
Evaluating the Benefits of Using Domain-Specific
Modeling Languages - an Experience Report

Timo Wegeler
Fraunhofer Institute for Open

Communication Systems
FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

timo.wegeler
@fokus.fraunhofer.de

Friederike Gutzeit
Fraunhofer Institute for Open

Communication Systems
FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

friederike.gutzeit
@fokus.fraunhofer.de

Aurèle Destailleur
Fraunhofer Institute for Open

Communication Systems
FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
aurele.destailleur

@fokus.fraunhofer.de

Bernhard Dock
Klopotek & Partner GmbH

Schlüterstraße 39
10629 Berlin, Germany

B.Dock@klopotek.de

ABSTRACT
There are many tools available for the creation of domain
specific languages (DSLs) but the question remains how to
identify appropriate use cases for the application of domain
specific modeling and language design, and how to mea-
sure success. We report on our observations after three
years of accompanying several real-life industrial DSL de-
sign projects and on our experiments with applying quali-
tative and quantitative evaluation criteria. We suggest an
evaluation methodology spanning the entire DSL life cycle.
It consists of an assessment of motivation, qualitative inter-
views, a validation of DSL design, quantifying benefits and
a comparison of impacted workflows before and after adop-
tion. We conclude with a discussion of inherent limitations.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; D.3.2 [Programming Lan-
guages]: Language Classifications—Very high-level languages

General Terms
Measurement, Languages

Keywords
Domain Specific Languages, Domain Specific Modeling, Met-
rics, Assessment, Evaluation

1. INTRODUCTION
Domain specific graphical or textual modeling languages are
useful tools if applied to the right class of problems: Visual
representations are especially appropriate where non-linear
information flows need to be expressed, be it interactions,
relations or state changes in a running system. In these ar-
eas, domain-specific concrete syntax also plays a key role
and allows for easy recognition of important abstractions.
However, often the cost of building a graphical modeling
tool from scratch is too high and possibilities – or the cost –
of tweaking existing tools are unknown. Therefore, instead
of implementing a graphical modeling solution that would
provide benefits to the modeling process, tools at hand are
used. This may range from textual representations over tex-
tual DSLs to handmade diagrams on paper or using drawing
tools which offer enough freedom. Using non-formal repre-
sentations often helps to gain a common understanding of
the problems at hand, but still lack the generative part at
the end.

Once the initial cost of using frameworks for the definition of
graphical or textual DSLs is overcome, the benefits of using a
domain-specific modeling (DSM) solution can unfold. These
benefits are often stated as ”improving productivity by au-
tomating of common tasks”, ”raising the level of abstraction”
and allowing domain experts to be involved in the develop-
ment without requiring software development experience by
using an expressive representation that allows for code gen-
eration [9]. In order to gain a better understanding of when
it is worth to invest the initial effort to learn the usage of a
DSL framework, our goal was to define criteria that help to
identify successful applications of the DSM principle.

One of the main challenges for the creation of models or
domain specific languages for use in software engineering is
to find the right abstractions. Depending on the type of



model or DSL, there are a number of factors to be consid-
ered. For example, in the case of creating a DSL to be used
by domain experts with little or no programming experience,
these abstractions have to be mapped to concepts known to
the user. When designing such a DSL, special attention
has to be paid to the concrete syntax, be it of graphical
or textual nature. However, it is difficult to measure the
quality of a DSL regarding an appropriate syntax and the
right abstractions, since it depends on each case, or more
specifically, on each individual person and the concepts he
is familar with. Therefore, the challenge for creating DSLs
not only is a technical one, but also involves aspects of hu-
man cognition and other complex issues that are related to
the difficulties of human social interaction and of the natural
language used for communication.

For DSLs used in a more technical manner1, the design prob-
lem of finding the right abstractions is more an issue of effi-
ciency: Such a DSL is expected to increase productivity by
reducing the lines of code that have to be written manually,
or to enable or ease other aspects of software development
like formal verification or test generation. This is a no less
complex issue, and guidance for how to create such DSLs of
high quality is also rare.

Our research is part of the BIZWARE2 project where a sys-
tematic and standardized process of model-based software
construction and operation using DSLs was researched (run-
ning 09/2010-08/2013).

2. RELATED WORK
The question of evaluating DSL solutions is gaining more
and more attention in the scientific community. Due to the
complexity of the problems addressed with DSM solutions,
many authors use methods from empirical software engineer-
ing and deal with aspects of human cognition.

