
Mapping-Based Exchange of Models
Between Meta-Modeling Tools

Heiko Kern Fred Stefan
University of Leipzig

Business Information Systems
Augustusplatz 10, 04109 Leipzig, Germany
{kern, stefan}@informatik.uni-leipzig.de

Vladimir Dimitrieski Milan Čeliković
University of Novi Sad

Faculty of Technical Sciences
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

{dimitrieski, milancel}@uns.ac.rs

Abstract
The exchange of models between meta-modeling tools is an im-
portant requirement. Tools often only cover a certain task in the
development process. The exchange of models between different
tools is necessary for covering a complete development process.
Besides the aspect of cooperation, exchange of models also enables
the replacement of old tools by new tools that better fit the cus-
tomer’s needs. In order to avoid the vendor lock-in effect, model
exchange allows the reuse of existing models. In this paper, we fo-
cus on the problem of model exchange and present an mapping-
based approach between different meta-modeling tools. The ap-
proach is centered around a declarative mapping language with a
graphical notation and a solution for connecting different meta-
modeling tools. We apply our approach to exchange models be-
tween MetaEdit+ and Microsoft Visio.

Categories and Subject Descriptors D.2.12 [Interoperability]:
Data mapping; D.2.6 [Programming Environments]: Graphical
environments

General Terms Design, Languages, Experimentation

Keywords migration, interoperability, mapping, code generation,
model transformation, meta-modeling

1. Introduction
Models play an important role in Domain-Specific Modeling [6]
and other related development disciplines. Generally, models rep-
resent a system in an abstract way, improve the understanding of a
system, and facilitate the communication between different stake-
holders. The creation of models is the result of a modeling process
which is supported by a modeling tool. A special class of these
modeling tools are meta-modeling tools. In addition to providing a
user with a set of pre-defined modeling languages, meta-modeling
tools provide a mechanism for the specification of new model-
ing languages. Modeling concepts of these languages are specified
in a form of meta-models. Examples of meta-modeling tools are:
MetaEdit+ [6], Generic Modeling Environment [12], and Microsoft
Visio [2].

An important requirement for modeling tools, including meta-
modeling tools, is the interoperability with other tools. In the con-
text of this paper, interoperability is defined as the ability of two
or more tools to exchange models or meta-models. Additionally,
these exchanged models and meta-models must be usable in these
tools. Often, tools support a specific task in the development pro-
cess. Therefore, a successful application of the whole development
process depends heavily on the degree of interoperability between
the tools used. Besides the cooperation of tools, evolution of a tool

landscape is an important aspect. As the software industry con-
stantly evolves, modeling tools also evolve and old ones are being
replaced by new tools that better fit the customer’s needs. In order
to avoid the vendor lock-in effect, interoperability between tools is
necessary and enables the reuse of existing models between tools
from different vendors.

The interoperability between meta-modeling tools is not widely
supported [8]. There is no suitable model exchange approach that
takes meta-models into consideration. In this paper, we address this
lack of interoperability between meta-modeling tools and present
an approach to realize the exchange of models in consideration of
their meta-models. The goal of this approach is to allow an efficient
and user-oriented import and export of models in tools currently
used in the industry.

The paper is structured as follows. In Section 2, we introduce
the problem of model exchange between meta-modeling tools. In
the same section we derive requirements for our approach. In Sec-
tion 3, we present our solution in detail. Afterward, we present a
use case in Section 4 and a evaluation of the approach in Section 5.
We discuss related work in Section 6 and conclude this paper in
Section 7 with a summary and suggestions for future work.

2. Purpose and Requirements
In this paper we address the exchange of models between meta-
modeling tools. In contrast to simple modeling tools, the exchange
of models between meta-modeling tools is a challenging task be-
cause the exchange must consider the heterogeneity of the meta-
models. A study about interoperability between meta-modeling
tools [8] shows that currently there are no suitable approaches
allowing this kind of model exchange. The majority of meta-
modeling tools provides an export of meta-models and models
in a specific serialization format, e.g. Extensible Markup Lan-
guage (XML) with a predefined schema, XML Metadata Inter-
change (XMI), or Graph eXchange Language (GXL). These solu-
tions are unsatisfactory because a serialization format cannot solve
the problem of having different meta-model elements.

