Generating a ROS/JAUS Bridge for an Autonomous Ground Vehicle

Patrick Morley
The University of Akron
pjm39@zips.uakron.edu

Alex Warren
University of Arizona
amwarren@email.arizona.edu

Ethan Rabb
Washington University in St. Louis
ethanrabb@gmail.com

Sean Whitsitt
University of Arizona
whitsitt@email.arizona.edu

Matt Bunting
University of Arizona
mosfet@email.arizona.edu

Jonathan Sprinkle
University of Arizona
sprinkle@ece.arizona.edu
In This Talk I Will Show

- A DSM solution for a ROS-JAUS bridge
 - Enables versatility and productivity
 - Allows developers to incorporate ROS-based sensors and actuators into JAUS-compliant systems
 - Yields correct-by-construction code
Cognitive and Autonomous Testing Vehicle

Autonomous Car Controlled by Embedded Controllers and a Master Computer Interacting on the OpenJAUS Platform
CAT Vehicle

- Modified Ford Escape Hybrid for autonomous driving
- JAUS–compliant system
- Communicates with on-board and external machines using TCP/IP
- Embedded systems only communicate with JAUS
Joint Architecture for Unmanned Systems (JAUS)

- Standard for autonomous systems in the defense industry
- Several components function under a Node Manager
- We used an implementation of the JAUS standard known as OpenJAUS
What Problem Did You Solve?

- The CAT Vehicle is a JAUS-compliant system
- Adding functionality to the vehicle is troublesome
 - Sensors and actuators do not come with JAUS drivers
 - A new driver must be written for each new sensor
- Open source operating systems such as ROS are easier to use
- For this reason, we developed a ROS/JAUS bridge to exchange commands and data to enable rapid prototyping
Who Cares?

- Bridging ROS and JAUS allows for researchers to focus on their work without wasting time with hardware compatibility.
- Open source options are generally preferred by programmers.
- Open source drivers can (and have been) viewed by several people:
 - More likely to be safe.
 - More likely to be robust.
How Was This Problem Solved?

- A hybrid JAUS-ROS node is created. This is a JAUS-compliant node that includes the basic ROS libraries and can communicate with roscore.
- The hybrid node acts as a bridge and translates messages to and from JAUS components and ROS nodes.
- A textual modeling language is used to generate bridge nodes for future use.
So, What's the Big Deal?

- ROS to JAUS connections have been implemented before, but these connections rely heavily on human customization.

- Our solution requires minimal details to generate a full bridge:

```c
struct [  
    type name  
]  
array_type [s] name

MessageName {  
   JAUS jausname (  
       type membername  
       type secondmembername  
   )  
   ROS rosoname (  
       type membername2  
       type secondmembername2  
   )  
   JAUS->ROS (  
       membername -> membername2  
       secondmembername ->  
       secondmembername2  
   )
...
```
Innovation

• Using this DSM solution, we were able to offload the car's steering to a ROS node. Passengers and spectators were unable to notice a difference in the steering mechanic.
Innovation

• With this DSM solution, any OpenJAUS system is now capable of using any component designed for usage with open-source robotics

• This modeling language generates the core components needed for ROS/JAUS interaction

• This provides a building block for large-scale communications between the two operating systems
How Do I Know This Solution Works?

Steering Computations on ROS

Steering Computations on JAUS
How Do I Know This Solution Works?
Summary

- We demonstrated an effective bridge between ROS and JAUS that allows exchange of commands and data.

- This bridge allows all systems in OpenJAUS to communicate with all ROS nodes for passing data or commands.

- The DSM language can be quickly imported to a graphical environment, such as GME.
Summary

• JAUS-compliant systems can now have their simulation results externally verified by open-source platforms

• Mapping and computational procedures (such as \textit{G-Mapping}) can be performed on a separate machine to reduce overhead on real-time systems