
EA Anamnesis: Towards an approach for Enterprise
Architecture rationalization

Georgios Plataniotis
Public Research Centre Henri

Tudor, Luxembourg,
Luxembourg

Radboud University Nijmegen,
Nijmegen, the Netherlands
∗

EE-Team, Luxembourg,
Luxembourg

georgios.plataniotis@tudor.lu

Sybren de Kinderen
Public Research Centre Henri

Tudor, Luxembourg,
Luxembourg

EE-Team, Luxembourg,
Luxembourg

sybren.dekinderen@tudor.lu

Henderik A. Proper
Public Research Centre Henri

Tudor, Luxembourg,
Luxembourg

Radboud University Nijmegen,
Nijmegen, the Netherlands

EE-Team, Luxembourg,
Luxembourg

e.proper@acm.org

ABSTRACT
ArchiMate [4] is a Domain Specific Language (DSL) to model
an enterprise from a holistic perspective, showing not only
the IT infrastructure of an organization, but also how this IT
infrastructure supports business processes and contributes
to the realization of products and (commercial) services.

Yet, ArchiMate lacks the capability to capture the design
decisions behind the models. Capturing such decisions is
important to improve the design teaching and communica-
tion after the design process. This is what we refer to as EA
Anamnesis. People who can benefit from EA Anamnesis are
e.g. persons that are foreign to a given architecture, such as
external Enterprise architects.

In this paper, we introduce an approach to capture design
decisions. For the moment we target our approach primar-
ily on capturing design decisions in the context of Archi-
Mate models. Specifically, we (1) introduce a metamodel for
capturing architectural design decisions. This metamodel is
grounded in DSLs for capturing rationales in software en-
gineering. (2) Finally, we provide a fictitious use case sce-
nario for the insurance industry to illustrate the use of our
approach.

Categories and Subject Descriptors
K.6.1 [Management of computing and information
systems]: Project and People Management—Systems anal-
ysis and design; D.2.2 [Design Tools and Techniques]:
Decision tables

∗The Enterprise Engineering Team (EE-Team) is a collab-
oration between Public Research Centre Henri Tudor, Rad-
boud University Nijmegen and HAN University of Applied
Sciences (www.ee-team.eu)

General Terms
Theory, Languages, Design, Documentation

Keywords
Enterprise Architecture, Domain Specific Language, Design
Rationale, Decision Capturing

1. INTRODUCTION
ArchiMate is a Domain Specific Language from the Open
Group for the modeling of Enterprise Architectures [11][5].
By modeling enterprise architectures, one captures an or-
ganization holistically, amongst others linking an organiza-
tion’s IT infrastructure and applications, to the business
processes they support and the products/services that are
in turn realized by the business process. Such a holistic
perspective on an enterprise helps to clarify the business ad-
vantages of IT [11], analyze cost structures and more [8].

While ArchiMate allows for modeling an enterprise holisti-
cally, the design decisions behind the resulting models are
often left implicit. Although we should be careful with the
analogy, experience from the field of software architecture
shows that leaving implicit design rationales leads to “Ar-
chitectural Knowledge vaporization” (cf. [6]). This means
that, without design rationale, design criteria and reasons
that lead to a specific design are not clear. Also, alterna-
tives that were considered during the design process are not
captured.

Among others, such lack of transparency regarding design
decisions can cause design integrity issues when architects
want to maintain or change the current design [15]. This
means that due to a lacking insight in the rationale, new de-
signs are constructed in an ad/hoc manner, without taking
into consideration constraints implied by past design deci-
sions. Also, according to a survey for software architecture
design rationale [14], a large majority of architects (85,1%)
admitted the importance of design rationalization in order
to justify designs. Another interesting finding of this survey
was that architects declared that after some time they fre-
quently forget their own decisions. Moreover, anecdotal ev-
idence from six exploratory interviews that we had with se-
nior enterprise architects, suggests that Architects are often



external consultants. This situation increases the architec-
tural knowledge gap of the Enterprise Architecture because
the successor architect tries to understand and analyze the
architecture by searching through architectural designs and
unstructured information of requirements documentation.