The tool approach that we want to present should exchange
models in dependency of their meta-models between different
tools. We determine that the models of the source and target tool
implement the same language by using meta-models. These meta-
models can have heterogeneity stemming from the tool-specific
meta-modeling language and different ways to express a language.
Although an automatic creation of the language in the target tool
is possible, it is unsatisfactory as some of the particularities of the
target meta-modeling tool are lost. Hence, we assume that the lan-
guage is already manually specified by a language engineer in both
tools. Beside this assumption, the source and target models must be



Meta‐Modeling 
Tool A

Meta‐
models

Models

Meta‐
models

Models

Import / ExportImport / Export

Mapping Tool

 Element 
tree

Element 
treeMapper

Generator

Meta‐
models

Models

conform to

conform to

binding

Meta‐Modeling 
Tool B

Meta‐
models

Models

conform to

conform to

binding

Mapping

M2M 
transformation

source target

Meta‐Model Environment

Figure 1. Overview of the mapping-based model exchange

in an isomorphic relationship after the exchange. The approach we
propose uses model transformation concepts from Model-Driven
Engineering. Beside the defined purpose, the approach and the ap-
propriate tooling must satisfy the following requirements:

(i) Graphical and declarative language. The mapping approach
must comprise a declarative language with a graphical notation for
specification of correspondences between source and target meta-
models. The primary target audience of the mapping approach are
users of modeling tools. These users are familiar with graphical
modeling usually used in these kind of tools. Hence, we assume
that a graphical mapping language fits this group’s needs better
than a textual transformation language. Furthermore, we assume
that the correspondence specification using a graphical language
suits the exchange process better than the manual implementation
of transformation code. The declarative nature of the language
allows the abstraction from execution details. We want to hide these
execution details from the user as the focus should be solely on the
specification of correspondences between language concepts.

(ii) Structural independence. The model exchange approach
must be independent from the structure of meta-models and mod-
els that have to be exchanged. The structural independence allows
a broad application of the exchange approach and enables the con-
nection of different meta-modeling tools. To support this require-
ment, a generic algebraic structure has to be utilized in the ap-
proach. All of the exchanged meta-models should be transformed to
this generic structure before the specification of correspondences.

(iii) Operational independence. The mapping approach itself
must be independent of the transformation execution environments
which realize the model exchange. Therefore, the mapping lan-
guage concepts must be independent of specific transformation
execution environments. Using such a language, a user would be
able to use the approach on two meta-models from different meta-
modeling tools. Based on the correspondences, an executable trans-
formation is created through an automatic generation process.

3. Mapping-Based Model Exchange Approach
Our approach for model exchange can be divided into several steps.
In Figure 1 we present an overview of this approach. The first step is
the import of meta-models from meta-modeling tools. For this task,
we use M3-Level-based Bridges (M3B) [7, 9, 10]. A M3B trans-
forms meta-models into an intermediate meta-model environment.
After that, a binding component creates a generic tree structure for
representing meta-models. Although the imported meta-models im-
plement the same language, there is still some heterogeneity be-

tween their elements. For instance, elements with the same mean-
ing may have different names or relationships can be specified in
a different way. In order to overcome this heterogeneity, the user
defines a mapping containing correspondences between different
elements. In the next step, a generator iterates over specified map-
pings and produces an executable model-to-model transformation.
The generator is specific to the pair of source and target meta-
modeling tools as the transformation must be able to read source
models and produce valid target models. The generated model-to-
model transformations are defined against the imported source and
target meta-models. The final step is the execution of the transfor-
mation including the exchange of models by using a M3B.

3.1 Import of Meta-Models
An important aspect of the mapping tool is the exchange of model
data (models and meta-models) between our mapping tool and
connected meta-modeling tools. In the first step of the approach,
meta-models are imported in our mapping tool and in the last step
models are exchanged between the different meta-modeling tools.
For the import and export of modeling data, we use the M3B ap-
proach. Generally this approach allows a transformation of models
and meta-models between different meta-modeling environments.
Furthermore, the M3B concerns technical and meta-modeling tool-
specific heterogeneity. An M3B comprises at least two transfor-
mations, one at meta-model level and one at model level. The
meta-model transformation transforms meta-models between meta-
modeling environments. Both meta-models are in an isomorphic
relationship necessary for the latter transformation at the model
level. The model transformation reads models of the source meta-
modeling environment and creates models that are to be used in the
target meta-modeling environment. The created target models must
conform to the meta-model prior imported by a M3B. Based on the
imported meta-models, we create a general tree representation.

