view the task of gen-
erating solutions from composite (grammar+nDSM)-DSMs is a
task of implementing the specific intelligence required for dealing
with composite models containing components with different
semantics [6,9].

3.1 Resolution of forces in generating solutions from

composite DSMs

The most important force in the rationale of the solution presented
here results from the existence of language recognition tools and
the prohibitive costs for replacing or modifying them. This force
yielded the decision to use the grammar→code transformation
provided by the antlr4[8] generator as is.

The previous decision led to the question how to integrate code
resulting from nDSM→code transformation with the generated
parser code. There are two principal alternatives: either the
nDSM→code generator must inspect the formal grammar and
predict what the parser generator will make of it or it must look up
the results of the parser generator’s production. The latter alterna-
tive can be broken down further into two alternatives: parse the
antlr4-generated SQL-parser’s java-code or load the class-object
and use reflection for information retrieval.

Loading class objects and retrieving information from these
objects is often used for runtime code generation but can also be
used for generating GPL-code that does not depend on reflec-
tion[4]. Using reflection is easier than parsing Java-code. The
approach also matches the idea that only information about the
imperative semantics of the antlr4-generated programs should be
used, not information about the code itself, and that standard OO-
mechanisms rather than modification of code from other sources

should be used for integrating the custom code generator’s pro-
ductions.
The resolution of forces led to a two-step process:

1. The language recognizer classes are generated from a for-
mal grammar by the standard antlr4 parser generator.

2. A specific codegenerator loads the generated classes and
additional nDSM-information, as well as some complementary
information retrieved from framework packages. It inspects
the class structure using reflection, relates it to the additional
information and generates code that will provide the solution.
In this second step the generated language recognition func-
tionality is considered part of the target platform.

In this context there is no real model-collaboration. The parser is
generated by antlr4 without any concern for the nDSM and the
nDSM→code generator does not know anything about the origin
of the classes it inspects. This is a particular kind of intelligence
implemented in the generator but no mechanism of model collab-
oration. A main advantage is the elimination of the need for a
mapping between the meta-models of grammar and of the nDSM-
part: The nDSM→code generator just needs to know about the
reflection API, not about specification of languages by formal
grammars.

3.2 Technical aspects of the solution

The architecture of the solution is based on the antlr4-generated
language recognition functionality implementing the observer
pattern by a generated listener: the parse tree can be walked
depth-first and a Listener class will receive messages when an
enter- or exit-event on a node happens.

By default, all messages when traversing the parse tree will be
received by a generated listener. The name of course depends on
the name of the grammar. In the reference project it is
SQLBaseListener. Semantic actions can be added to language
recognition by overriding the event handling of the generated
listener class in a specialization class

SQListener extends SQLBaseListener.

For example, assume we wanted to write the tokens sequence

of a statement into database whenever our SQL-parser encounters
a SELECT-statement. Then we could override the method in
SQListener handling enter-context event:

@override

enterSQL_stmt_context(SQL_stmt_context ctx) {

 write2database(ctx.getTokens());

}

where ‘write2database’ is a method defined as part of the frame-
work. Our solution for combining code generation by antlr4 and
the custom code generator is based on this mechanism:

 In the preliminary step antlr4 is used to generate parser and
listener classes from a formal grammar. No particular modifi-
cations are made to the code generator.

 The custom code-generator (‘custom’ distinguished from
antlr4-code generator) loads the antlr4-generated parser class:

Class<?> PARSER_CLASS = SQLParser.class;

 The parser class declares a context class for every rule. The
custom code generator iterates over the set of context classes

Figure 1: Flows of information and artifact production in the composite-model scenario

Legend:

 a artifact production: The artifact at the arrow's head is produced by the actor at the other end

 supply and use of information: The using actor (at the arrow's head) retrieves information provided by the supplier

at the other end of the arrow and uses it for some action, i.e.: code generators retrieve information from models plus, in the

case of the custom code generator, the JRE. JRE/JDK retrieve information from source code (compilation and class loading

steps are not distinguished).