Khalaoui et al. have examined the success factors for domain
specific modeling activities and compiled a list of qualitative
criteria with positive and negative impacts [13]. In order to
evaluate a DSM solution, Mohagheghi et al. [15] suggest
using both quantitative and qualitative criteria, taking into
account the stakeholder’s interests.

Using qualitative research via interviews and online surveys,
an empirical study about the acceptance of model-driven
engineering in four industrial cases [16] indicates that the
main motivation for the adoption of model driven engineer-
ing is better communication between stakeholders, consis-
tency among development artifacts and higher productivity,
while quality of code and decreased development time are
not prioritized goals. Design patterns for the use of DSLs
have been analyzed by Spinellis [19].

Rodriguez et al. suggest an evaluation management process
for any kind of software artifacts, demonstrated with UML
class diagrams [18]. They introduce checklists for the syn-
tactic, semantic and pragmatic quality of an artifact. An
empirical study with computer science students measured

1a.k.a. technical or horizontal vs. business or vertical DSLs
2funded by the German Federal Ministry of Education
and Research (BMBF) under grant number (Förderkennze-
ichen): 03WKBU01B

understandibility time to compare different solutions of a
modeling example in UML [7]. They suggest that rela-
tionships with different semantic strengths affect the time
needed to understand a model. Lahtinen et al. propose
a wizard that guides the creation of a valid model using a
task list [14] to help new users which are unaware of the
underlying metamodel.

There are also approaches that treat DSLs as a UI and apply
UI-related usability tests. An empirical validation consider-
ing the cognitive complexity of OCL expressions [17] hints
that a cognitive complexity model can be utilized to measure
the impact of a certain feature of OCL on comprehensibil-
ity. Metrics for the understandability of ER diagrams are
defined and empirically validated by Genero at al. [8]. They
argue that even a small set of simple structural metrics can
indicate their understandability. Wu et al. [25] measure
effort for creating software applications using DSML’s and
propose metrics.

The question whether a DSL is a modeling or a program-
ming language has been examined by Sun et al. [22], deliver-
ing criteria to classify a language. Jackson and Sztipanovits
have found differences in metamodel– and grammar-based
DSLs and examined a bottom-up metamodeling approach
where metamodels are transformed into constraints to en-
sure mathematical precision [11]. Wu et al. present a frame-
work for generating DSL unit test engines [24]. A scenario-
based approach for system validation is presented by Carioni
et al. [3], using a UML profile for the domain specific mod-
elling of embedded systems.

Gailly and Poels examined the domain-specific quality of
profiled UML diagram variants and demonstrate that do-
main ontologies help the evaluation process [6]. Natural
Language complexity is measured by Vulanovic [23], by cre-
ating a metric for grammar complexity. A way to estimate
the complexity of building a model using a given metamodel
is presented by Sprinkle [20]. Constructing comparable con-
ceptual models with domain specific languages is examined
by Pfeiffer [4].

In a report on technology transfer from academia to indus-
try [2], the evolution of a domain specific language and its
interface is analyzed and lessons learned include organiza-
tional and social aspects. The practical use of a visual DSL
is reported by Karaila [12]. In particular, the evolutionary
history is described and a supervised evolution process is
considered a requirement for successful language develop-
ment. Strembeck and Zdun [21] examined activities in a
DSL engineering process, which were derived by analyzing
industry and research DSL projects.

3. PRACTICAL DSL DEVELOPMENT EX-
PERIENCES

The BIZWARE consortium consists of two academic and
eight industrial partners who develop software themselves
to address different industrial domains: health care, finance,
publishing, facility management, industrial production, web
application development, and information systems integra-
tion. During the first two years of our collaboration, we
analyzed motivation and benefits of a DSL development for
the different domains as well as the demands for capabili-



Figure 1: Development process prior to DSL usage

ties of DSL development toolkits over the full development
lifecycle. The development process of such DSLs with in-
dustrial restrictions remains a complex task. In order to en-
able participative modeling together with domain experts,
the academic partners concentrated on providing guidance
to all participating stakeholders involved in a DSL develop-
ment lifecycle from DSL designers to respective users and
provided a toolkit to support the DSL development process
with semantic knowledge bases and metrics [1].

One of our observations is that in business and industry,
the use of non-formal DSLs is very common. Furthermore,
there are popular tools like Microsoft Excel and Visio that
are used to document workflows or software requirements.
These tools also influence the way non-programmers con-
ceptualize domain specific problems. It has proven to be
a strong requirement that a DSL toolkit can be integrated
into the existing software development workflow and its tool
chain. One approach to orchestrate the exchange of models
in a tool landscape is described by Ritter et al. [10].

