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Abstract  

The paper presents a two-step approach for DSM-based generat-

ing of substantial parts of tools for legacy-system analysis. In the 

first step a parser is generated from a formal grammar, represent-

ing the syntax of the legacy system's code. This parser is able to 

recognize the constructs of the legacy code but unaware of any 

analytic functionality. In the second step the code for the analytic 

functionality and glue code for integrating the parser-generated 

code into a framework is generated from a domain-specific model 

capturing properties of and relations between code constructs to 

be analyzed. Integration with parser functionality generated in 

first step and framework is achieved by loading classes and re-

trieving information using reflection and annotations in the second 

step. 

Categories and Subject Descriptors: Specialized application lan-
guages, Computer-aided software engineering 

General Terms  Languages, Theory 

Keywords Domain Specific Modeling, Code Generation, Legacy 
System Analysis, Reflection. 

1. Introduction 

Legacy system analysis and reengineering is based on associating 
the existing code with additional semantics by applying additional 
rules for interpretation of the language. This task, whether done 
by a computer or a human engineer, requires understanding of the 
legacy code’s syntax. Due to the complexity of such traditional 
languages as SQL or COBOL, a parser generated from a formal 
grammar will therefore be part of solutions for legacy system 
analysis by a computer program. If the tool for legacy code analy-
sis is to be generated from a model, the formal grammar will 
therefore need to be embedded into the model and transformation 
of the grammar into a parser, lexer and so will be part of the trans-
formation of the model into a solution.  

The generated SQL-, COBOL-, parser will capture language 
recognition concepts but not the more specific concepts of a nar-
rower domain, following the standard DSM paradigm with respect 
to model semantics [2,5]. Somehow the functionality required for 
the concrete task has to be implemented by weaving generated 
language recognition code and more domain specific generated 
code into a framework. 

YACC-style parser generators accomplished the task by cap-
turing semantic actions as grammar annotations and projecting 
them into the generated code. This is not optimal with respect to 
support generation of code for the semantic actions themselves, 

unless this  were to be done by generating annotations in a formal 
definition from some other source. The new antlr4-architecture 
supports stricter separation by generating a parser that will build a 
parse tree from parsed sources, together with a listener [8]. This 
architecture is the background for the solution presented in the 
rest of this paper.  

2. Reference Project: Data-Flow Analyses 

While presenting a concrete project is not the purpose of this 
paper, reference to a particular project allows drawing illustrations 
from this project. Therefore this reference project shall be intro-
duced to the extent necessary for understanding the illustrations.  

The task of the reference project is analyzing dependencies 
and data flows in a database by parsing and interpreting SQL 
sources. Important forces shaping the solution are:  

 Since SQL sources must be interpreted, the solution must be 
able to parse SQL-statements. Therefore the solution will in-
clude a parser. Therefore a formal representation of SQL-
grammar will be part of the model for generating the solution 
and a parser generator will be part of the tool-chain. 
     Writing a custom parser generator based on a custom DSL 
for representation of SQL grammar would require a lot of ef-
fort. Using an existing parser generator and representing SQL 
syntax with means of a formal grammar accepted by the parser 
generator is thus almost enforced. 

 While concepts of formal language recognition domain are 
part of the relevant concepts, the application cannot be re-
duced to these concepts. Rather, it needs additional concepts 
like data-flow or dependency which are more specific to the 
narrower domain. An example may illustrate this. Consider the 
very simple Create-View Statement: 

   CREATE  VIEW Cute_Animals AS SELECT id, given_name 
      FROM Animals WHERE species = ‘cat’; 

From the viewpoint of language recognition, this is just a code 
construct, which is an instance of the construct: 

 
  create_view_stmt 

    : K_CREATE ( K_TEMP | K_TEMPORARY )?  

      K_VIEW ( K_IF K_NOT K_EXISTS )? 

     qualified_view_name K_AS select_stmt; 

The semantics of the statement are irrelevant for pure lan-
guage recognition. From the viewpoint of dependency analy-
sis, the CreateView Statement is interpreted as information 
concerning the relation between two database objects: View 



 

 

Cute_Animals depends on Table Animals and, moreover on 
the value of columns species, id given_name.  