Although the recently released ArchiMate 2.0 version [4] has
a motivational layer, it has not been designed specifically for
capturing design decisions in models in the broad sense. As
such, ArchiMate 2.0 does not capture concepts standard to
design rationale languages such as DRL [9]. Examples of
such decision concepts include alternatives, selection crite-
ria, policies and many more.

In this paper, we introduce a DSL for the domain of cap-
turing enterprise architectural design decisions modeled in
ArchiMate. We call this DSL EA Anamnesis. Anamne-
sis (ανáµνησις), an ancient Greek word, is a term used in
medicine, philosophy and other sciences and denotes remi-
niscence and repair of forgetfulness. The specific contribu-
tion of this paper is: (1) to introduce a formal metamodel
and representation thereof to formally capture design deci-
sions made by enterprise architects and (2) to show the use
of capturing architectural design decisions.

This paper is structured as follows. Section 2 introduces the
EA anamnesis approach and metamodel, while section 3 il-
lustrates the use of our approach with an insurance example.
Section 4 presents related work. Finally section 5 concludes.

2. THE EA ANAMNESIS APROACH
In this section we introduce the idea of EA anamnesis (Sec-
tion 2.1), a formal approach for capturing and representing
Architectural design decisions. The EA anamnesis meta-
model, central to our formal approach, will be discussed in
Section 2.2.

2.1 EA Anamnesis
We introduce an approach for capturing Enterprise Archi-
tecture Decisions. With this approach we contribute to the
domain of Enterprise Architecture by assisting architects to
better understand the existing Architecture of the Enter-
prise, especially in terms of the rationales behind the archi-
tecture. Our approach is based on Decision Representation
Language (DRL) [9] and a formalism for organizing and rep-
resenting decisions using Design Decisions Trees [12]. DRL
is a well-established language for decision modeling that has
also used to model Software Architecture decisions [10][16].

More particular we propose a specialized template that cap-
tures an EA decision that is taken, in terms of attributes
that are based on DRL and design decision trees, combined
with attributes that are specific to ArchiMate. Examples
of such attributes include the actual decision, the issue to
which the decision responds, the decision rationale and the
impact that the decision has on other layers of the enter-
prise. Also, we provide the basis for the creation of an EA
DDT (Decision Dependency Tree), a representation scheme
that is used to make explicit the impacts that a decision has
across an organization.

2.2 EA Decisions metamodel
We now discuss each of the concepts from the EA decisions
metamodel, depicted in Figure 1. This metamodel is in-
stantiated in decision tables and decision trees, which are
discussed in further detail in Section 3.

Title: A small but informative description of the EA deci-
sion that was taken. The information of this field can also
be used when we represent the whole set of organizational
decision with Design Decision Trees.

EA issue: This field addresses the issue that the Enter-
prise Architect had to solve with this decision. It is a short
description of the issue and not an argumentation for the
decision.

Decision Maker: The stakeholder that was responsible for
this specific decision.

Layer: In line with the ArchiMate language [4] an enterprise
is specified in three layers: Business, Application and Tech-
nology. Using these three layers, we express an enterprise
holistically, showing not only applications and physical IT
infrastructure (expressed through the application and tech-
nology layers), but also how an enterprise’s IT impacts/is
impacted by an enterprise’s products and services and its
business strategy and processes. To allow for a holistic ex-
pression of an enterprise, layers are (1) self-contained, mean-
ing that each layer contains its own structural model ele-
ments and (2) integrated, meaning that layers and their ele-
ments are interrelated to each other with special relationship
types.

Rationale: The reason that leads the architect to choose
the specific decision among the alternatives. According to
Kruchten [7] a rationale answers the “why” question for each
decision. The information of this field should provide some
added value to the overall decision of the information.

Alternatives: This field describes the alternative choices
that were considered for the same EA issue. An architect
can use alternatives to describe the alternative options for
addressing the EA issue.

Criteria: This field exposes specific criteria that influenced
the decision maker during the selection of the specific deci-
sion among the alternatives. For example, a selection crite-
ria for a decision may include development time when weigh-
ing the in-house development of an application against a
common-of-the-shelf application.