3.2 Representation of Meta-Models
Our mapping approach aims to provide a generic mechanism for
specifying mapping regardless of the meta-modeling tool. For this
reason, we provide a generic tree representation of meta-models.
A binding component reads the meta-models and creates a tree
structure of the meta-model elements.

Concepts of the generic tree structure are presented in Fig-
ure 2. Each meta-model in a mapping is represented by an ele-
ment container (ElementContainer). Each element container has
a name corresponding to the name of an imported meta-model.



Source
Target

<<enumeration>>
Side

name : String
bindingType : String
bindingConfiguration : String
side : Side

ElementContainer

binding : String

Element

0..*

elements

1

0..*

children

parent

Figure 2. Meta-model of the generic tree structure

This name allows the differentiation between various imported
meta-models. Furthermore, an element container has a binding type
(bindingType) and a binding configuration (bindingConfiguration).
The binding type attribute determines the selection of a binding
component and later the generation of a model transformation. Dur-
ing the binding process, the binding component transforms a meta-
model into a generic tree structure. The tree elements have a refer-
ence to the native meta-model elements. This reference is necessary
during the generation process of the model-to-model transforma-
tion in order to get the native meta-model elements. Furthermore,
the binding type is necessary for reading the binding configuration.
The binding configuration in turn specifies binding details for the
element container. A value of the side parameter (side) determines
if the element container has a role of source or target container in a
mapping.

Each element container comprises zero or more elements (El-
ement). Each element has a binding string (binding) and a name
(name). The name attribute corresponds to the name of an origi-
nal element from an imported meta-model. The path to the original
element is stored in the binding string. The format of the binding
string depends on the technology of the original element.

3.3 The Mapping Language
The mappings between two element trees are expressed by a map-
ping language. In Figure 3, we present the abstract syntax of this
mapping language. The root element of a mapping description is
a mapping container (MappingContainer). A mapping container
comprises element containers, zero or more links (Link) and nodes
(Node). An element container, introduced in the prior Section 3.2,
contains elements that can be part of a mapping. Each mapping
container has at least one source and one target element container.
Each mapping is represented with a selector (Selector) linked to
source and target elements. Based on the number of source and
target elements participating in a mapping, we classify selectors
as one-to-one (OneToOne), one-to-many (OneToMany), many-to-
one (ManyToOne), many-to-many (ManyToMany), and zero-to-
any (ZeroToAny). Selectors have a name (name property) for their
unique identification in a mapping container, and a select expres-
sion (selectExpression property) for specifying a filter on all source
elements. Each selector is connected to source and target elements
using links (Link). As each link connects an element to a selector,
conditions relating to the single element are specified at the level
of the link (condition property).

Mappings can depend on other mappings. The dependency of
mappings results from the parent-child relation of the element
tree from the source or target structure. If all elements that are
being mapped have no parent elements in the tree, the mapping
is considered to be a root mapping. On the other hand, if one of the

participating elements has a parent element in the tree, the mapping
is considered to be a dependent mapping.

A selector can use one function (Function) that performs calcu-
lations on source elements participating the mapping. The result of
a function is to be mapped to a target element. As a function repre-
sents a reusable unit of code, it is specified at the level of a mapping
container and can be used by multiple selectors. For each function
usage (SelectorFunction) in a selector, arguments have to passed
(ArgumentAssignment) to the function. Passing an argument from a
selector to a function requires a specific source element, identified
by its link (linkId property), to be passed to a specific parameter,
identified by the ordinal number in its function (parameterNum-
ber property). Source elements can be passed as input parameters,
while target elements get their value from output elements. A type
of an argument assignment is specified by the parameterType prop-
erty of the ArgumentAssignment concept.

The only selector not requiring a source element to be mapped
to a target element is the zero-to-any selector. This selector pro-
vides creation of any number of target elements when correspond-
ing elements do not exist in source meta-model. Target elements
can be created without setting values of their attributes. However,
a result of a function without parameters or a constant value (Con-
stantValue) can be assigned to the target element attributes.