 Reusability is a major concern. The solution is conceived as a 
pioneer project for a family of solutions addressing similar but 
not identical themes in legacy system analysis and computer-
assisted refactoring. 

The forces of the concrete project are more or less typical for 
legacy code analysis. In particular the code which is to be ana-
lyzed will usually be written in some feature-rich language and 
therefore there is no way around the requirement for the applica-
tion to understand such languages.  

  

3. Generating solutions from composite DSMs 

including formal grammar 

In projects where recognition of language plays a major role, the 
models used for generating code can be conceptually separated 
into two parts: First the grammar and second the part capturing 
the semantic concepts of the narrower domain, which will be 
called nDSM (for narrow DSM) subsequently. Any DSM in this 
scenario can thus be conceived as a composite: DSM = gram-
mar+nDSM. In the reference projects the nDSM-part would cap-
ture concepts like ‘dependency’ or ‘information-flow’. Some 
future variants, say: for generating scripts for data-model normali-
zation – will  share the grammar part but vary with respect to the 
nDSM-part. Other variants will require modification of the gram-
mar, e.g. due to vendor-specific extensions of standard SQL or 
because the customer uses a specific preprocessor. 

By virtue of capturing semantic domain concepts from a nar-
row domain, the role of the nDSM part in this scenario corre-
sponds to the standard DSM-role described in literature [2,5] 
while the grammar-part may be seen as the model for a more 
general, or at least different domain. In this view the task of gen-
erating solutions from composite (grammar+nDSM)-DSMs is a 
task of implementing the specific intelligence required for dealing 
with composite models containing components with different 
semantics [6,9]. 

3.1 Resolution of forces in generating solutions from 

composite DSMs 

The most important force in the rationale of the solution presented 
here results from the existence of language recognition tools and 
the prohibitive costs for replacing or modifying them. This force 
yielded the decision to use the grammar→code transformation 
provided by the antlr4[8] generator as is.  

The previous decision led to the question how to integrate code 
resulting from nDSM→code transformation with the generated 
parser code. There are two principal alternatives: either the 
nDSM→code generator must inspect the formal grammar and 
predict what the parser generator will make of it or it must look up 
the results of the parser generator’s production. The latter alterna-
tive can be broken down further into two alternatives: parse the 
antlr4-generated SQL-parser’s java-code or load the class-object 
and use reflection for information retrieval.  

Loading class objects and retrieving information from these 
objects is often used for runtime code generation but can also be 
used for generating GPL-code  that does not depend on reflec-
tion[4]. Using reflection is easier than parsing Java-code. The 
approach also matches the idea that only information about the 
imperative semantics of the antlr4-generated programs should be 
used, not information about the code itself, and that standard OO-
mechanisms rather than modification of code from other sources 

should be used for integrating the custom code generator’s pro-
ductions. 
The resolution of forces led to a two-step process: 

1. The language recognizer classes are generated from a for-
mal grammar by the standard antlr4 parser generator. 

2.  A specific codegenerator loads the generated classes and 
additional nDSM-information, as well as some complementary 
information retrieved from framework packages. It inspects 
the class structure using reflection, relates it to the additional 
information and generates code that will provide the solution. 
In this second step the generated language recognition func-
tionality is considered part of the target platform. 

In this context there is no real model-collaboration. The parser is 
generated by antlr4 without any concern for the nDSM and the 
nDSM→code generator does not know anything about the origin 
of the classes it inspects. This is a particular kind of intelligence 
implemented in the generator but no mechanism of model collab-
oration. A main advantage is the elimination of the need for a 
mapping between the meta-models of grammar and of the nDSM-
part:  The nDSM→code generator just needs to know about the 
reflection API, not about specification of languages by formal 
grammars. 