Policy: This field declares possible Organizational policies
that should be applied during the Decision Selection process.
Examples of such policies are cost reduction, confidentiality,
availability etc. For the purposes of this paper, this field
helps Enterprise Architects to better understand if a spe-
cific decision was taken not only based on some criteria and
rationale, that were related to a particular domain, but also
based on organizational policy.

Observed Impact: With this concept, we record observed
impacts of the EA decision. In line with the ex-post na-
ture of the EA Anamnesis approach presented in this pa-



EA	
  Decision	
  

EA	
  Issue	
   Title	
  

addresses	
   1..*	
  

1	
  

1..*	
  

1	
  
has	
  

Decision	
  
Maker	
   Solved	
  by	
  

1..*	
  
1	
  

1..*	
  

1	
  

Dependent	
  
Decision	
  

Inter-­‐Layer	
  

1..*	
   0..*	
  has	
  

Policy	
  

0..*	
  

has	
  

Conforms	
  with	
  

1..*	
  

1	
  

1..*	
  

RaGonale	
  

1..*	
  

reasons	
  

1	
  

Observed	
  
Impact	
  

1..*	
  

0..*	
  

causes	
  
Layer	
  

Is	
  member	
  of	
  
1..*	
  

1	
  

Intra-­‐Layer	
  

Criteria	
  

influence	
  

AlternaGve	
  

is	
  a	
  

1	
  

1	
  

Figure 1: EA Decisions Metamodel

per, this means the recording of actual impacts, not an-
ticipated ones. These could be positive/negative or pre-
dictable/unpredictable circumstances that occur after the
application of the current decision. For example, the deci-
sion for a new application service causes network unavail-
ability because of increased network traffic. Enterprise Ar-
chitects can use information of this field in order to avoid
decisions with negative impacts in the future, to be aware
of possible negative impacts their decision may have.

Dependent decision: Here we represent decisions that are
affected by the EA decision. We distinguish between two
types of dependent decisions:

• Intra-Layer dependent Decision: This field con-
tains decisions of the same Layer that that have a de-
pendency relationship with the specific decision. For
example, in Technology layer, a decision “install addi-
tional servers” leads also to the decision “extension of
network infrastructure”.

• Inter-Layer dependent Decision: This field con-
tains decisions from different Layers that have a de-
pendency relationship with this decision. Importantly,
using the concept of an inter-layer dependent decision
we can construct the Decision Tree structure that rep-
resents how decisions from upper layers affect decisions
from lower layers. For example, a decision for a new
business service “let customer apply for insurance on-
line”, taken on the business layer, triggers other deci-
sions on other layers of the enterprise, such as “install
additional servers” on the technology layer.

3. ILLUSTRATIVE EXAMPLE
We now show how the EA decisions metamodel can be used
to express architectural design rationales and how subse-
quently these design rationales can be used to trace back
design decisions. For illustration purposes, we use an insur-
ance company case study presented in a paper for model
integration [3]. To demonstrate how our approach com-
plements Enterprise Architecture Description Languages we
use partial (selected layers) Enterprise Architecture views
from ArchiMate (Figures 2, 3). We aim to illustrate that

the proposed approach can assist Enterprise Architects in
understanding the existing (as-is) architecture by capturing
details about Enterprise Architecture Decisions.

3.1 ArchiSurance: moving to an intermedi-
ary sales model

ArchiSurance is an insurance company that was selling in-
surance products using a direct-to-customer sales model.
The company used this disintermediation scheme to reduce
its operations and products costs.

Figure 2 presents the partial (Business and Application lay-
ers) ArchiMate model for ArchiSurance direct-to-customer
sales model. Two business services support the sales model
of ArchiSurance,“car insurance registration service”and“car

Figure 2: ArchiSurance direct-to-customer EA
model



insurance service”. ArchiMate helps us understand the re-
alization dependencies between different elements. For ex-
ample, in Figure 2 we see that the business service “car in-
surance registration service” is realized by a business pro-
cess “register customer profile”. In turn, we also see that
this business process is supported by the application service
“Customer administration service”.