3.4 Implementation
Our mapping tool allows the specification of mappings between
arbitrary meta-modeling tools. For this purpose, we have chosen
the Eclipse Modeling Framework (EMF) [18] as a mediator. This
meta-modeling environment offers basic meta-modeling concepts
in comparison to other environments [11]. These basic concepts
allow the emulation of concepts from other meta-modeling envi-
ronments. Furthermore, EMF provides various model processing
tools that suit our needs and ease the development process. All of
the meta-models and models are imported into EMF by using an
M3B. There are existing implementations of M3B which allows
the connection of different meta-modeling tools and EMF. Bind-
ing components are implemented in Java. The graphical editor for
mapping specification is implemented by two different technolo-
gies. We use the Sirius framework [17] for the rapid prototyping of
the graphical editor. Sirius allows us to try out new language con-
cepts by automatically generating the editor based on the mapping
language. The drawback of such editor is its hard customization.
On the other hand, we use the Standard Widget Toolkit (SWT) [19].
The SWT-based editor has to be developed manually without auto-
matic generation. However, it provides us with the full control over
the features and customization of the editor. Finally, code genera-
tors are developed in Xtend [21].

4. Case Study: EPC Model Exchange
In this section, we present a case study to demonstrate a complete
exchange process provided by our tool. The case study shows the
exchange of models between MetaEdit+ and Microsoft Visio. The
models in this example conform to Event-Driven Process Chain
(EPC) language.

The exchange process starts with the import of EPC meta-
models from both meta-modeling tools. As our approach uses
EMF as the mediator, both meta-models are first transformed by
an M3B into EMF. The outputs of the transformations are the
MetaEdit-EPC and Visio-EPC meta-models conforming to Ecore.
Afterwards, the binding components create tree representations of
both meta-models. In Figure 4, we present a mapping between the
imported EPC meta-models. The meta-model from MetaEdit+ is
presented on the left-hand side and the Visio meta-model is de-
picted on the right-hand side in this screenshot. The presented tree
view comprises meta-model elements, meta-metamodel elements,



Mapping
Container

NodeLink

FunctionConstantValue

1

sources

1

targets

* nodes

ZeroToAny

1

mapping

OneToMany ManyToMany

Selector

ManyToOne OneToOne

0..*links

Selector
Function

0..1functions

1
function

Argument 
Assignment

0..*

argumentAssignment

Element

0..1
dependsOn

Figure 3. Meta-model of the mapping language

and generic elements. The meta-metamodel elements are presented
in italics which helps in organizing different meta-model elements.
The generic elements are independent of a concrete meta-model.
Generic elements are not defined by the language engineer during
the meta-model specification. The generic elements are given by
the meta-modeling tool. For instance, in Visio each shape has a text
property which is often used as label in a shape.

The central part of Figure 4 depicts mappings with their selec-
tors and links (cf. mapping language). For instance, the MetaEdit+
“Event Driven Process Chain” graph type is mapped to a Visio page
as Visio does not support a graph type concept. The name property
of this graph type is mapped to the generic element “text” of a Visio
page. This property mapping is considered to be a child mapping of
the graph type mapping. Both mappings are one-to-one mappings.
Next, the object types are mapped into the corresponding object
masters. The relationship type “Arc” from MetaEdit+ is mapped to
the Visio connection master “Dynamic connector”. This mapping
is a many-to-one mapping because the mapping needs to include
arc role types. The referenced object of the “From” role type is
mapped to “source” and the object of the “To” role type is mapped
to “target” of “Dynamic connector”.

After defining the mapping, a generator creates the model-to-
model transformation. Generally we can distinguish two parts of
the transformation: a meta-model independent (MMI) and a meta-
model dependent transformation (MMD). A MMI-transformation
implements rules that are independent of certain modeling lan-
guages. These rules only depend on the meta-modeling tools that
are participating in the exchange. Once implemented, these rules
can be reused for all transformations between languages specified
in these tools. An example of a MMI-transformation rule is a trans-
formation of symbol coordinates between MetaEdit+ and Visio. An
object in MetaEdit+ may be related to a symbol that has a position
on a diagram. Similarly, each shape in Visio also has a position
on a page. The MMI-transformation rule is used to transform the
MetaEdit+ symbol position into the Visio shape position.