Involving domain experts in software development often faces
a mismatch in communication of requirements, concepts and
use cases. Programmers do not understand the domain and
how its concepts are used or intertwined; domain experts
lack understanding of programming languages and compu-
tational limits. By using DSLs to allow modeling of domain
concepts or to express domain functions, rules and computa-
tion, it is attempted to shorten this gap. The DSLs created
in cooperation between domain user and DSL designer may
be of different quality and suitable for different purposes,
like (partial) code generation, test case generation, or for
pure documentational purposes. However, to leverage any
usefulness, the syntax has to be adapted carefully to the
needs of the domain expert, as user acceptance of the nota-
tion plays a key role. At the same time, we observed that
little changes made to the desired syntax due to tool lim-
itations were accepted as well, as long as they were small
enough.

Monitoring the DSL developments of our eight industrial
partners, we found the most challenging aspects of the DSL
design proved to be:

• finding the right abstractions
• finding an appropriate syntax

• collaboration issues
• lack of evolution support

In this paper we focus on two actual DSL developments; one
textual DSL for the configuration of a large software prod-
uct in the publishing sector; and one graphical DSL for the
definition of processes for a web-based software product in
the facility management sector. The DSLs were integrated
into the existing software development workflow and toolk-
its: Java/Eclipse for the textual DSL and C#/Visual Studio
for the graphical DSL.

4. EVALUATING DSM SOLUTIONS
Theoretically, in order to evaluate a DSM solution, the de-
velopment would have to take place twice: once with and
once without incorporating the DSM solution. Then, the
overall development costs could be compared directly. As
this is not feasible in practice, we followed an approach of
comparing the development processes before and after the
introduction of an DSM solution. Another possibility is to
conduct experiments [5], however we found it difficult to
find a way to estimate the worth of a good documentation
which leads to fewer errors in the future. It is not feasible
to estimate cost savings due to prevented errors. As a prag-
matic way to deal with the reality of software development,
we concentrated on qualitative aspects using interviews, and
on simple quantitative measures using an effective3 lines of
code (LOC) comparison for starters. While in the literature
we reviewed, there are some complex metrics to be applied
to evaluate DSM solutions, we did not find any methodology
for how to find the right abstractions for the concepts used
in a DSL.

4.1 Our Evaluation methodology
From the observation of the DSL developments of our eight
industrial partners, we developed a first sketch of a sys-
tematic evaluation method. Our evaluation methodology
is summarized as follows:

• Assessment of motivation
What problem is the DSL going to solve? Is a DSL
adequate? What goals are to be achieved?

• Assessment of status quo and outcome
Assess the situation before and after the implementa-
tion of DSM using qualitative interviews. What goals
and benefits were achieved?

• DSL design validation
Validate abstraction levels and concrete syntax; docu-
ment the effort for DSL implementation

• Assessment of quantitative benefits
Select an appropriate metric, e.g. LOC for otherwise
manually written code

• Assessment of changes to the development process
Assess organizational impacts and compare workflows

This way, it is possible to extract criteria that can be used to
measure the benefits of the DSM solution. In our project’s
case, it was used to deal with the different experiences that
our industry partners encountered, using different tools and
working in different domains.

3excluding whitespace and comments, sometimes also called
eLOC



Figure 2: New development process with DSL

4.2 Evaluating the textual DSL
Klopotek develops complex software for the publishing sec-
tor. The main goal of the DSL development was to be able
to better cope with complexity and to be able to quickly
refactor and to increase developer efficiency.

4.2.1 Analysis of the development process
Out of four possible DSL developments, Klopotek chose the
one with the most indicators for a successful DSM applica-
tion: A clearly defined problem, a solution idea, available
tools and support for its implementation.

The problem which was addressed existed in a specific part
of the development process. It was a consistency problem
and involved a tedious, repetitive task for the developers.
Also, the development required collaboration with members
of a different department. For example, changes deemed
necessary were reported back from the other department
as text documents and then had to be implemented by the
development department, causing a slow process throughput
time. The established process led to frustration among the
developers and to inconsistencies between artifacts. Then,
during the DSL design phase, it became clear that the parts
that should be generated were relatively easy to implement
using a DSL framework.