Remark: The code generated by the Custom Code Generator is part of the application but not used in the context of code

generation; therefore there is no arrow from 'Generated Special Functionality' to JDK/JRE in 'Custom Code Generation'.

nDSM

Non-Generated

Framework

Functionaltity

Generated

Language

Recognition

Functionality

Generated

Special

Functionality

Custom Code Generator

Model Content Solution

Language expert

Modeller

 TEAM DSM CODE GENERATORS ARTIFACTS JDK/JRE

Custom Code

Generator

Language Expert

Framework Developer

reflection

Parser Code

Generator

Custom-Code

Generation

Tool use

Grammar

and, for every such class, generates code of a type for the re-
spective code construct class:

for(Class<?>codeConstructContextType:

 PARSER_CLASS.getClasses()){

 if (PARSER_RULE_CONTEXT_CLASS

 .isAssignableFrom(codeConstructContextType)){
 generateType(codeConstructContextType);

 }

}

 The constant PARSER_RULE_CONTEXT_CLASS refers to the
standard generated context-class. The invoked method
generateType() will emit the code of a Java class with the
name of the defining rule (with capitalized first letter), e.g.
Select_stmt or With_clause, etc.

 There is a non-generated base class CodeConstructBaseType
which essentially provides basic tree node functionality.

CodeConstructBaseType contains a collection

 Set<CodeConstructBaseType> children

and implements a traverse method.
 A generated class

 class CodeConstructGenericType

 extends CodeCostructBaseType

is created in every generator run in addition to classes corre-
sponding to production rules of the grammar. So, after the
generator run, there are classes

class CodeConstructGenericType

 extends CodeConstructBaseType

and classes

 class Assigment extends CodeConstructGenericType

..
 class From_clause extends CodeConstructGenericType

.. and so on, for every production rule.

 The generated CodeConstructGenericType class implements
an empty ‘accept’ method for every special node class.

 public class CodeConstructGenericType

 extends CodeCon structBaseType {

 public void accept (Alter_table_stmt child) {}

 public void accept (Analyze_stmt child) {}

 public void accept (Any_name child) {}

and so on, for every production rule. This method is invoked
(by generated code) when the syntax tree is built up whenever
the parent of a node is set. This is one of the extension points
used by code generated from nDSM, as will be explained be-
low.

 The generator also creates a listener which is indirectly based
on the antlr4-generated class with a non-generated class pro-
viding utility functionality injected into the class hierarchy be-
tween the antlr4-generated base class and the custom-
generator generated class:

class SQLExtendedBaseListener extends SQLBaseListener

class SQLListener extends SQLExtendedBaseListener

The classes in this hierarchy have three different origins:

SQLBaseListener is generated by antlr from the grammar.

SQLExtendedBaseListener is created manually.

SQLListener is generated by the custom code generator, using
the nDSM as well as information retrieved by inspecting
SQLBaseListener.

 The generated listener builds a tree of code constructs by in-
voking the constructors of matching CodeConstruct-classes
and invoking push- and pop methods. This is done by over-
loading the enter- and exit-methods for every production:

class SQLListener extends SQLExtendedBaseListener{

 @Override

 public void enterAlter_table_stmt

 (SQLParser.Alter_table_stmtContext ctx) {

 push(new Alter_table_stmt(ctx));

 }

 @Override

 public void exitAlter_table_stmt

 (SQLParser.Alter_table_stmtContext ctx) {

 pop();

 }

… and so on, for every production rule.

The syntax tree built thereby consists of nodes of different
classes, each of which corresponds to a production of the
grammar.