3.2 Technical aspects of the solution 

The architecture of the solution is based on the antlr4-generated 
language recognition functionality implementing the observer 
pattern by a generated listener: the parse tree can be walked 
depth-first and a Listener class will receive messages when an 
enter- or exit-event on a node happens.  

By default, all messages when traversing the parse tree will be 
received by a generated listener. The name of course depends on 
the name of the grammar. In the reference project it is 
SQLBaseListener. Semantic actions can be added to language 
recognition by overriding the event handling of the generated 
listener class in a specialization class  

 

SQListener extends SQLBaseListener.  

 
For example, assume we wanted to write the tokens sequence 

of a statement into database whenever our SQL-parser encounters 
a SELECT-statement. Then we could override the method in 
SQListener handling enter-context event: 

 

@override  

enterSQL_stmt_context(SQL_stmt_context ctx) { 

    write2database(ctx.getTokens()); 

}  

 
where ‘write2database’ is a method defined as part of the frame-
work. Our solution for combining code generation by antlr4 and 
the custom code generator is based on this mechanism:  

 In the preliminary step antlr4 is used to generate parser and 
listener classes from a formal grammar. No particular modifi-
cations are made to the code generator. 

 The custom code-generator (‘custom’ distinguished from 
antlr4-code generator) loads the antlr4-generated parser class: 

Class<?> PARSER_CLASS = SQLParser.class; 

 The parser class declares a context class for every rule. The 
custom code generator  iterates over the set of context classes 



 

 

Figure 1: Flows of information and artifact production in the composite-model scenario 

 

Legend:       

          a      artifact production: The artifact at the arrow's head is produced by the actor at the other end 

                          

                  supply and use of information: The using actor (at the arrow's head) retrieves information provided by the supplier 

at the other end of the arrow and uses it for some action, i.e.: code generators retrieve information from models plus, in the 

case of the custom code generator, the JRE. JRE/JDK retrieve information from source code (compilation and class loading 

steps are not distinguished). 

Remark: The code generated by the Custom Code Generator is part of the application but not used in the context of code 

generation; therefore there is no arrow from 'Generated Special Functionality' to JDK/JRE in 'Custom Code Generation'. 
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and, for every such class, generates code of a type for the re-
spective code construct class: 

for(Class<?>codeConstructContextType: 

  PARSER_CLASS.getClasses()){ 

    if (PARSER_RULE_CONTEXT_CLASS 

     .isAssignableFrom(codeConstructContextType)){ 
          generateType(codeConstructContextType); 

    } 

} 

 The constant PARSER_RULE_CONTEXT_CLASS refers to the 
standard generated context-class. The invoked method  
generateType() will  emit the code of a Java class with the 
name of the defining rule (with capitalized first letter), e.g.  
Select_stmt or With_clause, etc. 

 There is a non-generated base class CodeConstructBaseType 
which essentially provides basic tree node functionality.   

CodeConstructBaseType contains a collection 

    Set<CodeConstructBaseType> children  

and implements a traverse method.   
 A generated class   

  class CodeConstructGenericType  

          extends CodeCostructBaseType 

is created in every generator run in addition to classes corre-
sponding to production rules of the grammar. So, after the 
generator run, there are classes 

class CodeConstructGenericType  

         extends CodeConstructBaseType 

and classes 

  class  Assigment extends CodeConstructGenericType 

..  
  class From_clause extends CodeConstructGenericType 

.. and so on, for every production rule. 



 

 

 

 The generated CodeConstructGenericType class implements 
an empty ‘accept’ method for every special node class.  

  public class CodeConstructGenericType  

          extends CodeCon structBaseType { 

    public void accept (Alter_table_stmt child) {} 

    public void accept (Analyze_stmt child) {} 

    public void accept (Any_name child) {} 

and so on, for every production rule. This method is invoked 
(by generated code) when the syntax tree is built up whenever 
the parent of a node is set. This is one of the extension points 
used by code generated from nDSM, as will be explained be-
low. 