We documented the development process of our industrial
partner Klopotek before and after the adoption of DSM dur-
ing a series of interviews. Figure 1 depicts the development
workflow prior to the introduction of the DSL. The problem-
atic aspect was that the tasks of creating the documentation
and the SQL scripts for the database were executed manu-
ally, often leading to inconsistencies (red boxes). Moreover,
in the communication between the development department
and the department for internationalization and documen-
tation, changes deemed necessary were exchanged via a doc-
ument, which proved to be inefficient (red boxes).

Figure 2 depicts the process after incorporating the DSL.
While the diagrams are not completely different, a compar-
ison shows that the steps previously marked critically have
been replaced and extra steps have been added to include
usage of the DSL editor. At the same time, an artifact which
previously was created became obsolete and consistency is-
sues could be resolved. Several steps that used to be manual
labor changed to being automatically created (green boxes),

0 20000 40000 60000 80000 100000 120000 140000

dot

html

java

check.sql

create.sql

master-
create.sql

update.sql

conf

other

Relativer Anteil der Gesamtsumme der 

Figure 3: LOC for each generator in relation to the
original DSL LOC

while the extra step of creating the DSL scripts is now crit-
ical (yellow box).

It is not possible to measure the time saved due to future
errors and to inconsistencies that were prevented. But, as
our qualitative analysis showed, developer contentedness has
increased since the solution is in place. Analyzing the devel-
opment process can also contribute to find a future field of
application for DSLs. In the case of Klopotek, several DSL
development opportunities were identified, and the most
promising was then chosen and its development prioritized.
The DSL was then implemented using Xtext.

4.2.2 Applying LOC metrics to a textual DSL
We then programmed a tool to analyze and visualize the
LOC of all DSL files in use along with the generated files,
ignoring comments and whitespace. From the data acquired,
we could see that in some cases, the resulting generated
LOC were lower than the LOC in the source DSL file. In
these cases, the generated code was in fact another DSL
code for a visualization tool. Measuring productivity in LOC
only would have resulted in a negative outcome. As this
generated code is used to improve the documentation, there
is no way to express any benefit with the LOCmetric. Figure
3 depicts the relation of total lines of code of the DSL scripts
(”conf”) and the corresponding generated code (”other”).

The textual DSL was implemented using Xtext: It consists
of 250 LOC for the grammar definition, 200 LOC for the
validation, 140 LOC for the formatting and seven generator
classes totalling 1500 LOC. At the time of this writing, 52
DSL scripts have been created, with a total of 15.600 LOC of
DSL code. The generated code is totalling at 465.000 LOC.

Most of the generated code would have been written manu-
ally. But, as an existing code base has been replaced with the
generated code, the real efficiency gain is for future changes.
Also, some errors were discovered while rewriting the code
based on the DSL. Since previously all code was written
by experienced developers, we decided to use a simple LOC
metric for the quantitative aspect of our evaluation. As the
DSL is purely of declarative nature, it is difficult to apply
other code metrics that measure complexity of the code al-
though we plan to apply them to analyze the validation and
generator classes in the future.

4.3 Graphical DSL evaluation
For the graphical DSL, a LOC metric is not directly applica-
ble, although it would be possible to use its serialization as
the basis. Instead, we decided to use a simple model metric
counting the elements of the graphical view, and the proper-



 !!"#$%&'%()%& !!"#$*+'),-")./-)#(011"&02%$)%3'),-")./-)#(044(&02%$)%3'),-")./-)#(055,-02%$)%36+*)78%3

9"%*-%0)($#)9%

6#(-"#++%":;,-%7

5,-0"%$)%30<=

9+*)7
9+*)7

-#0*!!"#$*+

>/%";0)($#)9%

&%9+)(%0)($#)9%

"%,-*"-0"%$)%3

>/%";0)($#)9%

>/%";0)($#)9%

9+*)7

>/%";0)($#)9%

-#0*!!"#$*+

-#05,-0"%$)%3

2#+%0?),-

5,-02%$)%3%"

4(&02%$)%3%"

1"&02%$)%3%"

:;,-%7

@*+)&*-#"

6#(-"#++%"

Figure 4: Graphical DSL implemented with Visual Studio DSL Tools

script 1 script 2 script 3 script 4
graphical elements used (max: 14) 14 11 6 14

total elements used in diagram 75 112 17 111
total properties defined 394 542 68 517

LOC generated 5075 7108 614 7158

Table 1: Model Metrics

ties which have to be defined for each element in the editor.
The advantage here is that prior to introducing DSM, the
graphical view served as an isolated documentation artifact,
while afterwards it was the basis for the generation of the
code. Thus, the need to manually create the code was effec-
tively traded for having to input a set of properties at the
model editor. We analyzed four graphical models based on
the DSL as shown in table 1.