 The first possibility for adding special code generated from the
nDSM-part of the model is by overloading the ‘accept’- and
‘traverse’-methods in the antlr4-generatedCodeConstruct-
classes by methods in their specialization generated by the
Custom Code Generator. For example, assume that the ‘From-
clause’ has a special role TableAliasProvider in the Select
statement. By a mechanism described below, From clause will
be declared in implementation of interface TableAli-
asProvider:

class From_clause extends CodeConstructGenericType

 implements TableAliasProvider

 The Select_stmt class will declare a member of the type
TableAliasProvider and set the value when a From-clause is
added:

public class Select_stmt extends StatementType {

 public Select_stmt (Select_stmtContext context) {

 super(context)

 }

 TableAliasProvider tableAliasProvider

 @Override

 public void accept(From_clause child) {

 this.tableAliasProvider = child;

 }

}

 The tableAliasProvider can then be used by the traverse-
method of Select-statement for resolving references. This il-
lustrates the relation between the model semantics of the
grammar and the nDSM-part: From the viewpoint of language
recognition, the From-clause just is a sequence of symbols ap-
pearing as part of the Select-statement. From the viewpoint of
dependency analysis, it defines the source tables for the select
and their local names.

 There is a second kind of mechanism used by the
nDSM→code generator which also works using reflection:
The CodeConstruct-classes can be declared to have roles or
inherit functionality declared in framework interfaces or im-
plemented in framework classes specializing the generated
CodeConstructGenericType class. However, the model should
not know about the implementation of the framework.The so-
lution works on basis of custom annotations. The nDSM de-
fines abstract roles, like

‘STATEMENT’ or ‘TABLE_ALIAS_PROVIDER’.

A non-generated class or interface can declare responsibility
for this role with a custom annotation, e.g.:

@SemanticMetaData(getAbstractType = "STATEMENT")
public abstract class StatementType

 extends CodeConstructGenericType

The code generator loads all classes from the framework:

Reflections reflections =

 new Reflections(CODE_CONSTRUCT_TYPE.getPackage()

 .getName());

codeConstructBaseTypes =

 refletions.getSubTypesOf(CodeConstructBaseType.class);

When generating a type associated with some special base
functionality by the nDSM for a grammar production, the
Custom Code Generator will look for a class with matching
annotation and use this as base class:

if (codeConstructBaseType

 .getAnnotation(CodeConstructBaseType
 .SemanticMetaData.class)

 .getAbstractType().equals(declaredBaseType))..,

where the symbolic type (e.g. STATEMENT) is associated
with a production in the nDSM. This mechanism is responsi-
ble for appearance of StatementType rather than CodeCon-

structGenericType in the base-class declaration of class
Select_stmt:

 public class Select_stmt extends StatementType

 Interfaces are handled analogously. This allows adding non-
generated aspects to generated classes without manipulating
generated code.

The solution supports clear separation of concerns and avoids
any kind of code manipulation in the aftermath: Whatever is
generated by either the antlr4-generator or the custom code gen-
erator is concerned ‘sealed’ and, conversely, manually edited code
is not modified by either generator.

3.3 Alternatives and related work

Even though this paper is intended to be a technical-level presen-
tation of a solution rather than a meta-level comparison of differ-
ent approaches, some sketch of alternatives and the rationale for
the presented solution may be appropriate. The most important
alternatives are:

a. Decoupled model-code transformations with integration based
on reflection. This is the solution described in this paper.

b. Extended Grammar: Integration of all information used for
code generation in one source, including the grammar and
everything else used by a single, or possibly several code gen-
erators.

c. Component-architecture: Several models capture different
aspects. They are integrated by a framework for component in-
tegration.

d. Bytecode generation: Also uses reflection but generates
bytecode for VM directly rather than GPL-sources for compi-
lation by a standard compiler.

The dominating criterion for comparison between these ap-
proaches has been the support for dealing with two dimensions of
variation in requirements:

 Rather special requirements will pop up in dealing with legacy
systems: Oracle allows to use the keyword 'DEFAULT' or ':='
for assignment of a default value to a parameter, so that two
sequences of characters should be treated as alternative pro-
ductions of the same rule - unless the customer wants to
change the database vendor in which case the use of expres-
sions supported by Oracle but not by SQL Server will become
the subject of interest. Or: In some countries, like Germany,
insurance liability insurance is issued for single vehicles bur in
other countries, like Austria, they are associated with license
plates which might be used for up to three cars. What happens
if a formerly 1-1 relation becomes m-n when the company
wants to use the IT-system developed for Germany for both
countries? Even comments can become subject of analysis:
Say: a team member is going to retire - in which change histo-
ries is he the last one to appear?