The second part (named MMD-transformation), concerns the
mapping of the language-specific concepts. These transformation
rules depend on particular modeling languages and not directly
on meta-modeling tools. Therefore, the generation of this trans-

Figure 4. Mappings between EPC meta-models

formation depends on the previously defined mapping rules. In
this case study, the generator produces an Epsilon Transformation
Language (ETL) transformation. The generation of other trans-
formation languages is also possible by simply invoking a differ-
ent generator. In Listing 1, we present a snippet of the MMD-
transformation code. Due to space limitations, we do not present
the MMI-transformation. The first rule in Listing 1 corresponds to
the first mapping rule that creates a Visio page for each MetaEdit+
EPC graph. The name of a MetaEdit-EPC graph is assigned to the
name of a Visio page. Similar to this, the next rules represent a
transformation of model elements that are instances of the Event,
Function, XOR, and Arc concepts. Figure 5 shows a MetaEdit+
EPC model as input and the resulting Visio EPC model.

5. Evaluation
In the previous section we presented one application of our map-
ping tool. In addition to the EPC case, we applied our tool to the
exchange of models expressed in other modeling languages, such
as Unified Modeling Language (UML) class diagram and Business
Process Modeling Notation (BPMN). Based on these applications,
we evaluate the approach with regards to the following criteria:

(i) Completeness and quality. The mapping tool works well
with simple meta-models (e.g. EPC meta-model) and more com-
plex meta-models (e.g. UML class diagrams and BPMN). Organiz-
ing meta-model elements as element trees is suitable for the repre-
sentation of any meta-model. The mapping language provides users
with enough concepts to express all needed mappings and to gener-
ate an executable model transformation between the participating
meta-models. The end results of the migration process are satis-
factory as the created target models fully correspond to the source
models. We identified one weakness which is not directly related
to our mapping approach but rather on the import and export of
meta-models and models in our mapping tool. The quality of the
exchange process depends heavily on the quality of the imported
and exported model data. The used M3B approach has proved as
suitable, but in the end the quality depends on the model interfaces
provided by the connected meta-modeling tools.

(ii) Usability. One of the main elements of our tool influencing
the usability aspect is its user interface. We distinguish between two



1 rule graph2page
transform event_driven_process_chain_3395083925 :

3 INMM!Event_Driven_Process_Chain_3395083925
to evisiopage : OUTMM!EVisioPage extends Graph2Page

5 {
evisiopage.text :=

7 event_driven_process_chain_3395083925.Name;
}

9

rule event2Event
11 transform event_3395083771 : INMM!Event_3395083771

to event : OUTMM!Event {
13 event.text := event_3395083771.Name;

}
15

rule function2Function
17 transform function_3395083784 : INMM!

Function_3395083784
to function : OUTMM!Function {

19 function.text := function_3395083784.Name;
}

21

rule xor2xor
23 transform xor_3395083742 : INMM!XOR_3395083742

to _xor : OUTMM!XOR {}
25

rule arc2dynamicConnector
27 transform arc_3395083800 : INMM!Arc_3395083800

to dynamic_connector : OUTMM!Dynamic_Connector {
29 dynamic_connector.target :=

arc_3395083800.me_role.equivalent ();
31 dynamic_connector.source :=

arc_3395083800.me_role.equivalent ();
33 }

Listing 1. Snippet of the generated ETL transformation

(a) Source: MetaEdit+

(b) Target: Microsoft Visio

Figure 5. EPC model example

parts of the user interface: the graphical interface for the specifica-
tion of mappings and the tree representation of meta-models. The
graphical notation of the mapping fits the need of users who are
familiar with graphical modeling tools well. The graphical map-
ping is intuitive and enables a good overview of the mapping. In

the examples (EPC, UML, and BPMN) the mapping is easy to in-
terpret. Nevertheless, we find that the graphical representation of
complex mappings could be confusing due to the amount of lines.
The second part relates to the representation of the meta-models as
tree structures. The tree representation is a suitable view on meta-
models as part of a mapping. The tree representation focuses on the
meta-model concepts and abstracts from unnecessary details, e.g.
references between meta-model elements. The additional items in
the tree, e.g. italic tree items in Figure 4, give a user additional
information and allow easier mapping specification. Our mapping
tool also improves the usability of the exchange process in general.
Instead of programming a model transformation, the tool generates
the executable model transformation. Regarding a comparison of
Figure 4 and Listing 1, we assume that through the abstraction, the
usability of our mapping approach is better for modeling tool users
than it is the case when they are programming with textual model
transformation.