Although, disintermediation reduces operational costs, the
use of intermediaries in insurance sector is very important
because they provide accurate risk customer profiles [2].
ArchiSurance management decided to adopt this practice
and to change its selling model to intermediary sales. The
role of the Insurance broker was added to the business op-
eration of the company.

3.2 Capturing the intermediary sales model
in EA anamnesis

In our scenario, an external architect called John was hired
by ArchiSurance to change the Enterprise Architecture and
analyze the impacts that the intermediary sales of insurance
has on ArchiSurance.

Scenario: John uses ArchiMate to capture the impacts that
selling insurance via an intermediary has in terms of busi-
ness processes, IT infrastructure and more. The resulting
ArchiMate model is depicted in Figure 3.

Here we see for example how a (new) business process “cus-
tomer profile registration”, owned by the insurance broker
(ownership being indicated by a line between the broker
and the business process), is supported by the IT appli-

Figure 3: ArchiSurance intermediary EA model

cations “customer administration service intermediary” and
“customer administration service ArchiSurance”.

However, John (by using ArchiMate) can’t capture the ratio-
nale behind this model. For example, he captured the change
for the different application architecture that supports the
new business process but he wasn’t able to capture the justi-
fication for his decision. To capture design rationales behind
the ArchiMate model, John relies on the EA anamnesis ap-
proach.

For this simplified scenario 13 Architectural Decisions were
taken. These decisions and their relationships are repre-
sented in the DDT structure (Figure 4) that we explain later.
Table 1 shows an example of a single decision, captured in
a decision table by John: “upgrade customer administration
application”.

Let us assume that a newly hired Enterprise Architect, Bob,
wants to understand the Enterprise Architecture of the or-
ganisation by using EA Anamnesis. Bob is interested in
inspecting the decision in Table 1 “upgrade of customer ad-
ministration application”. Tables provide us structured in-
formation about what decision was taken (Title), for what
(EA issue) and by whom (Decision Maker). Very impor-
tant fields that justify the reasons for the particular deci-

Table 1: EA Decision 13 details

Title: Upgrade of customer administration appli-
cation

EA issue: Current version of customer administra-
tion application isn’t capable to support
maintenance and customers administra-
tion of intermediaries application service

Decision
Maker:

John

Layer: Application
Intra-Layer
dependent
Decisions:

EA Decision 10

Inter-Layer
dependent
Decisions:

None

Alternatives: Acquire Common of the shelf application
Rationale: With the upgrade we maintained the ex-

isting Application GUI for responsible
users of customer registration department.
Users should only be trained to use the
additional parts, the upgraded application
provides, regarding customer information
of intermediaries

Criteria: Reduced Risk, Downtime
Policy: Cost reduction
Observed
Impact:

Business Layer: Increased adaptability to
the new business process model because
people from customer registration depart-
ment just learned to work with the new in-
formation workflow model without having
to use a different application



Environment	
  

Business	
  

Applica3on	
  

EAD	
  03	
  
New	
  customer	
  
Registra3on	
  

Service	
  

EAD	
  01	
  
Add	
  insurance	
  

broker	
  

EAD	
  04	
  
Change	
  Func3on	
  

Contrac3ng	
  
	
  

EAD	
  06	
  
Remove	
  Car	
  
Insurance	
  

Registra3on	
  Service	
  

EAD	
  11	
  
Remove	
  Customer	
  
Administra3on	
  
Applica3on	
  

EAD	
  08	
  
Remove	
  Customer	
  
Administra3on	
  

Service	
  

EAD	
  10	
  
New	
  Customer	
  
Administra3on	
  

Service	
  ArchiSurance	
  

EAD	
  09	
  
New	
  Customer	
  
Administra3on	
  

Service	
  Intermediary	
  

EAD	
  07	
  
New	
  Business	
  

Interac3on	
  Customer	
  
Profile	
  Registra3on	
  

EAD	
  13	
  
Upgrade	
  Customer	
  
Administra3on	
  
Applica3on	
  

Alterna3ve	
  
New	
  Customer	
  
Administra3on	
  
Applica3on	
  

EAD	
  12	
  
New	
  Customer	
  
Administra3on	
  

Service	
  Intermediary	
  

EAD	
  02	
  
Remove	
  Car	
  
Insurance	
  

Registra3on	
  Service	
  

EAD	
  10	
  
New	
  Func3on	
  Create	
  

Customized	
  
Insurance	
  Package	
  

Figure 4: EA Decisions Dependency Tree structure

sion are Policy, Criteria and Rationale. The new architect
has now at his disposal not only implementation details but
also the reasons for this specific decision that triggered the
architectural change. For example organizational policy of
ArchiSurance at the time that transformation was initiated
was to enforce reduction costs. Next architect can under-
stand in depth reasons that influenced his predecessors to
take a specific decision.