 There is some variation with respect to legacy systems' code.
This includes vendor-specific extensions of standard lan-
guages but does not necessarily reduce to such extensions. An
example for another source of variation are customer-specific
pre-processors.

Rather than aiming at development of a tool providing complete
coverage for possible challenges out of the box, focus has been on
responsiveness to unpredicted requirements. This yields prefer-

ence for decoupling models capturing the two dimensions of
variation and for a lightweight, easily adoptable integration
mechanism.

Option a) is the solution presented here. The approach sepa-
rates concerns associated with the two dimensions of variation in
requirements. The reflection mechanism used for integration is
stable and easy to use. There are some consequences that might be
arguments against the approach in other scenarios, as discussed
lateron, but in the concrete scenario of the project this has not
been an issue.

Option b) corresponds to embedding definitions of semantic
actions into definitions of rules in a grammar as known from
yacc-like parser generators. More recent developments include
improved support for modular extension of reusable grammar core
with various extensions [3]. The argument for preference of a)
against b) concerns responsiveness for anticipated use cases: If the
customer wants to know the answer to some specific question
about a legacy system, the most efficient way for building the tool
will be writing some code for special functionality, modelling the
relation between grammatical constructs and the special function-
ality in a nDSM and generating the glue code. Using reflection is
a simple way for retrieving information already present in the
class system, thereby allowing to limit the information to be cap-
tured in the nDSM. This is a purely pragmatic argument based on
anticipated efforts for anticipated future requirements and thus no
more than rational motivation can be claimed.

Option c) has been proposed for capture of different aspects of
a domain in separate models[9]. The combination of grammar and
nDSM may be seen as an instance of the general class of compos-
ite meta-models. The argument for favouring a) over c) has
mainly been a consideration for costs: reflection comes for free
and is easy to use while integration into a component framework
would have required additional work, particularly for integrating
the parser generator in the meta-model.

Option d) has been successfully applied for automated embed-
ding of special business logics into frameworks, e.g. in the context
of adding persistence or publication as web [1]. From a logical
point of view this is a related challenge to adding analytic func-
tionality to a parser. The option has been discarded nevertheless
due to the additional technical complexity of bytecode generation.
Also, the solution discussed here does not require adaptation of
program functionalities based on information becoming available
only at runtime, which would be the key argument for generating
directly loadable byte- rather than source-code.

As always when forces need to be weighted for finding a bal-
ance, there is no conclusive proof for superiority of the selected
approach against all alternatives. Moreover, the tie of the nDSM
to implementation may deserve attention in some scenarios: The
DSM contains information concerning additional function to be
associated with constructs in the legacy system's code, either by
generating these functionality or by generating glue code for
integration into the framework. This implies that nDSM-
modelling requires understanding of the grammar and both, the
antlr-generated code and the framework code. A model of this
nature thus does not shield domain experts from technical aspects.
The reflection-based integration concepts thus is incompatible
with the goal of integrating experts from non-technical domains,
at least in the form presented here. The concept indeed requires
profound technical understanding on the side of the modellers.
This constraint being fulfilled, efficiency is improved and archi-
tecture is stabilized by lifting level of abstraction and leaving the
implementation to the code generators.

3.4 Further Work

The current solution is hoped to become the core of a solution
family for legacy system tools based on parsing SQL and, possi-
bly, other languages. For this purpose the nDSM-modeling has to
be improved.

Currently the nDSM just is a XML edited model without any
specific support. The modeler needs to know what classes exist in
the antlr-generated class system and how they relate to grammar
elements. Also, there is little protection against inconsistency of
the nDSM with grammar or framework.

As long as the modeler, framework builder and grammar de-
finer are one person or a small team of experts understanding
what the others are doing, effects of this weakness are not too
severe, especially since eclipse IDE in combination with antlr4-
plugin provides support for search and navigation. Still, there is
room for improvement.