(iii) Adaptability and expandability. Generally, the mapping
tool supports the exchange between meta-modeling tools imple-
menting a three-level model hierarchy. The meta-modeling tools
must allow the export of meta-models and the import/export of
models. The representation of meta-models as element trees allows
the import of meta-models from various meta-modeling tools. This
way, our tool satisfies the requirement for structural independence
(cf. Section 2). For each meta-modeling tool a special binding com-
ponent has to be developed. A binding component can be easily
added to our mapping tool in the form of a plug-in. Furthermore,
different views can be created on top of the element tree. Currently,
we have one implementation including a tree view (cf. case study)
and a custom graphical view. Due to space limitations the custom
graphical view is not presented in this paper. The mapping itself is
represented as an EMF model. This allows the creation and addi-
tion of new code generators for different transformation execution
environments. This way, our tool satisfies the requirement for op-
erational independence (cf. Section 2).

6. Related Work
We found several mapping approaches and environments proposed
in literature. Wimmer proposes in [20] an approach to model-based
tool integration in the context of the ModelCVS project. Similarly
to our approach, Wimmer proposes three steps: importing models,
specifying mappings, and executing the mappings. This approach
however heavily depends on the EMF technical space. Mapping
operators are directly based on the notions and concepts from the
EMF technical space. This solution also proposes execution of the
mappings by executing colored Petri nets while our approach gen-
erates executable transformation code in a desired transformation
language.

In [1], authors present the ATLAS Model Management Archi-
tecture (AMMA). AMMA is a set of tools and languages that
can be used in the process of tool integration. The central part
of AMMA is a mapping language and a tool named ATL Model
Weaver (AMW) [13]. AMW provides an extendable core language
for specifying platform independent transformations. Authors of
the paper argue that for a tool integration process, a specific lan-
guage should be derived from the core language in order to cover
the specific need of that process. However, we feel that this could
be burdensome for the users of such a tool as for each integration
scenario they need to create new concepts. Our goal is to provide
a simple yet powerful language that can be used regardless of the
tools being integrated.

Several other mapping approaches can be found in literature,
such as Clio [15], Rondo [14], RDFT [16], and the UML-based
approach presented in [5]. All of these approaches focus on the
integration of certain technical spaces or languages, such as, XML,



Relational Databases or UML. However, none of these approaches
focus on the integration of (meta-)modeling tools.

The mapping language in our tool can be regarded as a graph-
ical transformation language used for the specification of platform
independent transformations. Bollati in [3] presents an approach
to modeling transformations using a composition of a graphical
modeling language and natural language to specify platform in-
dependent transformation models (PIMs). The author proposes a
definition of PIMs at a high level of abstraction while covering a
relatively small amount of details. In contrast to that, we provide in
our approach a meta-model of PIMs that allows a modeler to spec-
ify transformations with a significantly greater number of details.
In much greater detail, several other graphical transformation lan-
guages are surveyed in [4]. However, these languages are used for
platform specific transformation specification. They are provided
with their own execution environment and thus are often limited in
the type of meta-models that may be transformed. The languages
described in [4] are mostly limited to the EMF technical space.

7. Conclusion
In this paper we presented a mapping-based approach to exchange
models between different meta-modeling tools. The approach has
three phases. In the first phase, meta-models are imported from the
meta-modeling tools. For the import of the meta-models, we use
M3-Level-based Bridges. Imported meta-model elements are rep-
resented in the form of the generic element tree structure. In the
second phase, a user can use a declarative language with a graph-
ical notation to specify mappings between source and target meta-
models. The final phase of the approach comprises the generation
of executable model-to-model transformations.

In order to evaluate the approach, we presented an application
scenario for our mapping tool. The case study concerns the ex-
change of EPC models between MetaEdit+ and Microsoft Visio.
The results of the evaluation show that the mapping tool allows
a user to generate complete executable transformations. We also
showed, that the generic tree structure and the mapping language
concepts are sufficient for easy and efficient mapping specification.
From the viewpoint of adaptability and extendability, connections
to other meta-modeling tools and generators could be easily add to
our tool in the form of plug-ins.

One direction of future work is finding ways to improve the
user interface of the mapping tool. In case of large meta-models,
a mapping diagram could get overcrowded with links and selec-
tors. This could be improved by using a tabular view of mappings
with less graphical lines between elements. Furthermore, imported
meta-models often have repeating structures. To assist the user in
specifying new mapping models, we want to reuse existing map-
pings. Future research will be focused on developing algorithms
that choose appropriate existing mapping to be applied to new sit-
uations.