 The generator also creates a listener which is indirectly based 
on the antlr4-generated class with a non-generated class pro-
viding utility functionality injected into the class hierarchy be-
tween the antlr4-generated base class and the custom-
generator generated class:  

class SQLExtendedBaseListener extends SQLBaseListener 

class SQLListener extends SQLExtendedBaseListener 

The classes in this hierarchy have three different origins: 

SQLBaseListener  is generated by antlr from the grammar. 

SQLExtendedBaseListener  is created manually. 

SQLListener is generated by the custom code generator, using 
the nDSM as well as information retrieved by inspecting 
SQLBaseListener. 

 The generated listener builds a tree of code constructs by in-
voking the constructors of matching CodeConstruct-classes 
and invoking push- and pop methods. This is done by over-
loading the enter- and exit-methods for every production: 

class SQLListener extends SQLExtendedBaseListener{ 

   @Override 

  public void enterAlter_table_stmt 

          (SQLParser.Alter_table_stmtContext ctx) { 

      push(new Alter_table_stmt(ctx)); 

  } 

  @Override 

  public void exitAlter_table_stmt 

       (SQLParser.Alter_table_stmtContext ctx) { 

     pop(); 

  } 

… and so on, for every production rule. 

The syntax tree built thereby consists of nodes of different 
classes, each of which corresponds to a production of the 
grammar. 

 The first possibility for adding special code generated from the 
nDSM-part of the model is by overloading the ‘accept’- and 
‘traverse’-methods in the antlr4-generatedCodeConstruct-
classes by methods in their specialization generated by the 
Custom Code Generator. For example, assume that the ‘From-
clause’ has a special role TableAliasProvider in the Select 
statement. By a mechanism described below, From clause will 
be declared in  implementation of interface TableAli-
asProvider:  

class From_clause extends CodeConstructGenericType  

     implements TableAliasProvider 

 

 The Select_stmt class will declare a member of the type 
TableAliasProvider and set the value when a From-clause is 
added: 

public class Select_stmt extends StatementType { 

    public Select_stmt (Select_stmtContext context) {  

        super(context) 

   } 

   TableAliasProvider tableAliasProvider 

    @Override  

    public void accept(From_clause child) { 

      this.tableAliasProvider = child; 

   } 

} 

 The tableAliasProvider can then be used by the traverse-
method of Select-statement for resolving references. This il-
lustrates the relation between the model semantics of the 
grammar and the nDSM-part:  From the viewpoint of language 
recognition, the From-clause just is a sequence of symbols ap-
pearing as part of the Select-statement. From the viewpoint of 
dependency analysis, it defines the source tables for the select 
and their local names. 

 There is a second kind of mechanism used by the 
nDSM→code generator which also works using reflection: 
The CodeConstruct-classes can be declared to have roles or 
inherit functionality declared in framework interfaces or im-
plemented in framework classes specializing the generated  
CodeConstructGenericType class. However, the model should 
not know about the implementation of the framework.The so-
lution works on basis of custom annotations. The nDSM de-
fines abstract roles, like  

‘STATEMENT’ or ‘TABLE_ALIAS_PROVIDER’.  

A non-generated class or interface can declare responsibility 
for this role with a custom annotation, e.g.: 

@SemanticMetaData(getAbstractType = "STATEMENT") 
public abstract class StatementType  

    extends CodeConstructGenericType 

The code generator loads all classes from the framework: 

Reflections reflections =  

 new Reflections(CODE_CONSTRUCT_TYPE.getPackage() 

                                                                              .getName()); 

codeConstructBaseTypes =   

  refletions.getSubTypesOf(CodeConstructBaseType.class); 

When generating a type associated with some special base 
functionality  by the nDSM for a grammar production, the 
Custom Code Generator will look for a class with matching 
annotation and use this as base class: 

if (codeConstructBaseType 

                 .getAnnotation(CodeConstructBaseType 
                                            .SemanticMetaData.class) 

               .getAbstractType().equals(declaredBaseType))..,  

 

where the symbolic type (e.g. STATEMENT) is associated 
with a production in the nDSM. This mechanism is responsi-
ble for appearance of  StatementType rather than CodeCon-



 

 

structGenericType in the base-class declaration of class  
Select_stmt: 

  public class Select_stmt extends StatementType 

 
 Interfaces are handled analogously. This allows adding non-
generated aspects to generated classes without manipulating 
generated code. 