Apart from GUI-related aspects, the model editor should also
provide lookup and validity checking. Part of this functionality is
already implemented in the code generator – e.g. retrieving a list
of all productions defined in the grammar is done already, as is
retrieving the classes of the framework and their annotations. But
support for nDSM-modeling also requires the nDSM’s ability to
look up information from grammar: if the modeler shall see that a
‘Select’ statement contains a ‘From’ clause which can be associ-
ated with a certain role, and if he or she shall not need to read the
formal grammar for this purpose, then the nDSM-metamodel must
implement functionality for looking up and presenting this infor-
mation. Unlike in the code generation context, this implies the
need for model collaboration in the model-building context. Edi-
tor-related aspects of composite models based on different base
languages is beyond the scope of this paper, which focusses on
code generation, but has been described elsewhere[7,9].

4. Summary

In some scenarios DSMs are composed of a formal grammar and,
additionally, a ‘nDSM’ (= narrow-domain specific model) com-
ponent. The semantics of the grammar in defined in the domain of
language recognition whereas the semantics of the nDSM is de-
fined in some narrow, task-specific domain. This particularly
holds for legacy system analysis domains since the legacy sys-
tems’ code will be written in a language defined independently
from the DSM-tool.

The solution described here to handle code-generation for
composite DSMs is by a two-step process: First, the grammar is
transformed into parser source code without concern for the
nDSM. In the second step a custom code generator loads the
generated classes, inspects them by reflection and combines the

information with the nDSM-interpretation. This eliminates the
need for mapping the meta-models of the two components making
up a composite DSM and replaces it by using reflection for code
generation.

Acknowledgment

The author would like to thank Regine Wegner from ASG Soft-
ware Solutions for reading earlier versions of this manuscript and
giving helpful advice.

References

[1] Chiba, S., "Load-Time Structural Reflection in Java", Proceedings
of ECOOP 2000 , pp.311-336, Lecture Notes in Computer Science
1850, Springer-Verlag (2000)

[2] Greenfield J., Short K., Cook S., Kent S., Crupi.J. "Software Facto-
ries: Assembling Applications with Patterns, Models, Frameworks,
and Tools" ISBN: 978-0-471-20284-4, Wiley (2004)

[3] Efftinge, S and M. Voelter,M ".oAW xText: A framework for
textual DSLs". In Workshop on Modeling Symposium at Eclipse-
Summit (2006).

[4] Hutchins, DL " Partial Evaluation + Reflection = Domain-Specific
Aspect Languages". GPCE Workshop on Domain-Specific Aspect
Languages (DSAL) (2006).

[5] Kelly, S. & Tolvanen, J-P."Domain-Specific Modeling". ISBN: 978-
0-470-03666-2 Wiley-IEEE Computer Society Press (2008)

[6] Krall, P." How does Intelligent Functionality Provided by the Meta-
Model in Model Driven Development Relate to Model Semantics?"
In Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.-P., (eds.) Proceed-
ings of the 7th OOPSLA workshop on Domain-Specific Modeling.
Montreal, Canada. University of Jyväskylä, Technical Reports, TR-
38, Finland (2007)

[7] Kuhn,T. et al "Multi-Language Development of Embedded Sys-
tems", in Proceedings of the 9th OOPSLA Workshop on Domain-
Specific Modeling, M. Rossi et al., Eds., pp. 21-27. (2009)

[8] Parr, T. "The Definitive ANTLR 4 Reference: Building Domain-
Specific Languages (1st ed.)", Pragmatic Bookshelf, p. 325,
ISBN 1934356999 (2013)

[9] Occello, A., Casile,O. Pinna-Déry,A-M., Riveill, M. (2007) Making
Domain-Specific Models Collaborate"in 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM'07), Jonathan Sprinkle, Jeff Gray,
Matti Rossi, Juha-Pekka Tolvanen (eds.), pages 79-86, Montréal,
Canada. (2007)

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Jack+Greenfield
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Keith+Short
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Steve+Cook
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Stuart+Kent
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=John+Crupi
http://redwood.mza.com/~dhutchins/papers/partial_evaluation_reflection.pdf
http://redwood.mza.com/~dhutchins/papers/partial_evaluation_reflection.pdf
http://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
http://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
http://en.wikipedia.org/wiki/Pragmatic_Bookshelf
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1934356999