Acknowledgments
Research presented in this paper was supported by the German Ex-
change Service and Ministry of Education, Science and Techno-
logical Development of Republic of Serbia as part of the bilateral
project “Discovering Effective Methods and Architectures for Inte-
gration of Modeling Spaces with Application in Various Problem
Domains”, 2014 - 2015.

References
[1] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the

large and modeling in the small. In Model Driven Architecture, page
33–46. Springer, 2005.

[2] B. Biafore. Visio 2007 Bible. Wiley Publishing, April 2007. ISBN
978-0470109960.

[3] V. A. Bollati. MeTAGeM: Entorno de Desarrollo de Transformaciones
de Modelos Dirigido por Modelos. PhD thesis, Universidad Rey Juan
Carlos, 2010.

[4] V. Dimitrieski, I. Lukovic, S. Aleksic, M. Celikovic, and G. Milosavl-
jevic. An Overview of Selected Visual M2M Transformation Lan-
guages. In International Conference on Information Society Technol-
ogy and Management, 2014.

[5] J. H. Hausmann and S. Kent. Visualizing model mappings in UML. In
Proceedings of the 2003 ACM symposium on Software visualization,
page 169–178. ACM, 2003.

[6] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley-IEEE Computer Society, March 2008. ISBN
978-0-470-03666-2.

[7] H. Kern. Interchange of (Meta)Models between MetaEdit+ and
Eclipse EMF using M3-Level-Based Bridges. In J. Gray, J. Sprinkle,
J.-P. Tolvanen, and M. Rossi, editors, Proceedings of 8th OOPSLA
Workshop on Domain-Specific Modeling, pages 14–19, 2008.

[8] H. Kern. Study of Interoperability between Meta-Modeling Tools. In
Proceedings of the Third Workshop on Model-Driven Approaches in
System Development (MDASD) at Federed Conference Science and
Information Systems, 2014. to appear.

[9] H. Kern and S. Kühne. Model Interchange between ARIS and Eclipse
EMF. In J.-P. Tolvanen, J. Gray, R. Matti, and J. Sprinkle, editors,
Proceedings of 7th OOPSLA Workshop on Domain-Specific Modeling,
pages 105–114, 2007. ISBN 78-951-39-2915-2.

[10] H. Kern and S. Kühne. Integration of Microsoft Visio and Eclipse
Modeling Framework Using M3-Level-Based Bridges. In C. Hein,
T. Ritter, and M. Wagner, editors, Proceedings of Second Workshop
on Model-Driven Tool and Process Integration (MDTPI) at ECMFA,
CTIT Workshop Proceedings, pages 13–24. University of Twente,
June 2009.

[11] H. Kern, A. Hummel, and S. Kühne. Towards a Comparative
Analysis of Meta-Metamodels. In Proceedings of the compila-
tion of the co-located workshops on DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Workshops,
pages 7–12. ACM, 2011. ISBN 978-1-4503-1183-0. URL
http://doi.acm.org/10.1145/2095050.2095053.

[12] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi. The Generic Modeling
Environment. In Workshop on Intelligent Signal Processing, 2001. .

[13] D. D. F. Marcos, B. Jean, J. Frédéric, B. Erwan, and G. Guillaume.
AMW: A generic model weaver. In Proc. of the 1ères Journées sur
l’Ingénierie Dirigée par les Modèles, volume 200. Citeseer, 2005.

[14] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming
platform for generic model management. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data,
page 193–204. ACM, 2003.

[15] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan, C. H. Ho,
R. Fagin, and L. Popa. The clio project: managing heterogeneity.
SIgMOD Record, 30:78–83, 2001.

[16] B. Omelayenko. RDFT: A mapping meta-ontology for business inte-
gration. In Proc. of the Workshop on Knowledge Transformation for
the Semantic Web at the 15th European Conference on Artificial Intel-
ligence (KTSW2002), page 77–84, 2002.

[17] Sirius. URL http://www.eclipse.org/sirius/.
[18] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:

Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley,
2nd edition, December 2008. ISBN 01311425420.

[19] The Standard Widget Toolkit (SWT). URL
http://www.eclipse.org/swt/.

[20] M. Wimmer. From mining to mapping and roundtrip transforma-
tions–a systematic approach to model-based tool integration. PhD
thesis, Vienna University of Technology, 2008.

[21] Xtend. URL http://www.eclipse.org/xtend/.