For EAD13 the final decision was to upgrade the adminis-
tration application. Bob can determine that the alternative
choice was the acquisition of a completely new application.
This decision was taken because the existing application was
not able to support the new application service that is de-
scribed in EA issue field. Bob is also able to understand the
reason that led to this decision. Reduced Risk and downtime
(Criteria considered) of application upgrade, cost reduction
policy (Policy) of organization and minimal training needs
(Rationale) were the main factors.

Next, let us assume that Bob is interested in reviewing the
impacts that the individual decision has on related decisions.
He can easily understand, by examining Observed Impact
field, that EAD13 had a positive impact in Car insurance
Business Layer process (Business Layer) because users were
already familiarized with the application Interface.

By using EA decision dependency relationships from our
metamodel, decisions can be organized and represented us-
ing DDT structures. To construct the DDT structure, we
start by defining the “root” node of the tree. Following
a top-down approach, the “root” node is always the high-
est layer decision. We define the important details of this
node and based on dependency information we construct
the “children” nodes. “Children” nodes denote dependent
decisions that realize the requirements that “parent” nodes

define. Similar to [12], these triggering relationships create
the decisions tree structure which represent the Architec-
tural knowledge in a hierarchical way. This is an iterative
procedure that continues until all required dependent deci-
sions are derived. This structure provides decision traceabil-
ity support. The architect can begin examining lower layers
decisions and by exploring the tree, trace back to strategic
goals and business requirements.

In our scenario, Bob is able to trace DDT and discover the
relations with other decisions. As we can see from DDT,
EAD13 was caused by EAD10 (New customer Administra-
tion Service ArchiSurance). EAD13 satisfies the require-
ments that EAD10 created. This type of relationship is an
Intra-Layer dependent decision because both related decisions
belong to the same Architecture Layer. This dependency is
also denoted in the appropriate field of the template. As
stated, Impact information may also provide information re-
lated with other layers. In our example EAD13 had a posi-
tive impact in new business process of ArchiSurance because
users were already familiarized with the Application inter-
face.

4. RELATED WORK
A lot of work [6][15][16][7][13] has been done in the area
of Design rationale and capture of Architectural Decisions.
Nevertheless, this work is focused on Software Architecture
and problems that software architects have to cope with
when dealing with software projects (like software design
patterns etc.). Software architecture is only a subset of En-
terprise Architecture [1].

There are different approaches to capture Software Architec-
tural Design rationale. Most of them are template based or
model based. Textual Template based approaches [16][13],
describe in textual form important details of Architectural



Decisions like Rationale, Issue, Implications and etc. Al-
though template based approaches provide useful informa-
tion about decisions, this information is unstructured and
can’t be used efficiently.

Model based approaches [6][15][7] provide almost the same
kind of information like template based approaches but using
dedicated decision models. These models not only provide
important attributes for each decision, but also means to re-
late those decisions with software architecture artifacts and
other decisions. By using structured information format for
each decisions and also relationship information, those mod-
els provide a better architectural overview of Software Sys-
tems. Despite the fact that model based approaches enrich
the Architectural Knowledge of software systems, they are
not sufficient for Enterprise Architecture. Software Archi-
tecture is only one part of Enterprise Architecture. Different
Architectural decisions exist in EA that can have dependen-
cies and relationship with artifacts and decisions from dif-
ferent layers of Enterprise Architecture. Our approach com-
plement model based approaches for Software Architecture
by providing more specialized attributes for EA decisions
as well as more specific dependency and relationship types
between EA Decisions.