We also evaluated the choice of appearance of the elements
of the graphical DSL. From the 14 elements available in the
editor, we created eight groups of elements of similar ap-
pearance, sharing the same visual features. We used sim-
iliarity groups to classify items and we then analyzed the
semantic meaning of the elements in the group, determin-
ing a ”conceptual distance”. This uncovered an anomaly
where two groups were nearly identical, the difference being
one element which resembled the other elements too close,
compared to the conceptual distance in the semantic net.
Therefore, it was suggested to change the appearance of the
element. Figure 4 depicts the graphical representation of
one of the four DSL models.

5. CONCLUSIONS
We have illustrated how an evaluation of a DSM solution
requires a mix of quantitative and qualitative criteria. Even
though simple metrics cannot cover the complete benefits
and risks of applying a DSM solution, they can be taken
into account during the decision process whether or not to
adopt DSM for future projects. We analyzed changes to the
development process and found that for successful DSM so-
lutions, they were not of radical, but rather gradual nature.

Defining an evaluation strategy can help identify possible
DSL fields of applications. While it is often not feasible
to quantify and compare complex development efforts and
the DSL benefits directly, a quality measure approach can
be chosen to validate the DSM application, along with even
simple metrics that can display benefits in an understand-
able way. We also introduced a method of comparing rela-
tive abstraction distances in order to assess concrete syntax
and showcased the application of the method in a real-life
development scenario. The graphical views of the DSL met-
rics can also be used to document DSL evolution, e.g. to
compare different versions of the DSL in terms of code gen-
eration.

6. LIMITATIONS AND FUTURE WORK
Apart from the simple metrics we applied for a declarative
DSL, for other kinds of DSLs more complex metrics could be
applied. Also, the other metrics could be used to analyze the
definition of the DSL, especially the validation and generator
classes. Another possible metric could be to compare the
number of concepts used in the DSL and the number of
concepts used in the generated code. E.g., when HTML
code is generated, there are a number of concepts that are
used to define the HTML that remain hidden to the DSL
user.

The cost of implementing and the learning curve for the im-
plementation of the DSL is another factor which is relevant
but hard to measure. In future work, we plan to give guid-
ance to chosing the right abstractions on abstract as well as
concrete syntax level.



7. REFERENCES
[1] H. Agt, R.-D. Kutsche, and T. Wegeler. Guidance for

domain specific modeling in small and medium
enterprises. In Proceedings of the compilation of the
co-located workshops on DSM’11, TMC’11,
AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11,
SPLASH ’11 Workshops, pages 63–70, New York and
NY and USA, 2011. ACM.

[2] T. Aschauer, G. Dauenhauer, and W. Pree. A
modeling language’s evolution driven by tight
interaction between academia and industry. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE
’10, pages 49–58, New York, NY, USA, 2010. ACM.

[3] A. Carioni, A. Gargantini, E. Riccobene, and
P. Scandurra. A scenario-based validation language for
asms. In Proceedings of the 1st international
conference on Abstract State Machines, B and Z, ABZ
’08, pages 71–84, Berlin, Heidelberg, 2008.
Springer-Verlag.

[4] Daniel Pfeiffer. Constructing comparable conceptual
models with domain specific languages. In 15th
European Conference on Information Systems
(ECIS2007), pages 876–888, 2007.

[5] W. J. Dzidek, E. Arisholm, and L. C. Briand. A
realistic empirical evaluation of the costs and benefits
of uml in software maintenance. IEEE Trans. Softw.
Eng, 34(3):407–432, 2008.

[6] F. Gailly. Conceptual modeling using domain
ontologies : Improving the domain-specific quality of
conceptual schemas. In Domain-specific modelling
workshop (DSM-10) - SPLASH/OOPSLA workshop,
number 2009/573. University Ghent, 2010.

[7] M. Genero, M. Piattini, S. Abrahao, E. Insfran, J. A.
Carsi, and I. Ramos. A controlled experiment for
selecting transformations based on quality attributes
in the context of mda. Empirical Software Engineering
and Measurement, International Symposium on, 0:498,
2007.