The solution supports clear separation of concerns and avoids 
any kind of code manipulation in the aftermath: Whatever is 
generated by either the antlr4-generator or the custom code gen-
erator is concerned ‘sealed’ and, conversely, manually edited code 
is not modified by either generator. 

3.3 Alternatives and related work 

Even though this paper is intended to be a technical-level presen-
tation of a solution rather than a meta-level comparison of differ-
ent approaches, some sketch of alternatives and the rationale for 
the presented solution may be appropriate. The most important 
alternatives are: 

 

a. Decoupled model-code transformations with integration based 
on reflection. This is the solution described in this paper. 

b. Extended Grammar: Integration of all information used for 
code generation in  one source, including the grammar and 
everything else used by a single, or possibly several code gen-
erators. 

c. Component-architecture: Several models capture different 
aspects. They are integrated by a framework for component in-
tegration. 

d. Bytecode generation: Also uses reflection but generates 
bytecode for VM directly rather than GPL-sources for compi-
lation by a standard compiler. 

  
The dominating criterion for comparison between these ap-
proaches has been the support for dealing with two dimensions of 
variation in requirements: 

 Rather special requirements will pop up in dealing with legacy 
systems: Oracle allows to use the keyword 'DEFAULT' or ':=' 
for assignment of a default value to a parameter, so that two 
sequences of characters should be treated as alternative pro-
ductions of the same rule - unless the customer wants to 
change the database vendor in which case the use of expres-
sions supported by Oracle but not by SQL Server will become 
the subject of interest. Or: In some countries, like Germany, 
insurance liability insurance is issued for single vehicles bur in 
other countries, like Austria, they are associated with license 
plates which might be used for up to three cars. What happens 
if a formerly 1-1 relation becomes m-n when the company 
wants to use the IT-system developed for Germany for both 
countries? Even comments can become subject of analysis: 
Say: a team member is going to retire - in which change histo-
ries is he the last one to appear? 

 There is some variation with respect to legacy systems' code. 
This includes vendor-specific extensions of standard lan-
guages but does not necessarily reduce to such extensions. An 
example for another source of variation are customer-specific 
pre-processors.  

Rather than aiming at development of a tool providing complete 
coverage for possible challenges out of the box, focus has been on 
responsiveness to unpredicted requirements. This yields prefer-

ence for decoupling models capturing the two dimensions of 
variation and for a lightweight, easily adoptable integration 
mechanism.   

Option a) is the solution presented here. The approach sepa-
rates concerns associated with the two dimensions of variation in 
requirements. The reflection mechanism used for integration is 
stable and easy to use. There are some consequences that might be 
arguments against the approach in other scenarios, as discussed 
lateron, but in the concrete scenario of the project this has not 
been an issue. 

Option b) corresponds to embedding definitions of semantic 
actions into definitions of rules in a grammar as known from 
yacc-like parser generators. More recent developments include 
improved support for modular extension of reusable grammar core 
with various extensions [3].  The argument for preference of a) 
against b) concerns responsiveness for anticipated use cases: If the 
customer wants to know the answer to some specific question 
about a legacy system, the most efficient way for building the tool 
will be writing some code for special functionality, modelling the 
relation between grammatical constructs and the special function-
ality in a nDSM and generating the glue code. Using reflection is 
a simple way for retrieving information already present in the 
class system, thereby allowing to limit the information to be cap-
tured in the nDSM. This is a purely pragmatic argument based on 
anticipated efforts for anticipated future requirements and thus no 
more than rational motivation can be claimed. 