5. CONCLUSION
In this paper we introduced EA Anamnesis, an approach
for capturing design decisions made in Enterprise Architec-
ture. EA Anamnesis provides a metamodel as a basis for
capturing EA decisions. Based on relationship dependen-
cies information, we also introduce a Decision dependencies
representation scheme. EA Anamnesis aims to capitalize on
the holistic nature of ArchiMate, by not only uncovering the
business rationale behind IT decisions.

In this paper, we only provide a DSL that ex-post captures
the decision that has been made. However, to actually make
the decision, different stakeholders with different individual
rationales and stakes, from business as well as IT, have to
coordinate to collectively come to the final architectural de-
cision tree. How to collectively create a design decision tree,
taking into consideration individual concerns is for now part
of future work. As a starting point, we will look at litera-
ture on Group Decision Support Systems and Multi-Criteria
Decision Analysis theories to further extend our research
in Design Rationalization and Communication of Enterprise
Architecture during the design process.

Last but not least, one of our major challenges is to manage
the recording cost of our approach. Although design ratio-
nale helps architects to better understand existing designs,
the main criticism is about the cost of capturing such infor-
mation. As Enterprise Architecture evolves over time and
increases in size and complexity the recording cost becomes
higher. The return of modeling effort of our approach should
be more than satisfactory in order to be applicable. To do
this, effective ways of capturing design decisions during the
design process should be investigated and integrated with
our approach.

Acknowledgments.
This work has been partially sponsored by the Fonds Na-
tional de la Recherche Luxembourg (www.fnr.lu), via the

PEARL programme.

6. REFERENCES
[1] C. Coggins and J. Speigel. The methodology for

business transformation v1.5: A practical approach to
segment architecture. Journal of Enterprise
Architecture, 2007.

[2] J. Cummins and N. Doherty. The economics of
insurance intermediaries. Journal of Risk and
Insurance, 73(3):359–396, 2006.

[3] S. De Kinderen, K. Gaaloul, and E. Proper.
Integrating value modelling into archimate. In 3rd
International Conference on Exploring Service
Science, pages 54–61. IEEE, 2012.

[4] V. Haren. Archimate 2.0 Specification. Van Haren
Publishing Series. Van Haren Publishing, 2012.

[5] J. Hoogervorst. Enterprise architecture: Enabling
integration, agility and change. International Journal
of Cooperative Information Systems, 13(03):213–233,
2004.

[6] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Software
Architecture, 2005. WICSA 2005. 5th Working
IEEE/IFIP Conference on, pages 109–120. IEEE,
2005.

[7] P. Kruchten. An ontology of architectural design
decisions in software intensive systems. In 2nd
Groningen Workshop on Software Variability, pages
54–61, 2004.

[8] M. Lankhorst. Enterprise architecture at work:
Modelling, communication and analysis. Springer,
2009.

[9] J. Lee. Extending the potts and bruns model for
recording design rationale. In Software Engineering,
1991. Proceedings., 13th International Conference on,
pages 114–125. IEEE, 1991.

[10] P. Louridas and P. Loucopoulos. A generic model for
reflective design. ACM Transactions on Software
Engineering and Methodology, 9(2):199–237, 2000.

[11] M. Op’t Land, E. Proper, M. Waage, J. Cloo, and
C. Steghuis. Enterprise architecture: creating value by
informed governance. Springer, 2008.

[12] A. Ran and J. Kuusela. Design decision trees. In
Proceedings of the 8th International Workshop on
Software Specification and Design, page 172. IEEE
Computer Society, 1996.

[13] J. Savolainen. Tools for design rationale
documentation in the development of a product
family. In Position Paper Proceedings of 1st Working
IFIP Conference on Software Architecture, San
Antonio, Texas, 1999.

[14] A. Tang, M. Babar, I. Gorton, and J. Han. A survey
of architecture design rationale. Journal of systems
and software, 79(12):1792–1804, 2006.

[15] A. Tang, Y. Jin, and J. Han. A rationale-based
architecture model for design traceability and
reasoning. Journal of Systems and Software,
80(6):918–934, 2007.

[16] J. Tyree and A. Akerman. Architecture decisions:
Demystifying architecture. Software, IEEE,
22(2):19–27, 2005.