[8] M. Genero, G. Poels, and M. Piattini. Defining and
validating metrics for assessing the understandability
of entity-relationship diagrams. Data Knowl. Eng.,
64:534–557, March 2008.

[9] J. Gray, K. Fisher, C. Consel, G. Karsai, M. Mernik,
and J.-P. Tolvanen. Dsls: the good, the bad, and the
ugly. In Conference on Object Oriented Programming
Systems Languages and Applications archive, Nashville
and États-Unis, 2008. ACM.

[10] C. Hein, T. Ritter, and M. Wagner. Model-driven tool
integration with modelbus. In Workshop Future
Trends of Model-Driven Development, 2009.

[11] E. Jackson and J. Sztipanovits. Formalizing the
structural semantics of domain-specific modeling
languages. Software and Systems Modeling, 8:451–478,
2009. 10.1007/s10270-008-0105-0.

[12] M. Karaila. Evolution of a domain specific language

and its engineering environment - lehmanâĂŹs laws
revisited. In Workshop on DomainSpecific Modeling at
OOPSLA, 2009.

[13] A. Khalaoui, A. Abran, and E. Lefebvre. Dsml success
factors and their assessment criteria. METRICS News,
Vol.13(No.1):p.p 43–51, February. 2008. Research

Notes: 63.

[14] S. Lahtinen, J. Peltonen, I. Hammouda, and
K. Koskimies. Guided model creation: A task-driven
approach. In Proceedings of the Visual Languages and
Human-Centric Computing, pages 89–94, Washington,
DC, USA, 2006. IEEE Computer Society.

[15] Parastoo Mohagheghi and Øystein Haugen.
Evaluating domain-specific modelling solutions. In
Juan Trujillo, Gillian Dobbie, Hannu Kangassalo,
Sven Hartmann, Markus Kirchberg, Matti Rossi, Iris
Reinhartz-Berger, Esteban Zimányi, and Flavius
Frasincar, editors, Advances in Conceptual Modeling -
Applications and Challenges, ER 2010 Workshops
ACM-L, CMLSA, CMS, DE@ER, FP-UML,
SeCoGIS, WISM, Vancouver, BC, Canada, November
1-4, 2010. Proceedings, volume 6413 of Lecture Notes
in Computer Science, pages 212–221. Springer, 2010.

[16] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu,
and Miguel A. Fernández. An empirical study of the
state of the practice and acceptance of model-driven
engineering in four industrial cases. Empirical
Software Engineering, 18(1):89–116, 2013.

[17] L. Reynoso, E. Manso, M. Genero, and M. Piattini.
Assessing the influence of import-coupling on ocl
expression maintainability: A cognitive theory-based
perspective. Information Sciences, 180(20):3837 –
3862, 2010.

[18] M. Rodriguez, M. Genero, D. Torre, B. Blasco, and
M. Piattini. A methodology for continuos quality
assessment of software artefacts. In Quality Software
(QSIC), 2010 10th International Conference on, pages
254 –261, july 2010.

[19] D. Spinellis. Notable design patterns for
domain-specific languages. Journal of Systems and
Software, 56(1):91–99, 2001.

[20] J. Sprinkle. Analysis of a metamodel to estimate
complexity of using a domain-specific language. In
Proceedings of the 10th Workshop on Domain-Specific
Modeling, pages 79–85, October 2010. ISBN:
978-952-60-1043-4, ISSN: 0356889X.

[21] M. Strembeck and U. Zdun. An approach for the
systematic development of domain-specific languages.
Softw. Pract. Exper., 39:1253–1292, October 2009.

[22] Y. Sun, Z. Demirezen, M. Mernik, J. Gray, and
B. Bryant. Is my dsl a modeling or programming
language? In Proceedings of 2nd International
Workshop on Domain-Specific Program Development
(DSPD), Nashville, Tennessee, 2008.

[23] R. Vulanovic. On measuring language complexity as
relative to the conveyed linguistic information. SKY -
Journal of linguistics, 20:399–427, 2007.

[24] H. Wu, J. Gray, and M. Mernik. Unit testing for
domain-specific languages. In Proceedings of the IFIP
TC 2 Working Conference on Domain-Specific
Languages, DSL ’09, pages 125–147, Berlin,
Heidelberg, 2009. Springer-Verlag.

[25] Y. Wu, F. Hernandez, F. Ortega, P. J. Clarke, and
R. France. Measuring the effort for creating and using
domain-specific models. In Proceedings of 10th
Domain Specific Modeling Workshop, 2010.