Option c) has been proposed for capture of different aspects of 
a domain in separate models[9]. The combination of grammar and 
nDSM may be seen as an instance of the general class of compos-
ite meta-models. The argument for favouring a) over c) has 
mainly been a consideration for costs: reflection comes for free 
and is easy to use while integration into a component framework 
would have required additional work, particularly for integrating 
the parser generator in the meta-model. 

Option d) has been successfully applied for automated embed-
ding of special business logics into frameworks, e.g. in the context 
of adding persistence or publication as web [1]. From a logical 
point of view this is a related challenge to adding analytic func-
tionality to a parser. The option has been discarded nevertheless 
due to the additional technical complexity of bytecode generation. 
Also, the solution discussed here does not require adaptation of 
program functionalities based on information becoming available 
only at runtime, which would be the key argument for generating 
directly loadable byte- rather than source-code. 

As always when forces need to be weighted for finding a bal-
ance, there is no conclusive proof for superiority of the selected 
approach against all alternatives. Moreover, the tie of the nDSM 
to implementation may deserve attention in some scenarios: The 
DSM contains information concerning additional function to be 
associated with constructs in the legacy system's code, either by 
generating these functionality or by generating glue code for 
integration into the framework. This implies that nDSM-
modelling requires understanding of the grammar and both, the 
antlr-generated code and the framework code. A model of this 
nature thus does not shield domain experts from technical aspects. 
The reflection-based integration concepts thus is incompatible 
with the goal of integrating experts from non-technical domains, 
at least in the form presented here. The concept indeed requires 
profound technical understanding on the side of the modellers. 
This constraint being fulfilled, efficiency is improved and archi-
tecture is stabilized by lifting level of abstraction and leaving the 
implementation to the code generators.  



 

 

3.4 Further  Work 

The current solution is hoped to become the core of a solution 
family for legacy system tools based on parsing SQL and, possi-
bly, other languages. For this purpose the nDSM-modeling has to 
be improved. 

Currently the nDSM just is a XML edited model without any 
specific support. The modeler needs to know what classes exist in 
the antlr-generated class system and how they relate to grammar 
elements. Also, there is little protection against inconsistency of 
the nDSM with grammar or framework. 

As long as the modeler, framework builder and grammar de-
finer are one person or a small team of experts understanding 
what the others are doing, effects of this weakness are not too 
severe, especially since eclipse IDE in combination with antlr4-
plugin provides support for search and navigation. Still, there is 
room for improvement. 

Apart from GUI-related aspects, the model editor should also 
provide lookup and validity checking. Part of this functionality is 
already implemented in the code generator – e.g. retrieving a list 
of all productions defined in the grammar is done already, as is 
retrieving the classes of the framework and their annotations. But 
support for nDSM-modeling also requires the nDSM’s ability to 
look up information from grammar:  if the modeler shall see that a 
‘Select’ statement contains a ‘From’ clause which can be associ-
ated with a certain role, and if he or she shall not need to read the 
formal grammar for this purpose, then the nDSM-metamodel must 
implement functionality for looking up and presenting this infor-
mation. Unlike in the code generation context, this implies the 
need for model collaboration in the model-building context. Edi-
tor-related aspects of composite models based on different base 
languages is beyond the scope of this paper, which focusses on 
code generation, but has been described elsewhere[7,9]. 

4. Summary 

In some scenarios DSMs are composed of a formal grammar and, 
additionally, a ‘nDSM’ (= narrow-domain specific model) com-
ponent. The semantics of the grammar in defined in the domain of 
language recognition whereas the semantics of the nDSM is de-
fined in some narrow, task-specific domain. This particularly 
holds for legacy system analysis domains since the legacy sys-
tems’ code will be written in a language defined independently 
from the DSM-tool.  

The solution described here to handle code-generation for 
composite DSMs is by a two-step process: First, the grammar is 
transformed into parser source code without concern for the 
nDSM. In the second step a custom code generator loads the 
generated classes, inspects them by reflection and combines the 

information with the nDSM-interpretation. This eliminates the 
need for mapping the meta-models of the two components making 
up a composite DSM and replaces it by using reflection for code 
generation.  
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